
Correction de l’examen blanc 2025-2026

1. (a) Pour réaliser cette fonction, nous allons itérer sur chaque élément du tableau. Nous allons garder
l’élément avec le plus d’occurences et son nombre d’occurences et chaque fois comparer ce nombre
avec le nombre d’occurences du nombre actuel. S’il est plus grand, on va remplacer le nombre
garder par celui-ci ainsi que le plus grand nombre d’occurences.

i n t f ( i n t * t , unsigned n) {
unsigned max occ = 1 ;
i n t nb = t [ 0 ] ;
unsigned occ = 1 ;
f o r ( unsigned i = 0 ; i < n=1; i++) {

i f ( t [ i ] == t [ i +1])
occ++;

e l s e
occ = 1 ;

i f ( occ > max occ ) {
max occ = occ ;
nb = t [ i ] ;

}
}
re turn nb ;

}

(b) Pour montrer que le programme est correct, on doit montrer que lorsque le programme termine
son exécution, les valeurs des variables sont correctes. On souhaite alors établir la validité du
triplet suivant :

{n > 0, t = t0 . . . tn−1,max occ = 1, nb = t0, occ = 1}

f o r ( unsigned i = 0 ; i < n=1; i++) {
i f ( t [ i ] == t [ i +1])

occ++;
e l s e

occ = 1 ;
i f ( occ > max occ ) {

max occ = occ ;
nb = t [ i ] ;

}
}

{nb = le plus petit nombre de t ayant le plus d’occurences}

En décomposant la boucle for en boucle while, on obtient :

{n > 0, t = t0 . . . tn−1,max occ = 1, nb = t0, occ = 1, i = 0}

whi le ( i < n=1) {
i f ( t [ i ] == t [ i +1])

occ++;
e l s e

occ = 1 ;
i f ( occ > max occ ) {

max occ = occ ;
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nb = t [ i ] ;
}
i++;

}

{nb = le plus petit nombre de t ayant le plus d’occurences}
Pour trouver un invariant de boucle I, on caractérise le traitement effectué par la boucle jusqu’à
une itération donnée. De plus, I doit être impliqué par la précondition, doit être vrai autant avant
qu’après une itération de la boucle while, et doit impliquer la postcondition après la dernière
itération. Un invariant possible est :

I :0 ≤ i ≤ n− 1

occ = nombre d’occurences du nombre ti dans t0 . . . ti

nb = plus petit nombre ayant le plus d’occurences dans t0 . . . ti

max occ = nombre d’occurences de nb

Montrons maintenant que cet invariant est valide.

� Initialement, on a i = 0, nb = t0, occ = 1 et max occ = 1. On a bien que t0 est le plus petit
nombre ayant le plus d’occurences dans t0 et comme il s’agit d’un seul élément son nombre
d’occurences est bien égal à 1.

� Pour chaque itération de boucle, on a le triplet :

{I, i < n− 1}

i f ( t [ i ] == t [ i +1])
occ++;

e l s e
occ = 1 ;

i f ( occ > max occ ) {
max occ = occ ;
nb = t [ i ] ;

}
i++;

{I}
Montrons que ce triplet est valide. Notons occ et occ′, nb et nb′, i et i′, et max occ et max occ′

les valeurs des variables avant et après une certaine itération.

– À chaque itération, nous obtenons que i′ = i+ 1.

– Si ti = ti+1 alors occ′ = occ+1. On a bien trouvé une occurence supplémentaire de ti on
doit incrémenter occ. On obtient bien alors que occ′ = nombre d’occurences de ti dans
t0 . . . ti, ti+1 = nombre d’occurences de ti′ dans t0 . . . ti

′

– Si ti ̸= ti+1 alors occ = 1. ti+1 est un nombre que nous n’avons pas encore vu. Comme
c’est la première fois qu’on le voit son nombre d’occurences dans le sous-tableau traité
est de 1. On a bien que occ′ = nombre d’occurences de ti+1 dans t0 . . . ti, ti+1 = nombre
d’occurences de ti′ dans t0 . . . ti′ .

– Si occ′ > max occ alors max occ′ = occ′ et nb′ = ti. On a trouvé un nombre qui a plus
d’occurences que ceux trouvés jusqu’à maintenant on a donc bien que nb′ = ti = ti′ et
max occ′ = nombre d’occurences de nb′ = ti′ .

� En fin de boucle, on a {I, i ≥ n− 1}, ce qui implique que i = n− 1, on a donc bien que nb =
plus petit nombre ayant le plus d’occurences (avec ce nombre d’occurences étant max occ)
dans t0 . . . tn−1 qui est le tableau t.
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2. (a) Pour réaliser cette fonction, il va falloir réaliser une boucle qui va trouver tous les diviseurs de
n et de les additionner entre eux. Comme nous devons avoir une complexité théorique en temps
meilleure que linéaire par rapport à n, nous allons directement prendre les diviseurs d de n ainsi
que le diviseur n/d. Ceci nous permettra de ne faire que

√
n itérations au lieu de n.

i n t d e f i c i a n t ( i n t n) {
i n t sum = 0 ;
f o r ( i n t i = 1 ; i * i <= n ; i++) {

i f ( ! ( n%i ) ) {
sum += i ;
i f ( ( n/ i != i )&&(n/ i != n ) )

sum += n/ i ;
}

}
i f (sum < n)

return 1 ;
re turn 0 ;

}

(b) Nous allons itérer
√
n dans la boucle. La complexité théorique en temps est donc O(

√
n).

3. (a) La fonction retourne la somme des chiffres du nombre v donné en entré.

(b) La complexité en temps et en espace correspond au nombre de contextes mis sur la pile. Ce
nombre de contextes correspond au logarithme en base 10 du nombre v. La complexité en temps
et en espace est donc O(log v).

(c) Voici une façon de réécrire cette fonction :

unsigned f ( unsigned v ) {
unsigned r e s ;
f o r ( r e s = 0 ; v ; v/=10)

r e s += v%10;
re turn r e s ;

}

4. Voici le type structuré :

typede f s t r u c t e t ape t {
char * i n s t r ;
i n t num;
s t r u c t e t ape t * su iv ;

} etape ;

5. Nous allons itérer sur le tableau de chaine de caractères, donner l’adresse du début de la chaine à
notre champs instr et allouer chaque fois une nouvelle étape en lui donnant le numéro correspondant
à l’indice +1. On met premier à NULL pour couvrir le cas où la taille est 0.

etape * f ( char ** i n s t r u c t i o n s , unsigned n) {
etape *premier , *prec ;
premier = NULL;
f o r ( unsigned i = 0 ; i < n ; i++) {

etape * cur rent ;
cur r ent = mal loc ( s i z e o f ( etape ) ) ;
i f ( ! cu r r ent ) {
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whi le ( premier != NULL) {
etape * su ivant = premier=>su iv ;
f r e e ( premier ) ;
premier = su ivant ;

}
}
current=>su iv = NULL;
current=>num = i +1;
current=>i n s t r = i n s t r u c t i o n [ i ] ;
i f ( premier == NULL)

premier = cur rent ;
e l s e

prec=>su iv = cur rent ;
prec = current ;

}
re turn premier ;

}

6. Il suffit de faire quelque chose de similaire au point précédent quand on vérifie que la malloc a fonctionné
correctement :

void l i b e r e ( etape *e ) {
f o r ( etape * cur rent = e ; cur rent ; cur r ent = su ivant ) {

etape * su ivant = current=>su iv ;
f r e e ( cur rent ) ;

}
}
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