Scheduling Data-Intensive Bags of Tasks in P2P Grids
with BitTorrent-enabled Data Distribution

Cyril Briquet
C.Briquet@ulg.ac.be

Sébastien Jodogne
Jodogne@montefiore.ulg.ac.be

_ Xavier Dalem
Xavier.Dalem@student.ulg.ac.be

Pierre-Arnoul de Marneffe
PA.deMarneffe@ulg.ac.be

Department of Electrical Engineering and Computer Science
University of Liege
Montefiore Institute, B37, B-4000 Liege, Belgium

ABSTRACT

Scheduling Data-Intensive Bags of Tasks in P2P Grids leads
to transfers of large input data files, which cause delays in
completion times. We propose to combine several existing
technologies and patterns to perform efficient data-aware
scheduling: (1) use of the BitTorrent P2P file sharing proto-
col to transfer data, (2) data caching on computational Re-
sources, (3) use of a data-aware Resource selection schedul-
ing algorithm similar to Storage Affinity, (4) a new Task
selection scheduling algorithm (Temporal Tasks Grouping),
based on the temporally grouped scheduling of Tasks shar-
ing input data files. Data replication is also discussed.

The proposed approach does not need an overlay network
or Predictive Communications Ordering, making our opera-
tional implementation of a P2P Grid middleware easily de-
ployable in unstructured P2P networks. Experiments show
that performance gains are achieved by combining BitTor-
rent, caching, Storage Affinity and Temporal Tasks Group-
ing. This work can be summarized as combining P2P Grid
computing and P2P data transfer technologies.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems ; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
Data sharing

General Terms

Algorithms, Performance

Keywords

Grid, peer-to-peer, P2P, BitTorrent, data sharing, caching,
replication, bag of tasks, scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

UPGRADE-CN’07, June 26, 2007, Monterey, California, USA.

Copyright 2007 ACM 978-1-59593-718-6/07/0006 ...$5.00.

1. INTRODUCTION

A Peer-to-Peer (P2P) Grid [1, 2, 3, 4] is a Grid [5] in which
entities are under distinct, or even unrelated control [6], and
resources such as computing time are exchanged between the
Peers. The lack of trust between Peers implies that no Peer
has access to the internal management data of other Peers.
Therefore, Peers have to model the behavior of other Peers
through repeated interactions in order to reach reciprocity
of resource exchanges.

Applications that can be structured as a set of indepen-
dent computational Tasks are called Bags of Tasks [1, 2]
(BoT). Scheduling a BoT whose Tasks share large input
data (Data-Intensive BoT) is not trivial in a P2P Grid. Data
transfers should be taken into account to avoid that multiple
simultaneous data transfers become a bottleneck.

Several recent works [1, 7, 8, 9, 10, 11, 12] integrate data
management with Task scheduling using patterns such as
data replication and caching. It has also been proposed to
use the BitTorrent P2P file sharing protocol [13, 14] to trans-
fer input data of Tasks in Desktop Grids [15, 16, 17]. How-
ever, either the proposals aren’t well adapted to P2P Grids,
or they don’t fully prevent potential bottlenecks resulting
from the simultaneous multiple transfers of large data.

This paper brings together P2P Grid computing and P2P
data transfer technologies. In the context of P2P Grids, we
propose a novel combination of data-aware Task scheduling
patterns, data caching, replication. and relying on BitTor-
rent for data transfers.

The rest of the paper is structured as follows: Section 2 de-
scribes the P2P Grid model, Section 3 reviews related work
and motivates this work, Section 4 presents our proposal
of data-aware Task scheduling in P2P Grids, Section 5 dis-
cusses the possibility of asynchronous, proactive data repli-
cation, Section 6 evaluates the performance of the proposed
Task scheduling mechanism, and finally Section 7 concludes.

2. GRID MODEL

The Lightweight Bartering Grid Architecture [3] (LBG
architecture) specifies a lightweight P2P Grid architecture
where computing time is exchanged (with so-called bartering
methods) between Peers.

Independent entities under separate administrative con-
trol are represented by software agents, called Peers. The
role of Peers is to process Bags of Tasks submitted by their

users. A Bag of Tasks [1, 2] (BoT) is a set of indepen-
dent computational Tasks. So-called Bags of Tasks con-
stitute an important class of applications, covering domains
such as computer vision, data mining, geographical informa-
tion systems (GIS), image processing, discrete optimization,
massive search (i.e. pattern matching, protein docking, ...),
parameter sweeps.

Peers use their own computational Resources or Resources
belonging to other Peers. In the latter case, a Peer using the
Resources of another Peer is a consumer and a Peer running
Tasks of another Peer is a supplier. Resources of a given
Peer may be supplied (see figure 1) to execute work units of
other Peers at the Task level.

In the LBG architecture, a Grid is a transient Peer-to-
Peer network that emerges in a bottom-up fashion and where
Peers exchange Resource usage time. Resource exchange is
a way to potentially speed up BoT completion time. Indeed,
synchronized consumption by a given Peer of Resources be-
longing to multiple Peers may dramatically reduce BoT com-
pletion times.

A Peer can be seen as a system that receives and pro-
cesses computing requests (BoTs) submitted by its users or
by other Peers. The main components of a Peer are a set
of thread-safe, loosely coupled managers. Each Peer man-
ages incoming BoTs, queued and scheduled Tasks, as well
as the data associated with these Tasks. It also manages
information about the state of its Resources, and the state
of the Resources supplied by other Peers. It negotiates Re-
source exchange with other Peers, schedules and manages
the execution of Tasks.

3. MOTIVATION AND RELATED WORK

3.1 Data-Intensive Bag of Tasks Scheduling

Data-Intensive Bags of Tasks [9, 10, 11] constitute a sub-
class of the Bags of Tasks applications, where the amount of
processed data is large, leading to data transfer times that
are long compared to computing times. These applications
have also been called PHD (Processors of Huge Data [9]).
With increasing capacities of data acquisition, most of the
applications domains mentioned in the previous Section can
be structured as Data-Intensive BoT's.

At the same time, with the development of Grid comput-
ing technologies, large-scale sharing of resources is increas-
ingly being performed on a wider range of infrastructures,
some of which are not managed at all and whose components
are therefore very unreliable, i.e. home computers, unman-
aged desktop computers. The goal of these technologies is
to provide reliability and nontrivial [18] Quality of Service
(QoS) to their users in an unreliable environment. Exam-
ples include Desktop Grids [19] and Peer-to-Peer Grids [1,
3], the former being more focused on cycle stealing within
an organization, and the latter being more oriented towards
collaboration between entities from separate, even unrelated
control domains.

In P2P Grids, runtimes and data transfer times may be
variable, and conflicts in resource usage may be the norm
rather than the exception. Scheduling BoTs in such un-
controlled environments is therefore a challenge, requiring
the use of techniques taking the lack of trust and reliability
into account. Well-known strategies to efficiently schedule
Data-Intensive BoTs include (1) data caching and (2) data
replication, and to (3) take account of data placement

when scheduling.

A recent example of synchronous data replication in a
Desktop Grid, in the context of life sciences applications [11],
proposes an integer programming scheduling algorithm. It is
limited to a steady state context. It is therefore not applica-
ble in the context of this paper, because of the unreliability
and constant change of Peer-to-Peer environments.

It has been shown [10] that data replication can be per-
formed asynchronously from Task scheduling, with simple
and cost-efficient algorithms, as long as the Task scheduler
is aware of data placement.

Note also that Data-Intensive BoT's implicitly require data
replication, in the sense that shared input data files have
to be simultaneously transferred multiple times when Tasks
are scheduled to different Resources at the same time. In
this paper, we introduce the Task scheduling pattern that
consists in simultaneously scheduling a maximum of Tasks
needing the same input data. We call this pattern Temporal
Tasks Grouping.

However, the costs incurred by data replication can be
very high, in terms of transfer times and of infrastructure
overload. The overload of Peers might lead to bottlenecks
due to the thrashing caused by the handling of management
threads or by the saturation of network bandwidth. An-
other scheduling strategy is to avoid data replication, and
use data caching instead. A proposed Task scheduling al-
gorithm [12] taking advantage of data caching groups Tasks
sharing the same input data on the same computational re-
sources. We call this pattern Spatial Tasks Grouping. Task
execution parallelism is of course reduced with Spatial Task
Grouping.

The Storage Affinity [9] Task scheduling algorithm in the
OurGrid [1] P2P Grid middleware takes data placement
into account. It schedules Tasks first to computational
resources where most of the required input data is already
available, before considering other resources where data repli-
cation is required. Given the fact that it is operating in a
P2P environment, Storage Affinity has to deal with the un-
availability of accurate data about computing times. Task
replication is proposed as a heuristic to find good Task-to-
computational resource assignments. This has the side effect
that any BoT de facto becomes Data-Intensive, in the sense
that its input data has to be transferred multiple times, in-
creasing the amount of network traffic. Storage Affinity is
definitely well adapted to P2P Grids, but suffers from the
high cost of multiple simultaneous data transfers that would
be required by Temporal Tasks Grouping.

The previous paragraphs can be summarized as follows.
(1) Temporal Tasks Grouping allows greater parallelism in
Tasks scheduling, leading to lower overall BoT runtimes.
However, simultaneously transferring the input data of sev-
eral Tasks scheduled at the same time rapidly leads to bot-
tlenecks. (2) Spatial Tasks Grouping entirely avoids the
problem of multiple simultaneous data transfers. Of course,
Tasks sharing the same input data. are not necessarily si-
multaneously scheduled. It is then more difficult to offer
nontrivial QoS [18], and BoT runtimes are higher. (3) Ac-
tivating Temporal Tasks Grouping and Storage Affinity to-
gether may enable to maintain good performance in all set-
ups, as they are complementary. However, this requires to
find a way to prevent network bottlenecks when temporally
grouping Tasks.

3.2 Simultaneous Transfers of the Same Data

A possible efficient way for a Peer to transfer the same
data multiple times is to use a set of data caches scattered
over the P2P Grid. This leverages the bandwidth of several
Peers and partially redistributes the transfer load across the
P2P Grid. Recent work includes the Super-Peer model [7]
and the File Mover overlay network [8]. They however both
require the explicit deployment of Peer-independent data
caches as well as of a routing substrate, or overlay.

Another efficient way for a Peer to transfer the same data
multiple times is to use the BitTorrent [13, 14] P2P file shar-
ing protocol. BitTorrent does not need an overlay to be con-
structed on top of Peers and, as such, is easy to deploy. A
recent study [20] shows that BitTorrent performs nearly as
well as overlay-based techniques in over-provisioned network
cores, but also indicates that BitTorrent sustains “equivalent
undegraded performance” when the available bandwidth de-
creases. In other words, BitTorrent has good performance
in managed and over-provisioned networks and, as opposed
to overlay-based techniques, maintains good performance in
bandwidth-constrained networks that are more typical to
P2P Grids environments.

An efficient way to greatly reduce the cost of transmit-
ting multiple times the same data to different resources in a
Desktop Grid has been recently and independently proposed
in two studies [15, 16]. The idea is to use BitTorrent [13,
14] to distribute Tasks data throughout the Grid.

Let us briefly discuss how BitTorrent works. A Peer,
called a seeder, that wants to share a file with BitTorrent
first starts by splitting it into pieces. It then launches a
tracker, or may use a publicly available tracker, to which it
invites Peers to connect to get introduced to one another.
Each Peer initially downloads a first piece from any of the
Peer communicated by the tracker, and then begins to ex-
change pieces with these other Peers. A Peer invites other
Peers to collaborate by uploading pieces to them. With Bit-
Torrent, as opposed to what happens with direct file trans-
fers protocols, network links between Peers are exploited
(see figure 2): As each downloader is also an uploader, the
network load is removed from the seeder and distributed to
all Peers. As opposed to other P2P file sharing protocols,
Peers using BitTorrent do not have to wait for a file trans-
fer to be completed to begin uploading pieces of it to other
Peers. Indeed, BitTorrent enables Peers to simultaneously
act as downloaders and uploaders as soon as they begin to
download a file, while allowing them to continue to act as
uploaders when the file transfer has been completed.

In the context of this paper, an advantage of BitTorrent
over regular File Transfer Protocol (FTP) is that the total
transfer time of a file by multiple downloaders is not linearly
dependent on, and increases remarkably slowly with, their
number. Coupling Grid scheduling and BitTorrent data
transfer therefore offers a very interesting perspective: As
more Tasks sharing input data are scheduled at the same
time, the overall cost of the multiple simultaneous data
transfers remains close to the cost of transferring it only
once. This enables to use Temporal Tasks Grouping, with-
out excluding the use of Spatial Tasks Grouping.

In the first mentioned study about Grid scheduling relying
on BitTorrent [15], a model of BitTorrent transfer times is
proposed (building upon previous work [17]), as well as sev-
eral BitTorrent-aware versions of classic, knowledge-based
scheduling heuristics (BT-MinMin, BT-MaxMin, BT-Suffer-

age). This very interesting work is, to the best of our knowl-
edge, the first proposal of coupling Grid scheduling and Bit-
Torrent data transfer. The BT-X knowledge-based schedul-
ing heuristics [15] are designed to operate in a cluster or
Desktop Grid environment. They require “bnowledge about
communication performance and CPU load performance”.
However, this data is not generally easy to obtain, and
specifically not to be trusted in a P2P environment. Fur-
thermore, the proposed heuristics use a modified version of
BitTorrent, whose loose reciprocity-based policy (i.e. the
choking algorithm, whose operation may be described as
enforcing loose reciprocity) has been replaced by Predic-
tive Communications Ordering (PCO). This is only possi-
ble when Peers downloading input data can be controlled,
which is not the case in P2P Grids. For these two reasons
(requirement of hard-to-obtain knowledge and PCO), the
BT-X heuristics cannot be applied to the context of this
paper.

In the second mentioned study [16], a Computer Vision
Learning problem, structured as a Data-Intensive Bag of
Tasks application, is presented and shown to be success-
fully computed with a non-dedicated, proprietary Desktop
Grid. In this context, BitTorrent is used to simultaneously
transfer half-gigabyte-sized data to several dozens comput-
ing resources.

To complete this review of related work, we explain why
GridFTP [21, 22] is not an appropriate technology in the
context of this paper, i.e. simultaneously transferring the
same data file to multiple Peers in a P2P Grid. Histori-
cally, GridFTP has targeted controlled, high performance
environments in general, and cluster-to-cluster file transfers
in particular. A key strength of GridFTP is striping sup-
port. Striping is the ability to perform striped data trans-
fers, i.e. parallel transfers of a file through several network
interfaces. Clearly, GridF'TP-based striping cannot be used
in the P2P setup considered in this paper, where Resources
are unmanaged, not high end, and rarely with more than one
network interface or huge network bandwidth. More impor-
tantly, GridF'TP does not exploit the network links between
downloaders, which is the key strength of BitTorrent as con-
sidered in this paper. However, as Allcock et al. [22] have
pointed out, GridFTP “could be used to good effect as a data
transfer tool in” BitTorrent to augment the reliability and
performance of TCP/IP connections between Peers.

4. DATA-AWARE TASK SCHEDULING

We propose to combine several existing patterns to per-
form efficient data-aware scheduling of Bags of Tasks in P2P
Grids: (1) use of the BitTorrent P2P file sharing protocol to
transfer data (see figure 2), (2) data caching on computa-
tional resources, (3) use of a data-aware Resource selection
algorithm similar to Storage Affinity, (4) a novel data-aware
Task selection scheduling algorithm, Temporal Tasks Group-
ing, based on the temporally grouped scheduling of Tasks
sharing input data files.

The rest of this Section is as follows: Section 4.1 intro-
duces data management and explains how data is managed
by Resources. Building on the available support for data
management and transfer, Section 4.2 presents the proposed
Data-Aware Task scheduling mechanism, first by explaining
Task selection (Temporal Tasks Grouping) and then Storage
Affinity-like Resource selection (Spatial Task Grouping).

!)

=

Peer Resource data cache

Legend:

Figure 1: A Peer in consumer role (top) uses its
2 Resources, as well as 1 Resource supplied by an-
other Peer (bottom) in supplier role.

=3 = =l =
=7 @if%
Y

2 p & R pg 2

Figure 2: A Peer shares a file with several Re-
sources. FTP data sharing (left) - only network links
with the Peer are exploited. BitTorrent data shar-
ing (right) - network links between all downloaders
are also exploited, leading to file download times es-
sentially independent of the number of downloaders.

4.1 Data Management

4.1.1 Data Managers

The data transfer mechanism can be simply described as
follows: Input data files of a given Task are transferred
synchronously, at Task submission time, to the Resource
to which this Task is submitted. Data transfers may be
performed with either BitTorrent or with FTP, given the
context and scheduling decisions, as will be explained in
Section 4.2.2. The timing of data transfers, or data schedul-
ing, depends on the timing of Tasks execution, or Tasks
scheduling, which will be explained in Section 4.2.

Data transfers are managed by components called Data
Managers. One Data Manager equips each Peer and each
Resource. A Peer Data Manager manages the input data
files of queued Tasks, while a Resource Data Manager man-
ages downloaded input data files.

Each Data Manager has several responsibilities: (1) data
storage (on both Peers and Resources), (2) BitTorrent data
sharing (tracking and seeding on Peers in consumer role,
and seeding only on Resources) and FTP data sharing (on
Peers in consumer role only), and (3) BitTorrent and FTP
data downloading (Resource only). As can be seen, respon-
sibilities of a Peer Data Manager and of a Resource Data
Manager overlap but are not equal. In other words, each
Peer hosts a BitTorrent tracker, a BitTorrent client, and an
FTP server, and each Resource hosts a BitTorrent client
and an FTP client. Note that all these data clients and
servers are embedded within the implemented middleware,
not requiring extra support from the underlying systems.

A simple file naming scheme is used to provide Grid-
wide naming unicity (e.g. peer_name.user_name.file_name).
Metadata information is associated with each file, includ-
ing Grid filename combined either with BitTorrent torrent
metadata or an FTP URL.

When an input data file has to be transferred from a Peer
(in consumer role) to a Resource of another Peer (in sup-
plier role), the file metadata is first sent to the other Peer,
which forwards it to its Resource. It is the Resource that
actually initiates and controls the file download (similarly
to the Super-Peer model [7]). If FTP is selected, the file
is directly downloaded from the Peer sharing it. If BitTor-
rent is selected, the file is simultaneously downloaded and
shared with other Peers and Resources already sharing or
downloading it. The data path between a consumer Peer
and a Resource may therefore not be direct, and the Re-
source may download an input data file entirely from other
Resources which have already downloaded (parts of) it. As
long as an input data file is not cleared from data storage of
a Resource or Peer, it remains available for download.

4.1.2 Resource Data Management

Each Resource Data Manager is equipped with a data
cache that manages the storage of data files. The only sup-
ported operation on a Resource data cache is synchroniza-
tion with a working set communicated by the Peer that owns
the Resource. A Resource data cache is controlled by 3 pa-
rameters: (1) a cache size, (2) a working set and (3) a cache
replacement policy.

The cache size bounds the maximum number of files that
can be stored and is configured statically.

The working set is the set of files that the data cache
should have in storage. It is communicated by the Peer

regularly, as well as each time a Task is being run. Each
item in the working set is the metadata of a file, containing
a BitTorrent torrent metadata or a FTP URL as explained
above.

When a file in the working set is not present in the data
cache, the Resource downloads it from its owner Peer or from
another consumer Peer in the P2P Grid, depending upon
the origin of the Task using this file. The Resource may also
very well download it from other Peers when BitTorrent is
used.

A consumer Peer always includes in the working set the
files needed by the Task to run, or by the Task currently
being run on the Resource to which it is scheduled. The
Peer always guarantees that the working set can always be
fully stored in the cache: The Peer never schedules a Task
to a Resource with insufficient cache size.

The cache replacement policy selects which files to eject
from the cache when the insertion of files from the working
set causes an overflow (e.g. when the number of files exceeds
the cache size). Files not part of the working set are ejected
from the cache following a Least Recently Used (LRU) policy
until the working set is fully stored. It means that the least
recently used (and not in the working set) files are ejected
from the cache.

4.2 Task Scheduling

The performance of a set of BitTorrent data transfers is
better when they happen simultaneously, as opposed to FTP
data transfers. As data transfer scheduling depends on Task
scheduling, the goal of the proposed scheduling algorithms
is to schedule at the same time Tasks sharing the same input
data files.

4.2.1 Task Selection

Let us now discuss in which order the Tasks are scheduled.
Let 8 = 6o,...,60,—1 be a Bag of Tasks. Let A; be the set of
input data files (simply called data in the following) of Task
9;, AJ its §*" input data file and |A?| the size (in bytes) of
the latter.

Two Tasks 0;, 0 are said to be related when they have at
least one data in common, i.e. 35,1 : A = AL A set of
Tasks 0 is said to be connected if every 0; is related to at
least one other Task, i.e. Vi3dk : 0;, 0y are related. Note that
any BoT can be partitioned into disjoint connected sets of
Tasks by repeatedly applying a transitive closure algorithm.
A sequence o(0) of a connected set 6 of Tasks is an ordering
of 6. A subsequence G5(0) is a section of this ordering, and its
length is noted |ds(6)|. The distance between two input data
sets of tasks 6;, 0, is the sum of the sizes of the data of 8 that
are not shared with 0;: d(A;, Ap) =Y, |AL VI A} ¢ A;.

To schedule at the same time Tasks sharing data, it could
be efficient to minimize the sum of distances between sub-
sequent Tasks within sequences. This would require to take
into account the variability of the number of available Re-
sources, and to solve an asymmetric Travelling Salesman
Problem [23] for each sequence. Instead, we propose the
Temporal Tasks Grouping (TTG) algorithm to schedule
Tasks sharing data at the same time. TTG deals with a
sequence of Tasks, and is applied to all sequences of a BoT,
which are then sorted.

To explain the Temporal Tasks Grouping algorithm, let
us introduce the following definitions. Two Tasks are said
to be data-equal when they have all their data in common,

Original Tasks input data files of Bag of Tasks 6
A() A1 AQ Ag A4 A5 AG A?
for {it {9t {r} {9} {9} {d} {r}
Sorted Tasks input data files of Bag of Tasks 6

Ao Ay A A5 [As A7 AL Ae
tof {9t {9t g} [{ry {r} [{i} | {d}

Figure 3: Tasks of Bag of Tasks 6 (here with 1
data file per Task) are grouped into data-equal sub-
sequences, which are in turn sorted by decreasing
length |55(0)]|.

ie. d(A;, Ag) = 0. A data-equal subsequence of 0 is an ex-
tensive subsequence of data-equal Tasks, meaning that the
Tasks immediately before and after the subsequence are not
data-equal to those belonging to it. We propose to sort the
data-equal subsequences of a sequence by decreasing length
|65(0)| (see figure 3).

TTG therefore ensures that the scheduling of data-equal
Tasks is temporally grouped, so as to maximize efficiency of
BitTorrent transfers. It also ensures that the largest groups
of data-equal Tasks are scheduled first, at a time when a
large number of suppliers is supposed to be available.

Multiple data-equal subsequences of similar length may
then be sorted using a nearest neighbour algorithm [23] (the
metric being the distance d(A;, Ax) between Tasks). Im-
portantly, this ordering can be performed at the submission
time of the BoT. Task selection is simple and consists in
following the precomputed ordering.

4.2.2 Resource Selection

Data placement, or Spatial Task Grouping, is explicitly
taken into account when selecting a Resource to schedule a
Task locally and implicitly when a Task is scheduled to a
supplier Peer, which might have one Resource storing the
required data in its cache. Let Agr, be the contents of the
data cache of Resource R,. At a given time, it contains
data accumulated from previous Task executions. When a
Peer is scheduling Task 6; locally, a Resource is located by
minimizing the distance d(A;, Ar,) between the data cache
of each Resource and the input data set A; of the Task to
schedule. This distance, computed dynamically, represents
the transfer cost of scheduling 6; on R, and requires data
tracking support. The minimum distance will usually be
small, as there will probably be one Resource whose data
cache already stores most of data of A; due to the execu-
tion of previous Tasks. This minimization is equivalent to
maximizing Storage Affinity [12].

Finally, as it would not be efficient to share the input
data of Tasks with data-equal subsequences that are short
either in length or number, a Peer should share some of its
data with FTP rather than BitTorrent. For this decision,
we rely on recent related work proposing a simple analytical
time model of multiple simultaneous transfers of a given file
through BitTorrent [15, 17]. The model is a function of the
number of downloaders, file size, server bandwidth, protocol
latency, and involves a factor of the number of downloaders
that is logarithmic.

5. DATA REPLICATION
5.1 Replication May Increase Reputation

5.1.1 Reactive, Synchronous Data Transfers

The objective of the Temporal Tasks Grouping algorithm
is that consumer Peers simultaneously schedule as many
Tasks of a BoT sharing input data files as possible, on mul-
tiple supplier Peers, preferably where these input data files
are already available. Resources (from a supplier Peer that
is going to run a Task) first download the required input
data if it is not already present in their data cache. This
algorithm requires very little management data, and espe-
cially none from other Peers. Its main benefit is that it max-
imizes parallelization of Tasks execution and is compatible
with data-aware Task scheduling that can avoid unnecessary
data transfers [9, 12]. In a P2P Grid, available Resources
of a Peer may vary during the execution of a BoT. Another
benefit of Temporal Tasks Grouping is that it is adaptive
as it can opportunistically makge good use of extra supple-
mentary Resources as they become available by scheduling
Tasks sharing data with already scheduled Tasks.

To use Temporal Tasks Grouping, BitTorrent support [15,
16, 17] is mandatory in order to control the cost of multiple
simultaneous transfers of the same large data. As explained
in Section 4.1, data transfers are performed synchronously
when input data files needed by a given Task are not present
in the data cache of the Resource where the Task has been
scheduled. In this case, data scheduling simply depends on
Task scheduling.

5.1.2 Proactive, Asynchronous Data Transfers

In order to increase its reputation as a supplier, a Peer
could ask its Resources to download extra copies of a popular
input data file that has a good chance of being required in a
near future by Tasks from another Peer. If this input data
file is actually required by some future Supplying Tasks, it
will already be available, thus decreasing the response time.
The rationale is based on the well-known locality principle:
If several Tasks (of a given consumer Peer) sharing the same
input data have been run in a recent past, more of them will
be run in a near future, at nearby locations.

To achieve this, we propose that supplier Peers proactively
and asynchronously command some of their idle Resources
to download input data, using BitTorrent, either from them-
selves or from other consumer Peers. The cost of doing so
is low due to the joint use of Temporal Tasks Grouping and
BitTorrent, which enable extra transfers at low cost. Proac-
tive, asynchronous data transfers are independent from reac-
tive, synchronous data transfers but happen concurrently so
as to benefit from the joint use of BitTorrent and Temporal
Tasks Grouping.

5.2 Asynchronous Data Scheduling

Our proposal of proactive, asynchronous data transfers
is similar to, yet slightly different from, previous related
state of the art work [10] in the sense that it must be pull-
based rather than push-based. Suppliers, rather than con-
sumers, initiate data replication for two reasons. (1) Firstly,
lack of trust in P2P Grids precludes that a consumer Peer
pushes data to supplier Peers independently of a Task to

run (i.e. without control of reciprocity of actions). This
limitation is important because it removes a possible vec-
tor for Denial of Storage attacks (i.e. a malicious Peer up-
loads data to another Peer until its storage resources are
exhausted). (2) Secondly, supplier Peers have a double inter-
est in proactively downloading data from probable consumer
Peers. (2a) Supplying a lot of Resources to few consumers
is better (bartering reputation-wise) than supplying few Re-
sources to a lot of consumers. And, as the goal of consumer
Peers bartering with one another, it is intrinsically good for
a consumer to gather instantaneously as many Resources
as possible. (2b) The cost of doing so can be controlled
bandwidth-wise, thanks to BitTorrent’s efficient handling of
flash crowds of downloaders, and storage-wise, thanks to the
fact that the Peer can limit the amount of storage involved
as it chooses to initiate the proactive data transfers.

As explained in Section 4.1, each Resource is equipped
with a data cache. The content of a data cache is controlled
by its working set, which is communicated by the Peer own-
ing the Resource. The working set of a Resource may be
updated synchronously with Task scheduling, and also asyn-
chronously. A working set communicated synchronously al-
ways includes the input data file of the scheduled Task. A
working set communicated asynchronously should include
input data files that are predicted to be required in a near
future by Tasks soon to be scheduled. A key decision is
therefore to decide which input data files will probably be
required by the owner Peer, or in other words, which ones
new Supplying Tasks will depend on.

Ranganathan proposed a popularity metric [10] that is
defined as the number of times an input data file is required
as input to scheduled Tasks. To take into account popularity
recency, popularity tracking will be limited to the K most
recent Tasks submitted to the Peer, using a sliding window
technique.

In a spirit similar to BitTorrent’s optimistic unchoking
policy [13, 14], adding some randomness wil