
Correction des exercices de la session 2

1. Voici un code correspondant à la fonction demandée :

unsigned palindrome ( char * c ){
unsigned n ;
f o r (n = 0 ; c [ n ] ; n++);
f o r ( unsigned i = 0 ; i < n=i ; i++){

i f ( c [ i ] != c [ n=1= i ] )
r e turn 0 ;

}
re turn 1 ;

}

� Complexité : Nous avons deux boucles. La première va itérer n fois, où n correspond à la taille de
la chaine de caractères. La deuxième boucle va itérer, au maximum, n/2 fois. Toutes les autres
instructions se font en temps constant. Comme la deuxième boucle est après la première, et non
pas à l’intérieur de celle-ci, nous avons une complexité en temps valant O(n) + O(n) ce qui est
approximé par O(n), où n correspond à la taille de la chaine de caractères.

� Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, la valeur qu’elle retourne est correcte. On souhaite alors établir la validité
du triplet :

{c = c0, . . . , cℓ(où ℓ correspond à la taille de la chaine de caractères), last = ℓ− 1}

f o r ( unsigned i = 0 ; i < n=i ; i++){
i f ( c [ i ] != c [ n=1= i ] )

r e turn 0 ;
}

{1 si c est un palindrome, 0 sinon}

En décomposant la boucle for en boucle while, on obtient :

{c = c0, . . . , cℓ(où ℓ correspond à la taille de la chaine de caractères), last = ℓ− 1, i = 0}

whi le ( i < n=i ){
i f ( c [ i ] != c [ n=i ] )

r e turn 0 ;
i++;

}

{1 si c est un palindrome, 0 sinon}
Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’à
une itération donnée. De plus, I doit être impliqué par la précondition, doit être vrai autant
avant qu’après une itération de la boucle while, et doit impliquer la postcondition après la dernière
itération. Un invariant possible est :

I :0 ≤ i ≤ ⌈last/2⌉
et ∀0 ≤ j < i, c[j] = c[last− 1− j]

En d’autres termes, cet invariant exprime qu’avant et après chaque itération de la boucle, les
éléments précédemment pointés par c[i] et c[last− i] sont identiques.

Montrons maintenant que cet invariant est valide.
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– Initialement, on a i = 0 et last = ℓ − 1, et donc une châıne de caractères vide est bien un
palindrome.

– Pour chaque itération de la boucle, on a le triplet :

{I , i < last− i}

i f ( c [ i ] != c [ l a s t=1= i ] )
r e turn 0 ;

i++;

{I }

Montrons que ce triplet est valide, en notant respectivement i et i′ la valeur de la variable i
avant et après l’itération concernée.

* Si c[i] ̸= c[last− i], alors l’instruction située dans le if s’exécute, et la boucle se termine.
On a bien que ∀0 ≤ j < i, c[j] = c[last− 1− j].

* Si c[i] = c[last − i], alors l’instruction située dans le if ne s’exécute pas, et on a c[i] =
c[last] et on a i′ = i+1. Comme 0 ≤ i < ⌈last/2⌉, on a bien que 0 < i′ ≤ ⌈last/2⌉. Nous
avons aussi que c[i′ − 1] = c[last− i′ + 1]. On garde bien alors que ∀0 ≤ j < i+ 1c[j] =
c[last− j], ce qui équivaut à ∀0 ≤ j < i′c[j] = c[last− j].

– On peut sortir de la boucle de deux façons différentes. La première correspond à {I∧¬cond}.
On a alors que i = ⌈last/2⌉. Ce qui implique bien que la châıne de caractères commençant par
l’endroit pointé par c et se terminant au premier caractère terminateur forme un palindrome.
Le deuxième cas est quand nous avons {I ∧ c[i] ̸= c[last − i]}. Dans ce cas, nous avons
bien que i ≤ ⌈last/2⌉ mais également que tous les caractères précédents pouvaient former un
palindrome : ∀0 ≤ j < ic[j] = c[last− j].

– Il reste à démontrer que l’exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décrôıt strictement à chaque
itération de la boucle :

v = ⌈last/2⌉ − i

2. Voici un code correspondant à la fonction demandée :

i n t f ( i n t * t , unsigned l , i n t n){
i n t d = 0 ;
i n t f = l =1;
i n t m = f /2 ;
whi l e (d <= f ){

i f ( t [m] == n)
return m;

i f ( t [m] > n)
f = m=1;

e l s e
d = m+1;

m = (d+f ) / 2 ;
}
re turn =1;

}

� Complexité : À chaque itération de la boucle, nous allons diviser la taille du sous-tableau actuel
par 2. Le nombre d’itération maximum sera donc de log2ℓ. La complexité en temps sera donc
approximée par O(logℓ).
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3. Voici un code correspondant à la fonction demandée :

void f ( f l o a t * t , unsigned n){
f o r ( unsigned i = 1 ; i < n ; i++){

t [ i ] += t [ i =1] ;
}

}

� Complexité : Ce code parcourt une fois toutes les cases du tableau donné en entré de taille n. La
complexité en temps sera donc de O(n).

� Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, son opération s’est déroulée correctement. On souhaite alors établir la
validité du triplet :

{t = t0, . . . , tn−1, n > 0}

f o r ( unsigned i = 1 ; i < n ; i++){
t [ i ] += t [ i =1] ;

}

{t = t0, t0 + t1, . . . ,

n−1∑
i=0

ti}

En décomposant la boucle for en boucle while, on obtient :

{t = t0, . . . , tn−1, n > 0, i = 1}

whi le ( i < n){
t [ i ] += t [ i =1] ;
i++;

}

{t = t0, t0 + t1, . . . ,

n−1∑
i=0

ti}

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’à
une itération donnée. De plus, I doit être impliqué par la précondition, doit être vrai autant avant
qu’après une itération de la boucle while, et doit impliquer la postcondition après la dernière
itération. Un invariant possible est :

I :0 ≤ i ≤ n

et ∀j < i, t∗j =

j∑
k=0

tk

et t = t∗0, . . . , t∗i − 1, ti, . . . , tn−1

En d’autres termes, cet invariant exprime qu’avant et après chaque itération de la boucle, tous les
éléments précédents l’élément d’indice i ont été modifiés en la somme des précédents éléments.

Montrons maintenant que cet invariant est valide.

– Initialement, on a i = 1 et nous avons bien que tous les éléments précédents celui d’indice 1
(donc l’élément t0) vaut t

∗
0 =

∑0
j=0 tj .
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– Pour chaque itération de la boucle, on a le triplet :

{I, i < n}

t [ i ] += t [ i =1] ;
i++;

{I}
Montrons que ce triplet est valide, en notant respectivement i et i′ la valeur de la variable
i avant et après l’itération concernée, ainsi que t et t′ le tableau t avant et après l’itération
concernée.

* Dans tous les cas, nous avons que i′ = i + 1. Comme 0 ≤ i < n, nous avons bien que
0 < i′ ≤ n.

* À chaque itération, nous laissons le tableau t inchangé à l’exception de l’élément d’indice
i. Celui-ci devenant : t∗i =

∑i
j=0. Nous avons alors :

t = t∗0, . . . , t
∗
i−1, ti, . . . tn−1

t′ = t∗0, . . . , t
∗
i−1, t

∗
i , ti+1, . . . tn−1

Par conséquent, on a :
t′ = t∗0, . . . , t

∗
i′−1, ti′ , . . . tn−1

– En fin de boucle, on a {I,∧Cond}, qui implique i = n. On a alors ∀j < n, t∗j =
∑j

k=0 tj et

comme t = t∗0, . . . , t
∗
i−1, ti, . . . , tn−1, on a bien que t = t∗0, . . . , t

∗
n−1 = t0, t0 + t1, . . . ,

∑n−1
i=0 ti.

– Il reste à démontrer que l’exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décrôıt strictement à chaque
itération de la boucle :

v = n− i

4. Voici un code correspondant à la fonction demandée :

double f a c t ( unsigned n){
double r e s = 1 . 0 ;
f o r ( unsigned i = 2 ; i <= n ; i++){

r e s *= i ;
}
re turn r e s ;

}

� Complexité : Ce code itère au maximum n fois. La complexité en temps sera donc de O(n).

� Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, la valeur renvoyée est correcte. On souhaite alors établir la validité du
triplet :

{n ≥ 0, res = 1.0}

f o r ( unsigned i = 2 ; i <= n ; i++)
r e s *= i ;

{res = n! =

n∏
j=1

j}

En décomposant la boucle for en boucle while, on obtient :

{n ≥ 0, res = 1.0, i = 2}
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whi le ( i <= n){
r e s *= i ;
i++;

}

{res = n! =

n∏
j=1

j}

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’à
une itération donnée. De plus I doit être impliqué par la précondition, doit être vrai autant avant
qu’après une itération de la boucle while, et doit impliquer la postcondition après la dernière
itération. Un invariant possible est :

I :2 ≤ i ≤ n+ 1

et res =

i−1∏
j=1

j = (i− 1)!

En d’autres termes, cet invariant exprime qu’avant et après chaque itération de la boucle, la vari-
able res contient la factorielle de i− 1.

Montrons maintenant que cet invariant est valide.

– Initialement, on a i = 2 et nous avons que res = 1 = (i− 1)!.

– Pour chaque itération de la boucle, on a le triplet :

{I, i <= n}

r e s *= i ;
i++;

{I}

Montrons que ce triplet est valide, en notant respectivement i et i′ la valeur de la variable i
avant et après l’itération concernée, ainsi que res et res′ la valeur de la variable res avant et
après l’itération concernée.

* Nous avons que i′ = i+ 1. Comme 2 ≤ i < n+ 1, nous avons bien que 2 ≤ i′ ≤ n+ 1.

* À chaque itération, nous avons res′ = res ∗ i. Comme res = (i − 1)!, nous avons res′ =
(i− 1)! ∗ i = i!. Par conséquent, on a : res′ = (i′ − 1)!.

– En fin de boucle, on a {I,¬Cond}, ce qui implique i = n + 1, nous avons bien alors que
res = (i− 1)! = (n+ 1− 1)! = n!.

– Il reste à démontrer que l’exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décrôıt strictement à chaque
itération de la boucle :

v = n− i+ 1

5. Voici un code correspondant à la fonction demandée :

void f ( i n t * t , i n t * min , i n t * max , unsigned n){
i f (n == 0)

return ;
*min = t [ 0 ] ;
*max = t [ 0 ] ;
f o r ( unsigned i = 1 ; i < n ; i++){
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i f ( t [ i ] < *min)
*min = t [ i ] ;

i f ( t [ i ] > *max)
*max = t [ i ] ;

}
}

� Complexité : Nous parcourons le tableau, élément par élément, 1 fois. Si le tableau est de taille
n, alors la complexité théorique en temps est O(n).

� Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, son opération s’est déroulée correctement. On souhaite alors établir la
validité du triplet :

{t = t0, . . . , tn−1, n > 0, ∗min = t0, ∗max = t0}

f o r ( unsigned i = 1 ; i < n ; i++){
i f ( t [ i ] < *min)

*min = t [ i ] ;
i f ( t [ i ] > *max)

*max = t [ i ] ;
}

{∗min = min(t0, . . . , tn−1), ∗max = max(t0, . . . , tn−1)}

En décomposant la boucle for en boucle while, on obtient :

{t = t0,
′ ldots, tn−1, n > 0, ∗min = t0, ∗max = t0, i = 1}

whi le ( i < n){
i f ( t [ i ] < *min)

*min = t [ i ] ;
i f ( t [ i ] > *max)

*max = t [ i ] ;
i++;

}

{∗min = min(t0, . . . , tn−1), ∗max = max(t0, . . . , tn−1)}

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’à
une itération donnée. De plus, I doit être impliqué par la précondition, doit être vrai autant avant
qu’après une itération de la boucle while, et doit impliquer la postcondition après la dernière
itération. Un invariant possible est :

I :1 ≤ i ≤ n

et ∗min = min(t0, . . . , ti−1)

et ∗max = max(t0, . . . , ti−1)

En d’autres termes, cet invariant exprime qu’avant et après chaque itération de la boucle, la vari-
able ∗min contient le plus petit élément entre t0 et ti−1 alors que ∗max contient le plus grand
élément dans ce même sous-tableau.

Montrons maintenant que cet invariant est valide.
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– Initialement, on a i = 1, ∗max = t0 et ∗min = t0. On a bien que ∗max et ∗min contiennent
respectivement le plus grand et le plus petit élément du sous-tableau désigné par le seul
élément : t0.

– Pour chaque itération de la boucle, on a le triplet :

{I, i < n}

i f ( t [ i ] < *min)
*min = t [ i ] ;

i f ( t [ i ] > *max)
*max = t [ i ] ;

i++

{I}

Montrons que ce triplet est valide, en notant respectivement i, ∗min, ∗max et i′, ∗min′, ∗max′

la valeurs des variables avant et après l’itération concernée.

* Nous pour chaque itération que i′ = i + 1. Comme 1 ≤ i < n, nous avons bien que
1 ≤ i′ ≤ n.

* Si ti < ∗min, alors ∗min = ti. Comme ∗min = min(t0, . . . , ti−1), nous savons que
ti est le nouveau plus petit élément du sous-tableau : ∗min′ = min(t0, . . . , ti−1, ti) =
min(t0, . . . , ti′−1).

* Si ti > ∗max, alors ∗max = ti. Comme ∗max = max(t0, . . . , ti−1), nous savons que
ti est le nouveau plus grand élément du sous-tableau : ∗max′ = max(t0, . . . , ti−1, ti) =
max(t0, . . . , ti′−1).

* Dans les autres cas, ∗min′ et ∗max′ ne sont pas modifiés et contiennent toujours le plus
petit et plus grand élément du sous tableau désigné par t0, . . . , ti−1, ti qui équivaut au
sous-tableau t0, . . . , ti′−1.

– En fin de boucle, on a {I ∧¬Cond}, ce qui implique i = n, nous avons bien alors que ∗min =
min(t0, . . . , ti−1) = min(t0, . . . , tn−1) et ∗max = max(t0, . . . , ti−1) = max(t0, . . . , tn−1)

– Il reste à démontrer que l’exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décrôıt strictement à chaque
itération de la boucle :

v = n− i
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