Correction des exercices de la session 2

1. Voici un code correspondant a la fonction demandée :

unsigned palindrome (char x ¢){
unsigned n;
for(n = 0; c¢[n]; n++);
for (unsigned i = 0; i < n—i; i++){
if (c[i] != ¢[n—1-i])
return 0;

}

return 1;

e Complexité : Nous avons deux boucles. La premiere va itérer n fois, ot n correspond a la taille de
la chaine de caractéres. La deuxiéme boucle va itérer, au maximum, n/2 fois. Toutes les autres
instructions se font en temps constant. Comme la deuxieéme boucle est apres la premiere, et non
pas a lintérieur de celle-ci, nous avons une complexité en temps valant O(n) + O(n) ce qui est
approximé par O(n), ot n correspond a la taille de la chaine de caracteres.

e Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, la valeur qu’elle retourne est correcte. On souhaite alors établir la validité

du triplet :
{¢=cp,...,ce(ou £ correspond a la taille de la chaine de caractéres),last = ¢ — 1}
for (unsigned i = 0; i < n—i; i++){
if (c[i] = c¢[n—1-i])
return 0;

{1 si ¢ est un palindrome, 0 sinon}
En décomposant la boucle for en boucle while, on obtient :

{¢=cq,...,ce(on £ correspond & la taille de la chaine de caracteres),last = ¢ —1,i = 0}

while (1 < n—1){
if (c[i] != ¢[n—i])
return 0;
i++;

{1 si ¢ est un palindrome, 0 sinon}
Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’a
une itération donnée. De plus, I doit étre impliqué par la précondition, doit étre vrai autant
avant qu’apres une itération de la boucle while, et doit impliquer la postcondition apres la derniere
itération. Un invariant possible est :

I:0<i</Jlast/2]

et VO < j < i,c[j] = cllast — 1 — j]

En d’autres termes, cet invariant exprime qu’avant et apres chaque itération de la boucle, les
éléments précédemment pointés par c[i] et c[last — i] sont identiques.

Montrons maintenant que cet invariant est valide.



— Initialement, on a i = 0 et last = £ — 1, et donc une chaine de caracteres vide est bien un
palindrome.

— Pour chaque itération de la boucle, on a le triplet :

{I,i<last—1i}

it (c[i] !'= c[last—1—-i])
return 0;
1++;
{1}

Montrons que ce triplet est valide, en notant respectivement ¢ et i’ la valeur de la variable ¢
avant et apres l'itération concernée.

x Si c[i] # c[last — ], alors I'instruction située dans le if s’exécute, et la boucle se termine.
On a bien que V0 < j < i, c[j] = cllast — 1 — j].

x Si c[i] = c[last — i], alors I'instruction située dans le if ne s’exécute pas, et on a c[i] =
cllast] et on a i’ =i+ 1. Comme 0 < i < [last/2], on a bien que 0 < ¢’ < [last/2]. Nous
avons aussi que c[i’ — 1] = ¢[last — i’ + 1]. On garde bien alors que V0 < j < i+ lc[j] =
cllast — 7], ce qui équivaut a V0 < j < i’c[j] = c[last — j].

— On peut sortir de la boucle de deux fagons différentes. La premiere correspond & {I A —cond}.
On a alors que ¢ = [last/2]. Ce qui implique bien que la chaine de caractéres commencant par
I’endroit pointé par c et se terminant au premier caractere terminateur forme un palindrome.
Le deuxieme cas est quand nous avons {I A c[i] # c[last — i]}. Dans ce cas, nous avons
bien que @ < [last/2] mais également que tous les caracteéres précédents pouvaient former un
palindrome : V0 < j < ic[j] = c[last — j].

— Il reste & démontrer que I'exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décroit strictement a chaque

itération de la boucle :
v = [last/2] — i

2. Voici un code correspondant & la fonction demandée :

int f (int % t, unsigned 1, int n){

int d = 0;
int £ =1-1;
int m = f/2;
while (d <= f){
if (t[m] = n)

return m;
if (t[m] > n)

f =m—1;
else

d = m+1;
m = (d+f)/2;

return —1;

e Complexité : A chaque itération de la boucle, nous allons diviser la taille du sous-tableau actuel
par 2. Le nombre d’itération maximum sera donc de log,¢. La complexité en temps sera donc
approximée par O(logl).



3. Voici un code correspondant a la fonction demandée :

void f(float *t, unsigned n){
for (unsigned i = 1; i < n; i++){
t[i] += t[i—1];
¥

e Complexité : Ce code parcourt une fois toutes les cases du tableau donné en entré de taille n. La
complexité en temps sera donc de O(n).

e Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, son opération s’est déroulée correctement. On souhaite alors établir la
validité du triplet :

{t:to,...,tn,1,n> O}

for (unsigned i = 1; i < n; i++){
(1] 4= t[i1];
}

n—1
{t=toto+t1,..., Yt}
i=0
En décomposant la boucle for en boucle while, on obtient :

{t=to,... ,tp_1,n > 0,i=1}

while (i < n){
t[i] += t]
1++;

=1

n—1
{t=to,to+t1,...,»_ti}
=0

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’a
une itération donnée. De plus, I doit étre impliqué par la précondition, doit étre vrai autant avant
qu’apres une itération de la boucle while, et doit impliquer la postcondition apres la derniere
itération. Un invariant possible est :

I1:0<i:<n
J
et Vj <i,t; = ty
k=0
ett:t*O,...,tZ‘—1,ti,...,tn_1

En d’autres termes, cet invariant exprime qu’avant et apres chaque itération de la boucle, tous les
éléments précédents 1’élément d’indice ¢ ont été modifiés en la somme des précédents éléments.

Montrons maintenant que cet invariant est valide.

— Initialement, on a ¢ = 1 et nous avons bien que tous les éléments précédents celui d’indice 1
(donc D'élément to) vaut £ = 37 ;.



— Pour chaque itération de la boucle, on a le triplet :

{I,i <n}

t[i] += t[i—1];
i++;
{1}
Montrons que ce triplet est valide, en notant respectivement 4 et ¢’ la valeur de la variable
1 avant et apres l'itération concernée, ainsi que t et ¢’ le tableau ¢ avant et apres 'itération
concernée.
x Dans tous les cas, nous avons que i’ = i + 1. Comme 0 < i < n, nous avons bien que
0<i <n.
+ A chaque itération, nous laissons le tableau ¢ inchangé a ’exception de I’élément d’indice
i. Celui-ci devenant : ¢} = Z;:o- Nous avons alors :

b=ttty by
A
=ttt b,

Par conséquent, on a :
! * *
=ttt

— En fin de boucle, on a {I, ACond}, qui implique i = n. On a alors Vj < n,t] = Zi:o t; et
comme t =15, ..., t5 |, ti,... ty_1, on abien que t =15, ... t5 | =to,to+t1, ..., Doy b
— Il reste & démontrer que I'exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décroit strictement a chaque
itération de la boucle :
vV="n—1

4. Voici un code correspondant a la fonction demandée :

double fact (unsigned n){
double res = 1.0;
for (unsigned i = 2; 1 <= n; i++){
res x= 1i;
}

return res;

e Complexité : Ce code itére au maximum n fois. La complexité en temps sera donc de O(n).

e Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, la valeur renvoyée est correcte. On souhaite alors établir la validité du
triplet :

{n >0,res = 1.0}

for (unsigned i = 2; i <= n; i++)

res x= 1i;

n
{res=nl= H]}
j=1

En décomposant la boucle for en boucle while, on obtient :

{n >0,res =1.0,i =2}



while (i <= n){
res x= 1;
i++;

{res=nl= H]}
j=1

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’a
une itération donnée. De plus I doit étre impliqué par la précondition, doit étre vrai autant avant
qu’apres une itération de la boucle while, et doit impliquer la postcondition apres la derniere
itération. Un invariant possible est :

I2<i<n+1
i—1
etreSZHj:(i—l)!
j=1

En d’autres termes, cet invariant exprime qu’avant et apres chaque itération de la boucle, la vari-
able res contient la factorielle de 7 — 1.

Montrons maintenant que cet invariant est valide.

— Initialement, on a ¢ = 2 et nous avons que res =1 = (i — 1).
— Pour chaque itération de la boucle, on a le triplet :

{I,i <=n}

res x= 1i;
i4++;
{1}
Montrons que ce triplet est valide, en notant respectivement ¢ et i’ la valeur de la variable ¢

avant et apres I'itération concernée, ainsi que res et res’ la valeur de la variable res avant et
apres l'itération concernée.
* Nous avons que ' =i+ 1. Comme 2 < i < n + 1, nous avons bien que 2 <7 <n+ 1.
x A chaque itération, nous avons res’ = res *i. Comme res = (i — 1)!, nous avons res’ =
(i — 1)! % i = 4!. Par conséquent, on a : res’ = (i’ — 1)L
— En fin de boucle, on a {I,-Cond}, ce qui implique ¢ = n 4+ 1, nous avons bien alors que
res=(—1)!=(Mn+1-1)!=nl
— Il reste a démontrer que I'exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décroit strictement a chaque
itération de la boucle :
v=n—1+1

5. Voici un code correspondant a la fonction demandée :

void f (int % t, int % min, int % max, unsigned n){

if (n = 0)
return;
*xmin = t [0];

xmax = t [0];
for (unsigned i = 1; i < n; i++){



if (t[i] < #*min)
*xmin = t[1];
if (t[i] > *xmax)
xmax = t[i];

e Complexité : Nous parcourons le tableau, élément par élément, 1 fois. Si le tableau est de taille
n, alors la complexité théorique en temps est O(n).

e Invariant : Pour montrer que la fonction est correcte, on doit montrer que lorsque la fonction
termine son exécution, son opération s’est déroulée correctement. On souhaite alors établir la
validité du triplet :

{t=to,...,tn—1,n > 0,xmin = tg, *max =t}
for (umnsigned i = 1; 1 < n; i++){
if (t[i] < #*min)
*min = [ l;
if (t[i] > *max)
xmax = t[1];
}
{*min = min(ty,...,tn—1), *max = max(tg,...,tn—1)}

En décomposant la boucle for en boucle while, on obtient :

{t = to, ldots, t,_1,n > 0,*min = tg, *max = tg,i = 1}

while (i < n){
if (t[i] < #min)
>

*min t[1];
if (t[i] *1nax )
xmax = t[1];
1++;
}
{*min = min(tg,...,th—1), ¥max = max(to,...,tn—1)}

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’a
une itération donnée. De plus, I doit étre impliqué par la précondition, doit étre vrai autant avant
qu’apres une itération de la boucle while, et doit impliquer la postcondition apres la derniere
itération. Un invariant possible est :

I1:1<i<n
et *min:min(to,...,ti_l)
et *mar = max(tg,...,t;_1)

En d’autres termes, cet invariant exprime qu’avant et apres chaque itération de la boucle, la vari-
able x*min contient le plus petit élément entre tg et t;_1 alors que *maxz contient le plus grand
élément dans ce méme sous-tableau.

Montrons maintenant que cet invariant est valide.



— Initialement, on a ¢ = 1, *max = ty et *min = tg. On a bien que *max et *min contiennent
respectivement le plus grand et le plus petit élément du sous-tableau désigné par le seul
élément : tg.

— Pour chaque itération de la boucle, on a le triplet :

{I,i<n}

if (t[i] < #*min)

xmin = t[1];
if (t[i] > *max)

xmax = t[1];
i++

{1}
Montrons que ce triplet est valide, en notant respectivement 7, *min, *mazx et ¢, *min’, xmax’
la valeurs des variables avant et apres l'itération concernée.
x Nous pour chaque itération que ¢/ = i+ 1. Comme 1 < i < n, nous avons bien que

1< <n.

x Si t; < xmin, alors *min = t;. Comme *min = min(tg,...,¢_1), oOus savons que
t; est le nouveau plus petit élément du sous-tableau : xmin’ = min(tg,...,t;—1,t;) =
min(to, PN 7ti’—1)-

x Si t; > xmax, alors *max = t;. Comme *max = max(tg,...,t;_1), NOUS savons que
t; est le nouveau plus grand élément du sous-tableau : xmax’ = max(to,...,t;—1,t;) =
max(to, N ,tilfl).

x Dans les autres cas, *min’ et *maz’ ne sont pas modifiés et contiennent toujours le plus
petit et plus grand élément du sous tableau désigné par tg,...,%;_1,t; qui équivaut au
sous-tableau tg,...,t;y_1.

— En fin de boucle, on a {I A—~Cond}, ce qui implique ¢ = n, nous avons bien alors que xmin =
min(tg,...,t;—1) = min(tg,...,tp—1) €t *max = max(to,...,t;—1) = max(to,...,tn_1)

— Il reste & démontrer que I'exécution de la fonction se termine toujours. Il faut donc trouver
un variant de boucle qui est un entier non négatif dont la valeur décroit strictement a chaque
itération de la boucle :

v=n-—1



