
LBG-SQUARE - Fault-Tolerant, Locality-Aware Co-allocation in P2P Grids

Gérard Dethier1, Cyril Briquet1, Pierre Marchot2, Pierre-Arnoul de Marneffe1

1Department of Electrical Engineering & Computer Science
2Department of Chemical Engineering

University of Liège

{G.Dethier,C.Briquet,Pierre.Marchot,PA.deMarneffe}@ulg.ac.be

Abstract

In this paper, the deployment and execution of Itera-
tive Stencil applications on a P2P Grid middleware are
investigated. So-called Iterative Stencil applications are
composed of sets of heavily-communicating, long-running
Tasks. They thus require co-allocation of multiple reliable
resources for extended periods of time.

P2P Grids are totally decentralized and provide on-
demand, transparent access to edge resources, e.g. Internet-
connected, non-dedicated desktop computers. A P2P Grid
has the potential to provide access to a large number of
resources at the fraction of the cost of a dedicated clus-
ter. However, edge resources are heterogeneous in perfor-
mance and intrinsically unreliable: Task execution failures
are common due to resource preemption or resource fail-
ure. Furthermore, P2P Grid schedulers usually target sets
of independent computational Tasks, i.e. so-called Bags of
Tasks applications. It is therefore not trivial to deploy and
run an Iterative Stencil application on a P2P Grid.

Checkpointing is a common fault-tolerance mechanism
in High Performance Distributed Computing, often based
on a centralized architecture. Locality-aware co-allocation
in P2P Grids has been recently investigated. Checkpointing
and locality-aware co-allocation yet have to be integrated
in P2P Grids.

We propose to provide co-allocation through an exist-
ing middleware-level Bag of Tasks scheduling mechanism.
We also introduce a layer of fault-tolerance for the Iter-
ative Stencils that relies on a scalable, application-level,
P2P checkpointing mechanism. Finally, LBG-SQUARE is
described. This software results from the combination of
a specific Iterative Stencil application (a Computational
Fluid Dynamics simulation software called LaBoGrid) with
a P2P Grid middleware (Lightweight Bartering Grid).

1. Introduction

Peer-to-Peer (P2P) Grid computing, which seeks the
convergence of Grid and Peer-to-Peer technologies, is de-
fined as computational resource sharing in Grids organized
into P2P networks. A P2P Grid is defined as a transient Vir-
tual Organization that emerges in a bottom-up fashion, out
of exchanges of computing time between Peers connected
together through a P2P network. Resources providing com-
puting time are managed by Peers. As P2P networks oper-
ate at the edge of the Internet, resources are typically edge
computers, i.e. unmanaged, not necessarily fast or reliable.
The Lightweight Bartering Grid (LBG) [2] is a middleware
designed to operate such Grids.

An iterative stencil Application (ISA) can be struc-
tured as a set of periodically recomputed interdependent
computational Tasks involving heavy and/or frequent com-
munication between subsets of them. They thus re-
quire co-allocation of multiple reliable resources for ex-
tended periods of time. An example of ISA is distributed
Lattice-Boltzmann (LB) simulation. Lattice-Boltzmann
Grid (LaBoGrid) [5] is a simulation software adapted to the
Grid environment and based on distributed LB methods.

Continuous advances in networks and the increasing
availability of numerous edge computers are motivating the
computing of ISAs on P2P Grids. Indeed, a P2P Grid has
the potential to provide access to a large number of re-
sources at a fraction of the cost of a dedicated cluster.

Resource preemptions and failures are common in a P2P
Grid, leading to frequent Task execution failures. Schedul-
ing ISAs in a P2P Grid is not trivial: P2P Grids usually tar-
get sets of independent computational Tasks, i.e. so-called
Bags of Tasks applications, and resources are usually het-
erogeneous in performance. Furthermore, ISAs are not easy
to deploy because Tasks require dynamic configuration data
that are available only at submission time. It is therefore not
trivial to deploy and run ISAs on a P2P Grid.

Known load-balancing techniques can be used to provide

2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-3443-5/08 $25.00 © 2008 IEEE

DOI 10.1109/PDCAT.2008.24

252

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

locality-aware co-allocation in a P2P Grid. Checkpointing
can be used to provide fault tolerance, but requires to be
highly scalable and adaptive to a resource environment that
can vary at runtime.

The rest of the paper is structured as follows. We show in
Section 2 how a P2P Grid middleware can provide locality-
aware resource co-allocation for ISAs. We introduce a layer
of fault-tolerance for ISAs deployed in a P2P Grid. It is
based on a highly scalable, application-level, P2P check-
pointing mechanism described in Section 3. The software
resulting from the combination of LaBoGrid with LBG,
LBG-SQUARE, is described in Section 4. The proposed
mechanisms are general and can be adapted to any ISA. Ex-
perimental results are detailed in Section 5. A brief conclu-
sion is given in Section 6.

2. Co-allocation for Iterative Stencils

2.1. P2P Grids

A P2P Grid is composed of Peers and resources. Re-
sources are worker computers that run Tasks, and thus pro-
vide computing time. As stated in the introduction, re-
sources of a P2P Grid are edge computers that are not nec-
essarily fast or reliable. A Peer manages a set of resources
on the behalf of user agents. Peers can share their resources
with bartering [4, 2, 3] or market-based methods [3]. Bar-
tering consists of fully distributed, non-monetary exchanges
of computing time, and thus does not need a central bank.
Peers first use their own resources to compute Tasks sub-
mitted by user agents. At peak time, a Peer can consume
computing time from other Peers, and supply it back later,
at times of low demand levels.

The Lightweight Bartering Grid [2] (LBG) is a recent
P2P Grid middleware. Running the LBG middleware en-
ables to make a computer part of the Grid as a Peer or
a resource. The Task model in LBG is the Bag of Tasks
(BoT), i.e. an application constituted by a set of indepen-
dent computational Tasks. Task execution is dedicated at
the resource level, meaning that at most one Task can be
run by a given resource at any time. There is an implicit
support for co-allocation in LBG, as a Peer always tries to
compute a BoT as fast as possible. When a user agent sub-
mits a Bag of Tasks to a Peer, the Peer schedules Tasks to its
own resources, preempting the execution of external Tasks
(i.e. submitted by other Peers) if necessary, and as defined
by its scheduling policy. As long as a Peer has queued Tasks
without local resources to run them, it contacts other Peers
and asks to submit these Tasks. When a Peer accepts to sup-
ply some computing time to compute an external Task, it
queues it in a separate queue. If a Peer has queued external
Tasks and available resources and no queued local Tasks, it
schedules the external Tasks to its available resources.

Figure 1. LaBoGrid
architecture.

x
z

y

Figure 2. A node of
a D3Q19 LB lattice.

The LBG middleware supports Java-programmed Tasks.
In practice, any Java application can be easily prepared to be
run on the Grid. One Java class is selected as an entry point
by implementing a given interface. All Java classes must be
packaged into a jar file. Resources run Tasks in a dedicated
Java Virtual Machine, separate from the middleware. A se-
curity policy is enforced to sandbox Task execution, i.e. to
restrict interactions with its environment. Controlled access
to a local storage for temporary files is authorized.

2.2. Grid-enabled Lattice-Boltzmann

Computational fluid dynamics (CFD) is a branch of fluid
mechanics, based on numerical methods, that deals with
problems involving fluid flows. LB simulation methods
constitute a family of CFD methods that can deal with com-
plex models and are easily parallelizable. An LB simulation
can be structured as an ISA because a stencil application up-
dates every point of a regular grid in function of a weighted
subset of nearby points. LB methods use lattices to rep-
resent a discretized space, each point of the lattice having
some information and being iteratively updated using the
current information of the neighboring points. The lattice
is partitioned into a set of data blocks, each of which is as-
sociated to a Task. Each ISA’s Task is connected to a sub-
set of the other ISA’s Tasks, also called its neighbors. As
these Tasks are tightly interdependent, robust execution is
required.

LaBoGrid is a Grid-enabled LB simulation system. It
is essentially based on two main software components (see
Figure 1): the LB Controller (LBC) and the LB Distributed
Agent (LBDA). Each Task of the ISA is actually an LBDA.
The LBC generates a computing model from initial param-
eters. This model is a lattice representing discretized space.
Figure 2 shows a node of a 3D lattice and how it is con-
nected to its neighbors (in this case, each node has 18 neigh-
bors). The LBC slices model data into data blocks (pieces of
the initial lattice) and distributes them to multiple LBDAs.
The sliced model data are the smallest indivisible data units

253

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

to process. Performance variability of the resources can be
taken into account by balancing data between Tasks.

Efficient load balancing is very important because load
imbalance has a strongly negative impact on performance.
The slowest LBDA will eventually slow down the whole
LaBoGrid. Load rebalancing should thus be done as soon
as new resources are used but not too often because of
the high cost of updating the state of all LBDAs. A re-
cently proposed algorithm [5] is to balance data between
Tasks, according to performance models provided by dy-
namic benchmarks of available resources.

Deploying LaBoGrid essentially consists of deploying
all LBDAs. Once they are deployed and have downloaded
initial data from the LBC, LBDAs communicate together
at runtime after each iteration of the LB simulation to ex-
change data. Upon completion, all LBDAs upload results
to the LBC, which stores them into a database.

To maximize parallelization of the processing of data
blocks, a large number of computers are required. In order
to avoid frequent load rebalancing, these computers should
all be available from the beginning of the LB simulation
until its completion. Co-allocation [6] consists of ensuring
simultaneous access to multiple computers for a certain du-
ration.

2.3. Structuring a set of LBDAs as a Bag of (Long-
Running) Tasks

Resources can be provided to run the LBDAs by struc-
turing a set of LBDAs as a Bag of Tasks submitted to
the Lightweight Bartering Grid middleware (see Figure 3).
Running one distributed computing middleware as one Task
of another distributed computing middleware is a common
pattern. However, it introduces issues related to firewall
traversal that are common to all Grid middlewares. The
LBG middleware should be able to ask the underlying O.S.-
level and/or network-level security infrastructure to tem-
porarily open TCP ports that can be used by Grid appli-
cations.

Another issue is that it is very difficult to predict which
resource of which Peer will run a given LBDA. It means
that the LBC cannot balance the load before LBDAs have
been actually deployed on resources. This is why, once de-
ployed, all LBDAs have to first contact the LBC to signal
their availability. After having submitted a BoT, the LBC
systematically benchmarks the new resources as they be-
come available, including during the execution of the LB
simulation. The LBC then performs load balancing and up-
loads initial data to the deployed LBDAs. Co-allocation is
thus augmented with locality-awareness through the combi-
nation of benchmarking and subsequent load rebalancing.

Yet another issue is that there is no support for commu-
nications between Tasks in the Lightweight Bartering Grid.

Figure 3. Organization of LBG-SQUARE.

But, as communications are needed between pairs of run-
ning Tasks (as opposed to communications between a com-
pleted Task and a Task about to be started), LBDAs can
directly communicate with one another. To enable this, the
LBC communicates to each LBDA the IP address and TCP
port of its neighbors along with the initial data.

3. Fault-Tolerance for Iterative Stencils

Task execution failure does not only delay the comple-
tion of an ISA (just like a Bag of Tasks), it also suspends
the execution of all Tasks (unlike a Bag of Tasks). A com-
mon way for ISAs to deal with Task execution failure is
the checkpoint/restart mechanism illustrated in Figure 4.
A few application-independent fault-tolerance mechanisms
for ISAs have been proposed [1, 8, 7] but, to the best of our
knowledge, not in P2P Grids.

3.1. Checkpointing and Fault Recovery

The state of every Task is periodically replicated
and stored (checkpoint events), possibly multiple times.
Checkpointing can be controlled at multiple levels: It
could be application-level checkpointing, or transpar-
ent (i.e. middleware-level or O.S.-level) checkpointing.
Application-level checkpointing must be implemented by
Grid application developers. It enables more control and
flexibility in the timing, selection and recovery of replicated
data [9]. It is thus used in LaBoGrid.

Upon Task execution failure, the execution of the in-
volved Tasks is suspended. This often encompasses all
Tasks, not only failed Tasks. The last stored consistent state

254

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

Figure 4. Checkpoint/restart mechanism.

of every Task is reloaded from one of the existing replicas
to an available resource. The execution of all Tasks is then
restarted.

3.2. Design Parameters

An important design choice is whether to centralize or
distribute the storage of Tasks state. Centralized check-
pointing is not a good choice as the amount of data that
should be stored is very large. More importantly, it is not
scalable [8] on large distributed systems like Grids.

The degree of fault-tolerance, i.e. the maximum number
of simultaneous Task execution failures that can be toler-
ated, depends on the number of replicas of each Task. There
is a trade-off similar to that of the Error-Correcting Codes:
Higher fault-tolerance has a higher cost in terms of data re-
dundancy. Moreover, checkpointing can be disk-based or
diskless. Diskless checkpointing [9] avoids the longer ac-
cess times associated with disk-based data storage. The
drawback is the need for larger amounts of available mem-
ory.

Given that (1) there is little control off the amount of
RAM available on computers at the edge of the Internet
and dedicated to the Task (in the order of 500 MBytes of
dedicated RAM), (2) the size of LaBoGrid checkpoints can
greatly vary (from a few MBytes to more than 100 MBytes)
given the amount of available resources and the size of the
lattice to be used for a simulation and (3) there would be
several replicas to assign to each resource in addition to
the current Task state, we currently select disk-based check-
pointing.

An approach where disk-based or memory-based check-
pointing is chosen given the amount of available RAM can
be imagined. However, it is beyond the scope of this paper.

We propose an application-level disk-based checkpoint-
ing mechanism, with a P2P checkpointing topology [8],
where each resource acts as both a consumer and supplier

Resource
Peer

Figure 5. Resource graph of a P2P Grid.

of replica storage. However, a centralized controller (LBC)
has to decide which resource stores the state of its Task on
which other resources. In the context of LaBoGrid, the LBC
can communicate state replication decisions to all Tasks
along with initial data, at no extra cost. Given the robust-
ness/cost trade-off, every LBDA stores a limited number of
replicas of its state to other resources. Our proposed check-
pointing architecture is thus potentially scalable.

3.3. Management Graphs of LB Simulations

The model graph describes the slicing of the initial data
of an LB simulation into data blocks, and their interconnec-
tions.

The resource graph describes the resources obtained
from the P2P Grid (see Figure 5) that run the LBDAs. Its
nodes are weighted with performance cost (i.e. estimated
speed resulting from benchmarking [5]).

The computation graph assigns data blocks to resources.
It is a partial subgraph of the resource graph. A mapping of
the nodes of the model graph to the nodes of the resource
graph indicates which resources will be used. Edges of the
resource graph are selected according to the connectivity
defined by the model graph. These edges are then added to
link the selected resources. The mapping of the nodes of
the model graph to the nodes of the resource graph is com-
puted in order to minimize processing time. This optimally
balances or rebalances the computing times of all Tasks.

The checkpointing graph describes the number and loca-
tion of replicas of the state of every Task. The nodes of the
graph are the Tasks. The directed edges indicate to which
other Tasks a Task saves its state. It is constructed in two
steps: first balancing, at the Peer-level, the number of repli-
cas stored on each resource, then uniformly spreading in-
bound replicas among the resources of each Peer.

255

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

Model
graph

Computation
graph

Checkpointing
graph

Data block

Resource

Resource

Peer

Data block
group
Data block
group
projection

Figure 6. Management graphs.

The model, computation and checkpointing graphs illus-
trated in Figure 6 are based on the P2P Grid of Figure 3 and
resource graph of Figure 5. The nodes of the model graph
are data blocks. This graph is non-directed. The nodes of
the computation graph are the resources provided by the
P2P Grid. This graph is also non-directed. The nodes of the
checkpointing graph are the same as the computation graph
ones. They are grouped by Peer. This graph is directed.

The resource graph varies over time because of Task ex-
ecution failures or deployment of new LBDAs. By defini-
tion, the computation and checkpointing graphs must also
be subsequently recomputed.

Task execution failure can arise from crashes of single
resources, or from the simultaneous preemption of multi-
ple resources of a supplier Peer which has an urgent need
for its own resources. Therefore, the construction of the
checkpointing graph must also ensure that replicas of the
state of a Task running on a given resource of a given sup-
plier Peer are preferably stored on resources of other sup-
plier Peers. Even if one Peer preempts all Tasks running on
its resources, state replicas will hopefully be available on
other Peers’ resources.

4. Implementation of LBG-SQUARE

LBG-SQUARE is the software resulting from the com-
bination of the Lightweight Bartering Grid and the LaBo-

Grid middlewares. It arises from the structuring of a set of
LBDAs as a Bag of Tasks. Supplementary coding to sup-
port LBG-SQUARE was completed in half a day, which is
impressive given the complexity of these two separate mid-
dlewares. It essentially involved the writing of a component
enabling the LBC to submit Jobs. However, the two middle-
wares are independent. Load balancing and fault-tolerance
are handled by LaBoGrid. Moreover, LBDAs communi-
cate directly with one another, although middleware sup-
port could enable the LBDAs to cooperate with the security
infrastructure.

4.1. Fault Recovery

In order to provide fault-tolerance upon fault detection,
the LBC initiates and coordinates fault recovery operations
as explained in Section 3. The LBC temporizes for a short
period after detecting a failure of Task execution in order
to handle multiple simultaneous Task execution failures. It
then submits a new BoT to obtain resources. After a time-
out has been exceeded, the computation and checkpointing
graphs are recomputed. The LBC then communicates to the
LBDAs (including the newly deployed ones) from which
other LBDA to download their starting state. The LBC also
informs each LBDA of its neighbors in the new computa-
tion and checkpointing graphs. When all LBDAs have com-
pleted their state rollback, the LBC restarts their execution.

It is important to remark that the described operations
are generic to any ISA, and only some implementation de-
tails are specific to LaBoGrid. The LBG-SQUARE archi-
tecture is completely decentralized under non-faulty con-
ditions. Upon fault detection, the LBC centrally coordi-
nates fault recovery operations. The LBC sends small con-
trol messages, which constitute a very low overhead. It
is not directly involved in the actual transfers of replicas
of Task state; the LBDAs perform these transfers. The
LBG-SQUARE architecture is thus fully decentralized for
data transfers under faulty conditions. In any case, the
LBG-SQUARE architecture is potentially scalable because
LBDAs act autonomously and in a P2P fashion.

5. Experimental Results

To illustrate the practical benefits of LBG-SQUARE, dis-
tributed checkpointing is compared to centralized check-
pointing in terms of execution time of the same Job in a
Grid. The execution time is also observed in case of execu-
tion failure.

The Lightweight Bartering Grid middleware is deployed
on a set of 49 PCs (27 Pentium IV CPU, with 1GB RAM
for resources, and 22 Pentium Celeron with 512MB RAM
for Peers, user agent and more resources), connected with

256

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

No replication 1/dist. 2/dist. 3/dist. 4/dist. 1/central.

0

100

200

300

400

500

600

700

800

No Compression
Compression

Number of replica / Replication type

E
xe

cu
tio

n
 T

im
e

 (
s

)

Figure 7. Execution times with distributed
and centralized checkpointing.

a 100 Mbps switched-Ethernet network. A Grid of 8 Peers
with 5 resources each is used.

The faulty nature of P2P Grids is simulated by interrupt-
ing artificially some tasks running on the resources.

The LaBoGrid Job executed in each experiment is an LB
simulation on a lattice of 200× 200× 200 nodes. The sim-
ulation is run for 100 iterations.

Note that “real-life” simulations use larger lattices and
are generally run for 10000 iterations. Thus, they can run
for several hours up to a few days. The results presented be-
low show Jobs completed after 3 minutes which is not typ-
ical for this kind of application. It is however sufficient to
illustrate the behavior of LBG-SQUARE with various repli-
cation parameters and failure conditions.

5.1. Distributed and Centralized Checkpointing

The Job is executed using distributed checkpointing and
replication degrees 1, 2, 3, and 4. The replication degree
bounds the number of Peers that could simultaneously stop
supplying resources to the ISA without affecting its comple-
tion. The centralized case is a particular case of replication
with degree 1 where all Tasks store their replica on the same
machine, the LBC’s one (which is not part of the Grid). The
checkpointing period is fixed at 10 (one checkpoint every 10
iterations). This means there are 10 replications during the
Job execution which runs for 100 iterations. Figure 7 gives
the execution times of the Job using the given parameters
and with compressed and uncompressed state data.

With uncompressed state data (around 20MB per Task
state), the distributed checkpointing technique has an over-
head in execution time that is much smaller than the over-
head with centralized checkpointing. However, comparing
cases of uncompressed data, with a replication degree of 4,
the execution time is twice as long as the execution time
without state replication. Such penalty is probably not ac-
ceptable in practice.

25% 50% 75%

0

20

40

60

80

100

120

140

160

180

200

No Checkpointing
Checkpointing

% of execution time elapsed before failure

E
xe

cu
tio

n
 T

im
e

 (
s

)

Figure 8. Execution times with execution fail-
ure.

When state data are compressed before the replication
(around 60KB per Task state, 0.3% of uncompressed data
size), the overhead of replication is quite the same in all
cases (centralized and distributed checkpointing) and re-
mains very small. The state replication time is dominated
by the compression time. The transmission time remains
small even with centralized checkpointing. This would not
have been the case if there were thousands of Tasks. The
gain obtained with compression is very large in our case
because of the nature of the compressed data. Compression
should be used according to the reachable compression rate.

5.2. Execution Time in Case of Failure

The Job is executed in 2 configurations: with and without
checkpointing. An execution failure is caused after a given
amount of time in the 2 configurations. Distributed check-
pointing is used with replication degree 1 and period 10.
The execution failure consists of a very short interruption of
5 resources of a Peer, the resources are immediately avail-
able after the interruption and can thus be reused to com-
plete the Job. Figure 8 shows the execution times for exe-
cution failures occurring after one quarter, a half and three
quarters of the execution time without failure nor check-
pointing (see Figure 7).

As expected, without checkpointing, the execution time
increases as the execution failure occurs later in the execu-
tion. Indeed, more time is wasted (due to lost LB iterations)
with a restart from the initial state. With checkpointing, the
execution time remains essentially constant. As the Tasks
restart from the last saved state, the amount of wasted time
remains small all the time. Checkpointing introduces some
overhead in execution time with state replication and state
rollback but even when the execution failure occurs early,
the execution times remain comparable. A long replication

257

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

period strongly decreases the execution time but can intro-
duce a larger overhead caused by the reexecution of itera-
tions lost since the last checkpoint.

6. Concluding Remarks

The LBG-SQUARE software has been introduced. It
results from the integration of a P2P Grid middleware
(Lightweight Bartering Grid [2]) with a specific Iterative
Stencil application (Lattice-Boltzmann Grid [5]).

Co-allocation for long-running, heavily-communicating
Tasks is provided through a middleware-level Tasks
scheduling mechanism intended for independent Tasks. De-
ploying an Iterative Stencil application (ISA) on a P2P Grid
offers opportunities for fault-tolerance, as supplementary
resources can be autonomously and dynamically obtained
across organizational boundaries. Locality-awareness is
achieved through the combination of benchmarking and
subsequent load balancing by a controller (LBC).

Application-level agents (LBDAs) are run as indepen-
dent Tasks on resources provided by the P2P Grid middle-
ware. A central application-level controller initially bench-
marks the resources, computes load-balanced computation
and checkpointing graphs. It then communicates initial data
as well as computation and checkpointing neighbors to the
LBDAs. After this initial phase, the computations are fully
distributed.

We also introduce a layer of fault-tolerance for ISAs fol-
lowing the checkpoint/restart pattern. It relies on a scalable,
application-level, P2P checkpointing mechanism. LBDAs
act autonomously and cooperate with one another in a P2P
fashion to store replicas of their state. The proposed mech-
anism is adapted to P2P Grids: The checkpointing graph
is constructed to be resilient to multiple simultaneous re-
source preemptions. The LBG-SQUARE architecture is
scalable because it is fully decentralized when the Lattice-
Boltzmann simulation is running, including state replication
operations. A centralized organization is assumed only dur-
ing an initial benchmarking and configuration phase, and
also upon fault recovery.

State replication can have a strong impact on execution
time. However, without a fault-tolerance mechanism, ISAs
could not be run on P2P Grids. There is a trade-off be-
tween efficiency and robustness: The replication parame-
ters (degree and period) should be selected according to the
expected fault levels that the application will face.

Acknowledgments

We want to thank Xavier Dalem for code contributed to
the LBG middleware and Valérie Leroy for useful discus-
sions about graph optimization. Some Figures include icons

from the Tango library, under Creative Commons Attribu-
tion Share-Alike license.

This work was performed in the frame of a research con-
certed action financed by the Communauté Française de
Belgique.

References

[1] C. Banino-Rokkones. Algorithmic and Scheduling Tech-
niques for Heterogeneous and Distributed Computing. PhD
thesis, Norwegian University of Science and Technology,
Trondheim, Norway, March 2007.

[2] C. Briquet and P.-A. de Marneffe. Description of a
Lightweight Bartering Grid Architecture. In Proc. Cracow
Grid Workshop, Cracow, Poland, 2006.

[3] R. Buyya, D. Abramson, and S. Venugopal. The Grid Econ-
omy. In M. Parashar and C. Lee, editors, Proc. of the IEEE,
Special Issue on Grid Computing, volume 93, pages 698–714.
IEEE Press, NY, USA, March 2005.

[4] W. Cirne, F. Brasileiro, N. Andrade, L. B. Costa, A. Andrade,
R. Novaes, and M. Mowbray. Labs of the World, Unite!!! In
J. Grid Computing. Springer, 2006.

[5] G. Dethier, C. Briquet, P. Marchot, and P.-A. de Marneffe. A
Grid-enabled Lattice-Boltzmann-based modelling system. In
Proc. PPAM, Gdansk, Poland, 2007.

[6] N. Drost, R. V. van Nieuwpoort, and H. E. Bal. Simple
Locality-Aware Co-allocation in Peer-to-Peer Supercomput-
ing. In Proc. GP2P, Singapore, May 2006.

[7] C. Engelmann and A. Geist. Super-Scalable Algorithms for
Computing on 100,000 Processors. In Proc. ICCS, Atlanta,
GA, USA, May 2005.

[8] C. Engelmann and G. Geist. A Diskless Checkpointing Al-
gorithm for Super-scale Architectures Applied to the Fast
Fourier Transform. In Proc. CLADE’03, HPDC Workshops,
Seattle, WA, USA, June 2003.

[9] J. S. Plank, Y. Kim, and J. J. Dongarra. Fault Tolerant Ma-
trix Operations for Networks of Workstations Using Diskless
Checkpointing. In J. Parallel and Distributed Computing,
volume 43. Elsevier, 1997.

258

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 05:26 from IEEE Xplore. Restrictions apply.

