Correction des exercices de la session 6

1. Le type structuré peut s’écrire :

typedef struct page_t {
char xurl;
unsigned long date;
struct page_t *xprec;
struct page_t *suiv;

} page;

2. Nous allons réaliser cette fonction de deux facons différentes. La premiere en allouant séparément
chaque page, la deuxieme en allouant toutes les pages sous la forme d’un tableau.

page xf (char xxurl, unsigned long =xtemps, unsigned n) {
web spremier , xcurrent, xprev;
premier = malloc(sizeof (page));
if (!premier)
return NULL;
premier—>url = url [0];
premier—>date = temps|[0];
premier—>prec = NULL;
premier—>suiv = NULL;

prev = premier;
for (unsigned i = 1; i < n; i++) {
current = malloc(sizeof (page))

if (!current) {
while (premier) {
page *suiv = premier—>suiv;
free (premier );
premier = suiv;
}
return NULL;
}
current—>url = url[i];
current—>date = temps[i];
current—>prec = prev;
prev—>suiv = current;
current—>suiv = NULL;
prev = current;

}

return premier;

}

page *f (char #xurl, unsigned long *temps, unsigned n) {
page xweb;

web = malloc(sizeof (page)*n);
if (!web)
return NULL;
for (unsigned i = 0; i < n; i++) {
if (i = 0)
web[i].prec = NULL;
else



web[i].prec = &web[i—1];
if (i = n—1)
web[1i].suiv = NULL;

else

web[1i].suiv = &web[i+1];
web[i].url = url[i];
web[i].date = temps|[i];

}

return web;

3. 1l faudra d’abord trouver la toute premieére page et ceci se fait de la méme fagon pour une liste liée ou
un vecteur. Pour arriver a la fin, comme on ne connait pas la taille de la liste on devra passer par les

pointeurs jusqu’a arriver a la fin :

unsigned long f (page xp) {
while (p—>prec) {
P = p—>prec;
}

unsigned long res = 0;
while (p) {

res += p—>date;

p = p—>suiv;
¥

return res;

4. Cette fonction sera différente en fonction de si on a utilisé un vecteur ou pas. La premiere version
correspond & la premiére version de la fonction du point (2) et la deuxieéme a la deuxieéme version du

point (2) :
void f (page *p) {
while (p—>prec) {
p = p—>prec;
}
while (p) {
page *tmp = p—>suiv;

free(p);
p = tmp;

}

void f (page *p) {
while (p—>prec) {
p = p—>prec;
}

free(p);

5. Nous allons chaque fois faire chaque fonctions en deux versions. La premiére par un vecteur et la
deuxiéme par une liste chainée.

Commengons par définir les éléments :



typedef struct pile_t {
int xelements;
unsigned nb_elem;
unsigned nb_max;

} pile;

typedef struct element_t {
int valeur;
struct element_t xsuiv;

} element;

typedef struct pile_t {
element xelements;

} pile

Pour la version avec un vecteur, on a besoin du nombre d’éléments qu’on peut placer car on va devoir
allouer un vecteur d’éléments. Ce n’est pas le cas avec la version avec liste simplement chainée.

void push (pile #p, int v) {
if (p—>nb_elem +1 > p—>nb_max) {
printf(”La pile est pleine, impossible d’ajouter une valeur\n”);
return;

p—>valeur [p—>nb_elem] = v;
p—>nb_elem++;

}

void push (pile #p, int v) {

element =xn;

n = malloc(sizeof (element));

if (In) {
printf(” Erreur lors de 1’allocation de l’element/n”);
return ;

}

n—>valeur = v;

n—>suiv = NULL;

element xc = p—>elements;

if (lc)
p—elements = n;
else {
while (c—>suiv) {
¢ = c—=>suiv;
} .
c—>sulv = n;

}

void pop (pile *p) {
if (p—nb_elem = 0) {
printf(”Pas d’elements a pop\n”);
return NULL;
}
p—>nb_elem ——;
return p—>elements|[p—>nb_elem];



}

element xpop (pile x*p) {

it (!p—>elements) {
printf(”Pas d’elements a pop\n”);
return NULL;

¥

element *xe, *xprev;

prev = p—>elements;

it (!prev—>suiv) {
p—elements = NULL;
return prev;

}

e = prev—>suiv;
while (e—>suiv) {
prev = e;

e = e—>suiv;

prev—>suiv = NULL;
return e;

}

element xtop (pile x*p) {
if (!p—>nb_elem)
return NULL;
return p—>elements [p—>nb_elem —1];

}

element xtop (pile x*p) {
element xe = p—>elements;
if (le)
return NULL;
while (e—>suiv)
e = e—>suiv;
return e;

}

unsigned top (pile x*p) {
return p—>nb_elem;
}

unsigned top (pile x*p) {

element xe = p—>elements;
unsigned res = 0;
while (e) {

res-—+-+;

e = e—>suiv;

}

return res;



unsigned is_empty (pile xp) {
if (p—>nb_elem > 0)
return 1;
return 0;

}

unsigned is_empty (pile xp) {
if (p—elements)
return 1;
return 0;



