
Correction des exercices de la session 6

1. Le type structuré peut s’écrire :

typede f s t r u c t page t {
char * u r l ;
unsigned long date ;
s t r u c t page t *prec ;
s t r u c t page t * su iv ;

} page ;

2. Nous allons réaliser cette fonction de deux façons différentes. La première en allouant séparément
chaque page, la deuxième en allouant toutes les pages sous la forme d’un tableau.

page * f (char ** ur l , unsigned long *temps , unsigned n) {
web *premier , * current , *prev ;
premier = mal loc (s i z e o f (page)) ;
i f (! premier)

re turn NULL;
premier=>u r l = u r l [0] ;
premier=>date = temps [0] ;
premier=>prec = NULL;
premier=>su iv = NULL;
prev = premier ;
f o r (unsigned i = 1 ; i < n ; i++) {

cur rent = mal loc (s i z e o f (page))
i f (! cu r r ent) {

whi le (premier) {
page * su iv = premier=>su iv ;
f r e e (premier) ;
premier = su iv ;

}
re turn NULL;

}
current=>u r l = u r l [i] ;
current=>date = temps [i] ;
current=>prec = prev ;
prev=>su iv = cur rent ;
current=>su iv = NULL;
prev = current ;

}
re turn premier ;

}

page * f (char ** ur l , unsigned long *temps , unsigned n) {
page *web ;
web = mal loc (s i z e o f (page)*n) ;
i f (! web)

re turn NULL;
f o r (unsigned i = 0 ; i < n ; i++) {

i f (i == 0)
web [i] . prec = NULL;

e l s e

1

web [i] . prec = &web [i =1] ;
i f (i == n=1)

web [i] . su iv = NULL;
e l s e

web [i] . su iv = &web [i +1] ;
web [i] . u r l = u r l [i] ;
web [i] . date = temps [i] ;

}
re turn web ;

}

3. Il faudra d’abord trouver la toute première page et ceci se fait de la même façon pour une liste liée ou
un vecteur. Pour arriver à la fin, comme on ne connait pas la taille de la liste on devra passer par les
pointeurs jusqu’à arriver à la fin :

unsigned long f (page *p) {
whi le (p=>prec) {

p = p=>prec ;
}
unsigned long r e s = 0 ;
whi l e (p) {

r e s += p=>date ;
p = p=>su iv ;

}
re turn r e s ;

}

4. Cette fonction sera différente en fonction de si on a utilisé un vecteur ou pas. La première version
correspond à la première version de la fonction du point (2) et la deuxième à la deuxième version du
point (2) :

void f (page *p) {
whi le (p=>prec) {

p = p=>prec ;
}
whi le (p) {

page *tmp = p=>su iv ;
f r e e (p) ;
p = tmp ;

}
}

void f (page *p) {
whi le (p=>prec) {

p = p=>prec ;
}
f r e e (p) ;

}

5. Nous allons chaque fois faire chaque fonctions en deux versions. La première par un vecteur et la
deuxième par une liste chainée.

Commençons par définir les éléments :

2

typede f s t r u c t p i l e t {
i n t * e lements ;
unsigned nb elem ;
unsigned nb max ;

} p i l e ;

typede f s t r u c t e l ement t {
i n t va l eur ;
s t r u c t e l ement t * su iv ;

} element ;
typede f s t r u c t p i l e t {

element * e lements ;
} p i l e

Pour la version avec un vecteur, on a besoin du nombre d’éléments qu’on peut placer car on va devoir
allouer un vecteur d’éléments. Ce n’est pas le cas avec la version avec liste simplement chainée.

void push (p i l e *p , i n t v) {
i f (p=>nb elem +1 > p=>nb max) {

p r i n t f (”La p i l e e s t p l e ine , impos s ib l e d ’ a j ou t e r une va l eur \n ”) ;
r e turn ;

}
p=>va l eur [p=>nb elem] = v ;
p=>nb elem++;

}

void push (p i l e *p , i n t v) {
element *n ;
n = mal loc (s i z e o f (element)) ;
i f (! n) {

p r i n t f (” Erreur l o r s de l ’ a l l o c a t i o n de l ’ e lement /n ”) ;
r e turn ;

}
n=>va l eur = v ;
n=>su iv = NULL;
element *c = p=>e lements ;
i f (! c)

p=>e lements = n ;
e l s e {

whi le (c=>su iv) {
c = c=>su iv ;

}
c=>su iv = n ;

}
}

void pop (p i l e *p) {
i f (p=>nb elem == 0) {

p r i n t f (”Pas d ’ e lements a pop\n ”) ;
r e turn NULL;

}
p=>nb elem==;
r e turn p=>e lements [p=>nb elem] ;

3

}

element *pop (p i l e *p) {
i f (! p=>e lements) {

p r i n t f (”Pas d ’ e lements a pop\n ”) ;
r e turn NULL;

}
element *e , *prev ;
prev = p=>e lements ;
i f (! prev=>su iv) {

p=>e lements = NULL;
re turn prev ;

}
e = prev=>su iv ;
whi l e (e=>su iv) {

prev = e ;
e = e=>su iv ;

}
prev=>su iv = NULL;
re turn e ;

}

element * top (p i l e *p) {
i f (! p=>nb elem)

return NULL;
re turn p=>e lements [p=>nb elem =1] ;

}

element * top (p i l e *p) {
element *e = p=>e lements ;
i f (! e)

r e turn NULL;
whi l e (e=>su iv)

e = e=>su iv ;
r e turn e ;

}

unsigned top (p i l e *p) {
re turn p=>nb elem ;

}

unsigned top (p i l e *p) {
element *e = p=>e lements ;
unsigned r e s = 0 ;
whi l e (e) {

r e s++;
e = e=>su iv ;

}
re turn r e s ;

}

4

unsigned is empty (p i l e *p) {
i f (p=>nb elem > 0)

re turn 1 ;
re turn 0 ;

}

unsigned is empty (p i l e *p) {
i f (p=>e lements)

re turn 1 ;
re turn 0 ;

}

5

