Correction de ’examen blanc 2025-2026

1. (a) Pour réaliser cette fonction, nous allons itérer sur chaque élément du tableau. Nous allons garder
I’élément avec le plus d’occurences et son nombre d’occurences et chaque fois comparer ce nombre
avec le nombre d’occurences du nombre actuel. S’il est plus grand, on va remplacer le nombre
garder par celui-ci ainsi que le plus grand nombre d’occurences.

int f(int *t, unsigned n) {

unsigned max_occ = 1;
int nb = t[0];
unsigned occ = 1;
for (unsigned i = 0; i < n—1; i++) {
if (t[i] = t[i+1])
occ+-+;
else
occ = 1;
if (occ > max_occ) {
max_ocC = 0cCC;
nb = t[i];

}

return nb;

}

(b) Pour montrer que le programme est correct, on doit montrer que lorsque le programme termine
son exécution, les valeurs des variables sont correctes. On souhaite alors établir la validité du
triplet suivant :

{n>0,t=ty...th—1,max_occ = 1,nb = ty,occ = 1}

for (unsigned i = 0; i < n—1; i++) {
if (¢[i] = t[i+1])

occ++;

else
occ = 1;

if (occ > max_occ) {
max_occ = 0ccC;
nb = t[i];

{nb = le plus petit nombre de ¢ ayant le plus d’occurences}

En décomposant la boucle for en boucle while, on obtient :

{n>0,t=ty...th—1,maz_occ = 1,nb =tg,occ = 1,i = 0}

occ = 1;
if (occ > max_occ) {
max_occ = 0cc;



i+

{nb = le plus petit nombre de ¢ ayant le plus d’occurences}

Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’a
une itération donnée. De plus, I doit étre impliqué par la précondition, doit étre vrai autant avant
qu’apres une itération de la boucle while, et doit impliquer la postcondition apres la derniere
itération. Un invariant possible est :

I1:0<i<n-1
occ = nombre d’occurences du nombre ¢; dans tg...¢;
nb = plus petit nombre ayant le plus d’occurences dans tg...¢;

max_occ = nombre d’occurences de nb

Montrons maintenant que cet invariant est valide.

e Initialement, on a ¢ = 0, nb = tg, occ = 1 et max_occ = 1. On a bien que tg est le plus petit
nombre ayant le plus d’occurences dans ty et comme il s’agit d’un seul élément son nombre
d’occurences est bien égal a 1.

e Pour chaque itération de boucle, on a le triplet :

{I,i<n-—1}
if (t[i] = t[i+1])
occ+-+;
else
occ = 1;
if (occ > max_occ) {
max_occ = 0ccC;
nb = t[i];
)
1+

{1}
Montrons que ce triplet est valide. Notons occ et occ’, nb et nb’, i et i, et max_occ et max_occ’
les valeurs des variables avant et apres une certaine itération.

— A chaque itération, nous obtenons que ¢/ =i + 1.

— Sit; = t;41 alors ocd’ = occ+ 1. On a bien trouvé une occurence supplémentaire de ¢; on
doit incrémenter occ. On obtient bien alors que oc¢’ = nombre d’occurences de ¢; dans
to...t;,t;11 = nombre d’occurences de t;; dans tg .. . ti

— Sit; # t;41 alors occ = 1. t;41 est un nombre que nous n’avons pas encore vu. Comme
c’est la premiere fois qu’on le voit son nombre d’occurences dans le sous-tableau traité
est de 1. On a bien que occ’ = nombre d’occurences de t; 11 dans tg...#;, t;+1 = nombre
d’occurences de t;; dans tg...t;.

— Si occ’ > max_occ alors mar_occ’ = occ’ et nb’ = t;. On a trouvé un nombre qui a plus
d’occurences que ceux trouvés jusqu’a maintenant on a donc bien que nb = t; = ty et
max_occ’ = nombre d’occurences de nb’ = t;.

e En fin de boucle, on a {I,i > n — 1}, ce qui implique que ¢ = n — 1, on a donc bien que nb =
plus petit nombre ayant le plus d’occurences (avec ce nombre d’occurences étant max_occ)
dans tg...t,—1 qui est le tableau t.



2. (a) Pour réaliser cette fonction, il va falloir réaliser une boucle qui va trouver tous les diviseurs de
n et de les additionner entre eux. Comme nous devons avoir une complexité théorique en temps

meille

ure que linéaire par rapport a n, nous allons directement prendre les diviseurs d de n ainsi

que le diviseur n/d. Ceci nous permettra de ne faire que /n itérations au lieu de n.

int deficiant (int n) {
int sum = 0;
for (int i = 1; ixi <= n; i++) {
it (M(n%i)) {
sum += 1i;
if ((n/i = 1)&&(1n/i !'= n))
sum += n/i;

}

if (sum < n)
return 1;
return 0;

}

(b) Nous allons itérer v/n dans la boucle. La complexité théorique en temps est donc O(y/n).

3. (a) La fonction retourne la somme des chiffres du nombre v donné en entré.

(b) La complexité en temps et en espace correspond au nombre de contextes mis sur la pile.
nombre de contextes correspond au logarithme en base 10 du nombre v. La complexité en temps

et en espace est donc O(logv).

(¢) Voici une fagon de réécrire cette fonction :

unsigned f(unsigned v) {
unsigned res;
for (res = 0; v; v/=10)
res += v%10;
return res;

4. Voici le type structuré :

typedef struct etape_t {
char xinstr;
int num;
struct etape_t xsuiv;
} etape;

5. Nous allons itérer sur le tableau de chaine de caracteres, donner ’adresse du début de la chaine a
notre champs instr et allouer chaque fois une nouvelle étape en lui donnant le numéro correspondant

a I'indice +1. On met premier & NULL pour couvrir le cas ou la taille est 0.

etape xf(char sxinstructions, unsigned n) {
etape xpremier, xprec;
premier = NULL;
for (unsigned i = 0; 1 < n; i++) {
etape *xcurrent;
current = malloc(sizeof (etape));
if (!current) {



while (premier != NULL) {
etape xsuivant = premier—>suiv;
free (premier);
premier = suivant;
}
}

current—>suiv = NULL;

current—>num = i+1;
current—>instr = instruction[i];
if (premier = NULL)

premier = current ;
else

prec—>suiv = current;
prec = current;

}

return premier;

6. Il suffit de faire quelque chose de similaire au point précédent quand on vérifie que la malloc a fonctionné
correctement :

void libere (etape xe) {
for (etape *current = e; current; current = suivant) {
etape xsuivant = current—>suiv;
free(current );



