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Convergence of the Iterates of Descent Methods for Analytic

Cost Functions
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Abstract

In the early eighties  Lojasiewicz [Loj84] proved that a bounded solution of a gradient
flow for an analytic cost function converges to a well-defined limit point. In this paper,
we show that the iterates of numerical descent algorithms, for an analytic cost function,
share this convergence property if they satisfy certain natural descent conditions. The results
obtained are applicable to a broad class of optimization schemes and strengthen classical
“weak convergence” results for descent methods to “strong limit-point convergence” for a
large class of cost functions of practical interest. The result does not require that the cost
has isolated critical points, requires no assumptions on the convexity of the cost, nor any
non-degeneracy conditions on the Hessian of the cost at critical points.
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1 Introduction

Unconstrained numerical optimization schemes can be classified into two principal categories: line-
search descent methods and trust-region methods. Seminal work by Goldstein [Gol65] and Wolfe
[Wol69] on line-search descent methods introduced easily verifiable bounds on step-size selection
that lead to weak convergence results (lim ‖∇φ(xk)‖ = 0) for a wide class of inexact line-search de-
scent algorithms; see e.g. [Fle87, theorem 2.5.1] or [NW99, theorem 3.2]. For trust-region methods,
classical convergence results guarantee weak convergence (lim ‖∇φ(xk)‖ = 0) if the total model
decrease is at least a fraction of that obtained at the Cauchy point; see e.g. [NW99, theorem 4.8]
or [CGT00, theorem 6.4.6]. Thus, classical convergence results establish that accumulation points
of the sequence of iterates are stationary points of the cost function φ. Convergence of the whole
sequence to a single limit-point is not guaranteed. Curry [Cur44, p. 261] first gave the following
intuitive counter-example to the existence of such a result for steepest-descent methods with line
minimization:

Let G(x, y) = 0 on the unit circle and G(x, y) > 0 elsewhere. Outside the unit circle
let the surface have a spiral gully making infinitely many turns about the circle. The
path1 C will evidently follow the gully and have all points of the circle as limit points2.
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1The path consists of the sequence of estimates of the numerical method.
2A point x is a limit point or accumulation point of a sequence {xk}k∈IN if there exists a subsequence {xki

}
i∈IN

that converges to x.
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It is possible to prove single limit-point convergence for descent algorithms by exploiting ad-
ditional properties of the cost that ensure critical points are isolated or impose non-degeneracy
conditions on the Hessian of the cost on critical sets [HM94]. Strong convexity of the cost func-
tion guarantees that the global minimum is a unique isolated critical point of the cost function
and single limit-point convergence is recovered; see e.g. Byrd and Nocedal [BN89] for the BFGS
algorithm and Kiwiel and Murty [KM96] for the steepest descent method. Convergence results
obtained by Dunn [Dun81, theorem 4.3] require an uniform growth condition of φ and uniqueness
of the minimizer within a certain subset. For a class of approximate trust-region methods, Moré
and Sorensen [MS83, theorem 4.13] show that if the Hessian of φ is nonsingular at an accumulation
point x∗, then the whole sequence converges to x∗. Conn et al. [CGST93] (or see theorem 6.5.2
in [CGT00]) show that the same result holds for a class of trust-region methods that ensure a
fraction of Cauchy decrease. The Capture Theorem [Ber95], for a class of line-search methods,
shows convergence to a single local minimum x∗, provided x∗ is an isolated stationary point of φ
and the iteration comes sufficiently close to x∗; see also [Dun87].

In this paper, we consider the question of convergence given certain regularity conditions on
the cost function considered. The motivation for our study is a result in dynamical systems the-
ory, that has only recently become widely recognized. For a generic smooth cost function, the
ω-limit set [Wig90, pg. 42] of a bounded gradient flow is a connected subset of critical points,
and not necessarily a single point [HM94, Prop. C.12.1]. If the cost function is real analytic3,
then  Lojasiewicz’s theorem [Loj84] states that the associated gradient flow converges to a single
limit-point; see Section 2 or the introduction of [KMP00] for an overview of  Lojasiewicz’s argu-
ment. A comprehensive treatment of the contintuous-time convergence results with applications
in optimization theory is contained in the Diploma thesis [Lag02]. The key to the proof lies in
showing that the total length of the solution trajectory to the gradient flow is bounded. The proof
utilizes the  Lojasiewicz gradient inequality (see Lemma 2.1 on page 3) which gives a lower bound
for the norm of the gradient of φ in terms of φ itself. Due to the importance of this result in the
motivation of our work, we provide a review of this result in the early part of the paper, and go
on to present an explicit counter example that shows that single limit-point convergence can not
be proved in general for C∞ cost functions.

The main contribution of the paper is to adapt these results to iterates of numerical descent
algorithms. We define a pair of descent conditions termed the strong descent conditions that
characterize the key properties of a sequence of iterates that leads to single limit-point convergence.
These conditions are deliberately chosen to be as weak as possible in order to apply to the widest
possible class of numerical descent algorithms. For line-search methods, it is sufficient to impose
an angle condition and the first Wolfe condition (also known as Armijo condition). For trust-region
methods, we give several easily verified conditions involving the Cauchy point that guarantee the
strong descent conditions hold. The main theorem uses these conditions to prove that the whole
sequence of iterates {xk} of a numerical descent algorithm, applied to an analytic cost function,
either escapes to infinity (i.e. ‖xk‖ → +∞) or converges to a single limit-point. An interesting
aspect of the development is that the strong descent conditions themselves do not guarantee
convergence to a critical point of the cost, ‖∇φ(xk)‖ 6→ 0. However, combining single limit-point
convergence with classical weak convergence results leads to convergence to a single critical point
for a wide range of classical numerical descent algorithm applied to analytic cost functions.

Apart from ensuring continuity of φ, the only purpose of the analyticity assumption is to guar-
antee that the  Lojasiewicz gradient inequality holds in a neighbourhood of every point. Therefore,
the domain of application of our results go beyond the (already large) class of analytic functions
to functions that satisfy a simple growth condition (see Eq. 7). If moreover it is known that a
point x∗ is an accumulation point, then in order to have convergence of the whole sequence to x∗

it is sufficient to require that this growth condition holds in a neighbourhood of x∗.
A preliminary version of the results presented in this paper appeared in the proceedings of the

13th MTNS conference [Mah98]. Generalizations to Riemannian manifolds have been considered

3A real function is said to be analytic if it possesses derivatives of all orders and agrees with its Taylor series in
the neighbourhood of every point.
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in [Lag02].
The paper is organized as follows. The continuous-time case is reviewed in Section 2 and the

Mexican Hat example is presented. The general convergence theory for descent iterations is devel-
oped in Section 3 and applied to line-search and trust-region methods in Section 4. Conclusions
are presented in Section 5.

2 Convergence of Analytic Gradient Descent Flows

In this section, we briefly review  Lojasiewicz’s argument for the convergence of analytic gradient
flows and give an explicit counter-example to show that single limit-point convergence does not
hold for certain C∞ gradient flows. In the past five years, many authors have revisited the
original gradient flow convergence results of  Lojasiewicz [Loj84]. Our presentation follows the
generalization proposed by Lageman [Lag02], where the steepest-descent direction was relaxed to
an angle condition. The proof is included to provide motivation for the discrete-time analysis in
Section 3. A concise presentation of the standard argument for  Lojasiewicz’s theorem is contained
in [KMP00].

Let R
n be the linear space of column vectors with n components, endowed with the usual inner

product 〈x, y〉 = xT y. Let ∇φ(x) := (∂1φ(x), . . . , ∂nφ(x))T denote the Euclidean gradient of the
differentiable function φ. A point x∗ where ∇φ(x∗) = 0 is called a stationary point or critical
point of φ.

The proof of  Lojasiewicz’s theorem is based on the following property of real analytic functions.

Lemma 2.1 ( Lojasiewicz gradient inequality) 4 Let φ be a real analytic function on a neigh-
bourhood of x∗ in R

n. Then there are constants c > 0 and µ ∈ [0, 1) such that

‖∇φ(x)‖ ≥ c|φ(x) − φ(x∗)|µ (1)

in some neighbourhood U of x∗.

Proof. See [Loj65, p. 92], [BM88, prop. 6.8], or the short proof in [KP94]. �

Theorem 2.2 Let φ be a real analytic function and let x(t) be a C1 curve in R
n, with ẋ(t) = dx

dt
(t)

denoting its time derivative. Assume that there exists a δ > 0 and a real τ such that for t > τ ,
x(t) satisfies the angle condition

dφ(x(t))

dt
≡ 〈∇φ(x(t)), ẋ(t)〉 ≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ (2)

and a weak decrease condition
[

d

dt
φ(x(t)) = 0

]

⇒ [ẋ(t) = 0] . (3)

Then, either limt→+∞ ‖x(t)‖ = ∞, or there exists x∗ ∈ R
n such that limt→+∞ = x∗.

Proof. Assume that ‖x(t)‖ 9 +∞ as t → +∞. Then x(t) has an accumulation point x∗ in R
n.

It remains to show that limt→+∞ x(t) = x∗ and the proof will be complete.
It follows from (2) that φ(x(t)) is nonincreasing. Moreover, since x∗ is an accumulation point

of x(t), it follows by continuity of φ that

φ(x(t)) ↓ φ(x∗).

4The  Lojasiewicz gradient inequality is a special instance of a more general  Lojasiewicz inequality [ Loj59,  Loj93].
The latter result has been used in the study of error bounds of analytic inequality systems in optimization [LP94,
Ded00]. In turn, such error bounds have been used in the convergence analysis of optimization algorithms in the
same general spirit as done in the present paper; see, e.g., [FFK00, YDF04]. We thank an anonymous reviewer for
pointing this out.
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We distinguish two cases.
Case (i): there exists a t1 > τ such that φ(x(t1)) = φ(x∗). Since φ(x(t)) is non-increasing then

it is straightforward to see that φ(x(t)) = φ(x∗) and d
dt
φ(x(t)) = 0 for all t ≥ t1. From the weak

decrease condition (3) this implies that ẋ(t) = 0 for all t ≥ t1 and x(t) = x(t1) = x∗.
Case (ii): φ(x(t)) > φ(x∗) for all t > τ . In order to simplify the forthcoming equations

we assume without loss of generality that φ(x∗) = 0. It follows from the  Lojasiewicz gradient
inequality (Lemma 2.1) and from (2) that

dφ(x(t))

dt
≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ ≤ −δc|φ(x(t))|µ‖ẋ(t)‖ (4)

holds in a neighbourhood U of x∗ for some µ ∈ [0, 1). Since we have assumed that φ(x(t)) >
φ(x∗) = 0, it follows from (4)

c1
d(φ(x(t)))1−µ

dt
≤ −‖ẋ(t)‖ (5)

where c1 := [δc(1 − µ)]−1 > 0. Given t1 and t2 with τ < t1 < t2, if x(t) ∈ U for all t ∈ (t1, t2)
then by integration of (5)

L12 :=

∫ t2

t1

‖ẋ(t)‖dt ≤ c1((φ(x(t1)))1−µ − (φ(x(t2)))1−µ) ≤ c1(φ(x(t1)))1−µ. (6)

Now let r be such that Br(x∗) ⊂ U , where

Br(x∗) := {x ∈ R
n : ‖x− x∗‖ < r}.

We show that x(t) eventually enters and remains in Br(x∗). Since r is arbitrarily small, it follows
that x(t) converges to x∗ and the theorem will be proven.

Let t1 be such that ‖x(t1)−x∗‖ < r/2 and c1φ
1−µ(x(t1)) < r/2. Such a t1 exists by continuity of

φ since x∗ is an accumulation point of x(t) and φ(x∗) = 0. Then we show that the entire trajectory
after t1 lies in Br(x∗). By contradiction, suppose not, and let t2 be the smallest t > t1 such that
‖x(t2) − x∗‖ = r. Then x(t) lies in U for all t ∈ (t1, t2). Therefore (6) holds and it follows that
L12 ≤ c1(φ(x(t1)))1−µ < r/2. Then ‖x(t2)−x∗‖ ≤ ‖x(t2)−x(t1)‖+‖x(t1)−x∗‖ < L12 + r/2 < r,
a contradiction. Thus x(t) remains in Br(x∗) for all t ∈ [t1,+∞), and the proof is complete. �

The role of the weak decrease condition (3) is to prevent the trajectory x(t) from wandering
endlessly in the critical set ∇φ = 0. It is possible to weaken this condition somewhat to allow
the trajectory to spend finite periods of time wandering in this set as long as it eventually either
converges or continues to decrease the cost (see [Lag02]).

Considering Theorem 2.2, a natural question to ask is if it is possible to relax the condition
of analyticity on the cost function and retain the convergence results. Clearly, analyticity is
principally used to invoke the  Lojasiewicz gradient inequality. The rationale goes through if φ is
continuous at an accumulation point x∗ of x(t) and a growth condition of the type

‖∇φ(x∗)‖ ≥ ψ(φ(x(t)) − φ(x∗)) (7)

holds in a neigbourhood of x∗, where 1/ψ is positive and integrable on an interval (0, ε). In practice,
such a growth condition may be difficult to check. This is especially true when no accumulation
point is known a priori so that the condition must be verified on a set.

Theorem 2.2 does not hold for the general class of smooth cost functions φ ∈ C∞. It is
instructive to provide an explicit counter example. The following function f ∈ C∞ (cf. Figure 1)
is a smooth example of a ‘Mexican Hat’ cost function. Let

f(r, θ) :=

{

e
− 1

1−r2

[

1 − 4r4

4r4+(1−r2)4 sin
(

θ − 1
1−r2

)]

if r < 1,

0 if r ≥ 1,
(8)

where (r, θ) denote polar coordinates in R
2.
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Figure 1: A plot of the smooth ‘Mexican Hat’ function defined in (8).

Since 0 ≤ 4r4

4r4+(1−r2)4 < 1 for all r < 1, it follows that f(r, θ) > 0 for all r < 1. The exponential

factor in f ensures that all derivatives at r = 1 are well defined (and equal to zero) and it follows
that f ∈ C∞. The example has been constructed such that, for initial conditions (r0, θ0) with
θ0(1 − r20) = 1 and 0 < r0 < 1, the solution (r(t), θ(t)) of the gradient descent flow (expressed in
polar coordinates) satisfies

θ(t) =
1

1 − r(t)2
. (9)

By inspection, the ω-limit set of the trajectory Eq. 9 considered is the entire circle {(r, θ) r = 1}.
The origin of the colloquial name ‘Mexican Hat’ function for a counter-example of this form is

not clear. Certainly, the structure of the counter-example was known by the time of Curry [Cur44].
Prior examples of Mexican Hats were proposed in [Zou76] (mentioned in [Ber95, Exercise 2.18])
and [PdM82, example 3 p. 13]. The merit of the cost function (8) is to provide a closed-form
trajectory (9) and render the convergence analysis trivial.

3 Convergence of analytic descent iterations

In this section, a discrete-time analogue of Theorem 2.2 ( Lojasiewicz’s theorem with an angle
condition) is obtained. We propose a pair of ‘strong descent conditions’ that encapsulate the
key properties of the iterates of a numerical descent algorithm that lead to single limit-point
convergence for an analytic cost function. In later sections we show that the strong descent
conditions are satisfied naturally by most numerical descent algorithm iterates.
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3.1 Main result

In the discrete-time case, a solution trajectory is a sequence {xk} instead of a curve x(t). The
key to extending the results of Section 2 to this case is to adapt the conditions (2) and (3) to the
discrete-time case. For (2) we propose a primary descent condition:

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖ (10)

for all k and for some σ > 0. Condition (10) is satisfied under Armijo’s condition (22) along
with an angle condition (20). This fact will be exploited in Section 4.1 in the context of line-
search methods. Moreover (10) is sufficiently general to accomodate the framework of trust-region
methods; see Section 4.2.

Condition (10) itself does not preclude {xk} from endlessly wandering in a critical set of φ. To
overcome this, we introduce a complementary descent condition:

[φ(xk+1) = φ(xk)] ⇒ [xk+1 = xk] (11)

This condition simply requires that any nonvanishing update, xk+1 6= xk, produce a change in
the cost function. Condition (11) adds information to (10) only when xk is a critical point (i.e.
∇φ(xk) = 0). Note that conditions (10) and (11) allow the sequence {xk} to stagnate for arbitrarily
many iterations, a behaviour observed e.g. in trust-region methods when the model estimate turns
out to be so poor that the proposed update is rejected (see Section 4.2). Together, we term
conditions (10) and (11) the strong descent conditions.

Definition 3.1 (strong descent conditions) We say that a sequence {xk} in R
n satisfies the

strong descent conditions if (10)-(11) hold for some σ > 0 and for all k larger than some K.

The main result (Theorem 3.2 below) shows that if the iterates {xk} of a numerical descent
algorithm satisfy the strong descent conditions (Definition 3.1) and the cost function φ is analytic
then {xk} converges to a single point or diverges to infinity. Note that we do not claim that the
limit-point is a stationary point of φ; indeed, the assumptions are not strong enough (in particular,
they do not preclude stagnation). For classical descent algorithms, convergence to a stationary
point can be obtained by invoking classical weak convergence results (∇φ → 0) in combination
with Theorem 3.2.

Theorem 3.2 (main result) Let φ : R
n 7→ R be an analytic cost function. Let the sequence

{xk}k=1,2,... satisfy the strong descent conditions (Definition 3.1). Then, either limk→∞ ‖xk‖ =
+∞, or there exists a single point x∗ ∈ R

n such that

lim
k→∞

xk = x∗.

Proof. Without loss of generality, discard all iterates up to the K iterate and relabel the
sequence, such that (10) and (11) hold explicitly on the new sequence. Assume moreover that
‖xk‖ 9 ∞, i.e., {xk} has at least one accumulation point x∗ in R

n. It is sufficient to show that
limk→+∞ xk = x∗ to complete the proof.

For simplicity, we assume without loss of generality that φ(x∗) = 0. If the sequence {xk} is
eventually constant (i.e. there exists a K such that xk = xK for all k > K), then the result follows
directly. For the remaining case we remove from the sequence all the xk’s such that xk+1 = xk

and we renumber the sequence accordingly. It follows that the new sequence is infinite, never
stagnates, and admits the same limit-set as the original sequence. By continuity of φ, since x∗ is
an accumulation point of {xk} and φ(xk) is strictly decreasing as a consequence of (11), it follows
that

φ(x0) > φ(x1) > . . . > 0. (12)

(Note that this is the only place in this proof where (11) is utilized.)
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It then follows from the  Lojasiewicz gradient inequality (Lemma 2.1) and the primary descent
condition (10) that, in some neighbourhood U of x∗,

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖ ≥ σc|φ(xk)|µ‖xk+1 − xk‖.

That is, since we have shown that φ(xk) > 0 for all k,

‖xk+1 − xk‖ ≤
φ(xk) − φ(xk+1)

σc (φ(xk))µ
, (13)

provided xk belongs to U .
Since µ ∈ [0, 1), it follows from (12) that 1

(φ(xk))µ ≤ 1
φµ for all φ in [φ(xk+1), φ(xk)], and

therefore

φ(xk) − φ(xk+1)

(φ(xk))µ
=

∫ φ(xk)

φ(xk+1)

1

(φ(xk))µ
dφ ≤

∫ φ(xk)

φ(xk+1)

1

φµ
dφ =

1

1 − µ

(

(φ(xk))1−µ − (φ(xk+1))1−µ
)

.

(14)
Substituting (14) into (13) yields

‖xk+1 − xk‖ ≤
1

σc(1 − µ)

(

(φ(xk))1−µ − (φ(xk+1))1−µ
)

. (15)

This bound plays a role similar to the bound (5) on the exact derivative obtained in the continuous-
time case.

Given k2 > k1 such that the iterates xk1
up to xk2−1 belong to U , we have

k2−1
∑

k=k1

‖xk+1 − xk‖ ≤ c1
(

(φ(xk1
))1−µ − (φ(xk2

))1−µ
)

≤ c1(φ(xk1
))1−µ (16)

where c1 = [σc(1 − µ)]−1. This bound plays the same role as (6).
Now the conclusion comes much as in the proof of Theorem 2.2. Let r > 0 be such that

Br(x∗) ⊂ U , where
Br(x∗) = {x ∈ R

n : ‖x− x∗‖ < r}

is the open ball of radius r centered at x∗. Let k1 be such that ‖xk1
−x∗‖ < r/2 and c1(φ(xk1

))1−µ <
r/2. Such a k1 exists since x∗ is an accumulation point and φ(x∗) = 0. Then we show that
xk2

∈ Br(x∗) for all k2 > k1. By contradiction, suppose not, and let K be the smallest
k > k1 such that ‖xK − x∗‖ ≥ r. Then xk remains in U for k1 ≤ k < K, so it follows

from (16) that
∑K−1

k=k1
‖xk+1 − xk‖ ≤ c1(φ(xk1

))1−µ < r/2. It then follows that ‖xK − x∗‖ ≤

‖xK − xk1
‖ + ‖xk1

− x∗‖ ≤
∑K−1

k=k1
‖xk+1 − xk‖ + ‖xk1

− x∗‖ < r
2 + r

2 ≤ r. But we have supposed
that ‖xK − x∗‖ ≥ r, a contradiction.

We have thus shown that, given r sufficiently small, there exists k1 such that ‖xk2
− x∗‖ < r

for all k2 > k1. Since r > 0 is arbitrary (subject to Br(x∗) ⊂ U), this means that the whole
sequence {xk} converges to x∗, and the proof is complete. (The same conclusion comes by noting
that the “length”

∑+∞
k=1 ‖xk+1 − xk‖ is finite.) �

3.2 Discussion

We now comment on Theorem 3.2 and propose a few variations and extensions to this result.

3.2.1 C∞ is not sufficient to guarantee single limit-point convergence

Similar to the continous-time case, it is natural to wonder whether the analyticity assumption on
φ can be relaxed to indefinite differentiability (φ ∈ C∞). The answer is again negative: as we now
show, there exist a sequence {xk} in R

n and a function φ in C∞ such that {xk} satisfies the strong
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descent conditions (Definition 3.1) and nevertheless the limit-set of {xk} contains more than one
point of R

n.
Consider the Mexican Hat function (8) and let xk = (rk cos θk, rk sin θk)T with θk = kω and

rk =
√

(θk − 1)/θk, so that xk belongs to the trajectory given by (9). Choose ω > 0 such that
ω/π is an irrational number. Then the limit-set of {xk} is the unit circle in R

2. However, f is C∞

and the primary descent condition (10) is satisfied for σ = 1−e−ω

4 . Indeed, simple manipulations
yield

∂rf(rk, θk) = −e
− 1

1−r2
k

2rk(1−r2
k)2

4r4
k
+(1−r2

k
)4

1
r
∂θf(rk, θk) = −e

− 1

1−r2
k

4r3
k

4r4
k
+(1−r2

k
)4

‖∇xf(xk)‖ = e−θk 2rk

4r4
k
+(1−r2

k
)4

√

(1 − r2k)4 + 4r4k.

Thus ‖∇xf(xk)‖ ≤ 2e−kω when rk is sufficiently close to 1, i.e. when k is sufficiently large. Thus

f(xk)−f(xk+1) = e−kω−e−(k+1)ω = e−kω(1−e−ω) ≥ 1−e−ω

4 2e−kω 2 ≥ 1−e−ω

4 ‖∇f(xk)‖‖xk−xk+1‖.

3.2.2 Ruling out escape to infinity

There are several ways to rule out the case limk→+∞ ‖xk‖ = ∞ in Theorem 3.2. Convergence
results often assume that φ has compact sublevel sets, in which case {xk} is bounded. Note also
that limk→∞ ‖xk‖ = +∞ occurs if and only if {xk} has no accumulation point in R

n.
It is interesting to consider what happens in the close vicinity of a critical point. Proposi-

tion 3.3 guarantees that if the iteration starts close enough to a local minimum x∗ of φ, and if the
complementary descent condition (11) is replaced by a termination condition, then the sequence
of iterates stays in a neighbourhood of x∗. Strengthening the weak descent condition to condi-
tion (18) is required since it is not possible to centre the analysis at an accumulation point as was
done in the proof of Theorem 3.2.

Proposition 3.3 (Lyapunov stability of minima) Let x∗ be a (possibly nonstrict) local min-
imum of the analytic cost-function φ. Let

xk+1 = F (xk) (17)

be a discrete-time dynamical system satisfying the primary descent condition (10) and the termi-
nation condition

∇φ(xk) = 0 ⇒ terminate. (18)

Then x∗ is Lyapunov-stable for (17). That is, given ε > 0, there exists δ > 0 such that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ ε for all k.

Proof. Without loss of generality, we again assume that φ(x∗) = 0. Let Um be a neighbourhood of
x∗ such that φ(x) ≥ φ(x∗) for all x ∈ Um. Let U L be a neighbourhood of x∗ where the  Lojasiewicz
inequality (Lemma 2.1) holds. Let ε be such that Bε(x

∗) ⊂ Um ∩ U L. Let δ < ε/2 be such that
c1(φ(x))1−µ < ε/2 for all x ∈ Bδ(x∗), where c1 = [σc(1 − µ)]−1 and c, µ and σ are the constants
appearing in the  Lojasiewicz inequality and the primary descent condition (10). Then we show
that xk belongs to Bε(x

∗) and the proof is complete. By contradiction, suppose that xk eventually
leaves Bε(x

∗). Let K be the smallest k such that xk is not in Bε(x
∗). We dismiss the trivial case

where the algorithm terminates. Thus ∇φ(xk) 6= 0 for all k < K. It follows that φ(xk) > 0 for
all k < K, otherwise the assumption on Um would not hold. The rationale given in the proof of
Theorem 3.2 yields that

‖xk − x0‖ ≤ c1(φ(x0))1−µ < ε/2

for all k ≤ K, and it comes from the triangle inequality that ‖xK − x∗‖ < ε, a contradiction. �
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Note that Proposition 3.3 is a Lyapunov stability result and one must prove local attractivity
of x∗ in addition to Proposition 3.3 to prove asymptotic stability of x∗. It would be sufficient to
require additionally, weak convergence of the iterates (i.e. ∇φ(xk) → 0) and that x∗ is an isolated
stationary point of φ. A similar result is given by the Capture Theorem [Ber95].

3.2.3 A stronger result

The proof of Theorem 3.2 does not use the analyticity of φ to its full extent. Instead, the proof
only requires that φ be continuous at the accumulation point x∗ and that the  Lojasiewicz gradient
inequality hold in a neighbourhood of x∗.

There is a large class of functions that are not real analytic but nevertheless satisfy the
 Lojasiewicz gradient inequality; see, e.g., [Kur98, BDL04]. As an illustration, consider φ(x) =
f(g(x)) where g is real analytic and f is C1. Assume for simplicity that g(x∗) = 0 and f(0) = 0, so
φ(x∗) = 0. Assume moreover that f ′(0) = c1 > 0, where f ′ denotes the first derivative of f . Since
f ′◦g is continuous, it follows that there exists a neighbourhood U of x∗ such that f ′(g(x)) > c1

2 for
all x ∈ U . Shrinking U if necessary, it follows from the  Lojasiewicz gradient inequality on g that
there are constants c > 0 and µ ∈ [0, 1) such that ‖∇φ(x)‖ = |f ′(g(x))| · ‖∇g(x)‖ ≥ c1

2 ‖∇g(x)‖ ≥
c1

2 c|g(x)|µ for all x ∈ U . Shrinking U further if necessary, since f ′(0) = c1 > 0 and f(0) = 0 and
f ∈ C1, we have |g(x)| ≥ |f(g(x))|/(2c1) for all x ∈ U . Consequently, ‖∇φ(x)‖ ≥ c1c

2(2c1)µ |φ(x)|µ

for all x ∈ U , and this is a Lojasiewicz inequality.
It is interesting to consider what would be the weakest general condition on the cost function

that would ensure single limit-point convergence of a descent iteration under the strong descent
conditions (Definition 3.1). In general, this question is difficult to answer, however, the following
result provides the weakest condition on the cost function such that the proof given for Theorem 3.2
applies. Note that the class of functions covered is larger again than those satisfying the  Lojasiewicz
gradient inequality, shown earlier to be a superset of analytic functions.

Theorem 3.4 Let x∗ be a point of R
n and let φ be a cost function on R

n continuous at x∗.
Assume that there exists a neighbourhood U of x∗, an ε > 0 and a nondecreasing strictly positive
function ψ : (0, ε) → R such that 1/ψ is integrable over (0, ε) and

‖∇φ(x)‖ ≥ ψ(φ(x) − φ(x∗))

for all x in {x ∈ U : 0 < φ(x) − φ(x∗) < ε}. Consider a sequence {xk} satisfying the strong
descent conditions (Definition 3.1) and assume that x∗ is an accumulation point of {xk}. Then
limk→∞ xk = x∗.

4 Application to classical optimization schemes

In this section, we show that the strong descent conditions (Definition 3.1) hold for a wide variety of
numerical optimization methods. Consequently, these methods have single limit-point convergence
when the cost function is analytic, or more generally when the conditions of Lemma 3.4 are
satisfied. We will successively consider methods of the line-search type and of the trust-region
type. References on numerical optimization include [DS83, Fle87, Ber95, NW99, CGT00].

4.1 Convergence of Line-Search Methods

Any line-search method proceeds in two steps. First, the algorithm chooses a search direction pk

from the current iterate xk. Then the algorithm searches along this direction for a new iterate

xk+1 = xk + αkpk (19)

satisfying some criteria.
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We first consider the choice of the search direction pk. An obvious choice is the steepest-descent
direction pk = −∇φ(xk), which is often relaxed to a direction pk satisfying an angle condition

〈pk,∇φ(xk)〉

‖pk‖‖∇φ(xk)‖
= cos θk ≤ −δ < 0, (20)

i.e., the angle between pk and −∇φ(xk) is bounded away from 90◦. A wide variety of optimization
schemes obtain the search direction by solving an equation of the form

Bkpk = −∇φ(xk). (21)

In particular, the choice Bk = ∇2φ(xk), the Hessian of φ at xk, yields the Newton direction.
When some approximation of the Hessian is used, pk is called a quasi-Newton search direction.
From (20) and (21), standard manipulations (see e.g. [NW99, p. 45]) yield cos θk ≥ 1/κ(Bk) where
κ(Bk) = ‖Bk‖ ‖B

−1
k ‖ is the condition number of Bk. Therefore, for the angle condition (20) to

hold true with (21), it is sufficient that the condition number of Bk be bounded.
Now consider the choice of αk in (19). A very usual condition on α is the first Wolfe condition,

also known as the Armijo condition (see e.g. [NW99]):

φ(xk) − φ(xk+1) ≥ −c1〈∇φ(xk), xk+1 − xk〉 (22)

where c1 ∈ (0, 1) is a constant. The Armijo condition is satisfied for all sufficiently small values
of αk. Therefore, in order to ensure that the algorithm makes sufficient progress, it is usual to
require moreover that, for some constant c2 ∈ (c1, 1),

〈∇φ(xk+1), xk+1 − xk〉 ≥ c2〈∇φ(xk), xk+1 − xk〉, (23)

known as the curvature condition. Conditions (22) and (23) are known collectively as the Wolfe
conditions. Several schemes exist that compute an αk such that the Wolfe conditions hold; see
e.g. [Ber95, NW99].

Theorem 4.1 (i) Consider the line-search descent algorithm given by (19). Let the algorithm
terminate if ∇φ(xk) = 0. Assume that the search direction pk satisfies the angle condition (20).
Let the step-size be selected such that the Armijo condition (22) holds. Then the strong descent
conditions (Definition 3.1) hold.
(ii) Assume moreover that the cost function φ is analytic.
Then either limk→∞ ‖xk‖ = +∞, or there exists a single point x∗ ∈ R

n such that

lim
k→∞

xk = x∗.

(iii) In the latter case, if moreover the curvature condition (23) holds, then x∗ is a stationary
point of φ, i.e.

∇φ(x∗) = 0.

Proof. (i) Combining the angle condition (20) and the Armijo condition (22) yields φ(xk) −
φ(xk+1) ≥ c1δ‖∇φ(xk)‖‖xk+1 − xk‖, i.e. the primary descent condition (10) with σ = c1δ. The
complementary descent condition (11) is also satisfied: if ∇φ(xk) = 0 then the algorithm termi-
nates and if ∇φ(xk) 6= 0 then (11) follows from (10).
(ii) Direct from (i) and Theorem 3.2.
(iii) Direct consequence of (ii) and a classical convergence result (proven e.g. in [Fle87, theo-
rem 2.5.1] and [NW99, section 3.2]). �

4.2 Convergence of Trust-Region Methods

Most trust-region methods compute the trust-region step such that the model decrease is at least
a fraction of that obtained at the so-called Cauchy point. This condition alone is not sufficient to
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guarantee that the primary descent condition (10) hold. However, we show in this section that the
strong descent conditions (Definition 3.1) hold under a mild modification of the Cauchy decrease
condition.

Before stating the results in Theorem 4.4, we briefly review the underlying principles of trust-
region methods. The vast majority of trust-region methods proceed along the following lines. At
each iterate xk, a model mk(p) is built that agrees with φ(xk + p) to the first order, that is

mk(p) = φ(xk) + ∇φ(xk)T p+
1

2
pTBkp (24)

where Bk is some symmetric matrix. Then the problem

min
p∈Rn

mk(p) s.t. ‖p‖ ≤ ∆k (25)

where ∆k > 0 is the trust-region radius, is solved within some approximation, yielding an update
vector pk. Finally the actual decrease of φ is compared with the decrease predicted by mk in the
ratio

ρk =
φ(xk) − φ(xk + pk)

mk(0) −mk(pk)
. (26)

If ρ is exceedingly small, then the model is very bad: the step must be rejected and the trust-region
radius must be reduced. If ρ is small but less dramatically so, then the step is accepted but the
trust-region radius is reduced. If ρ is close to 1, then there is a good agreement between the model
and the function over the step, and the trust-region can be expanded. This can be formalized into
the following algorithm (similar formulations are given e.g. in [MS83, CGT00]).

Algorithm 4.2 (Trust Region, see e.g. [NW99]) Given ∆̄ > 0, ∆0 ∈ (0, ∆̄), and η ∈ (0, 1
4 ):

for k = 0, 1, 2, . . .
Obtain pk, ‖pk‖ < ∆k, by (approximately) solving (25);
Evaluate ρk from (26);
if ρk <

1
4

∆k+1 = 1
4‖pk‖

else if ρk >
3
4 and ‖pk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k;
if ρk > η
xk+1 = xk + pk

else
xk+1 = xk;

end (for).

Trust-region methods essentially differ in the way they approximately solve the trust-region
subproblem (25). Most of the algorithms compute a step such that the model decrease is at least
a fraction of that obtained at the Cauchy point. By definition, the Cauchy point is the solution
pC

k of the one-dimensional problem

pC
k = arg min{mk(p) : p = α∇φ(xk), ‖p‖ ≤ ∆k}. (27)

The class of methods that ensure a fraction of the Cauchy decrease includes the dogleg method of
Powell [Pow70], the double-dogleg method of Dennis and Mei [DM79], the truncated conjugate-
gradient method of Steihaug [Ste83] and Toint [Toi81], and the two-dimensional subspace min-
imization strategy of Byrd et al. [BSS88]. These methods have weak convergence properties
(‖∇φ(xk)‖ → 0) in general; see e.g. [NW99, theorem 4.8]. Other methods, including the one
of Moré and Sorensen [MS83], do even better as they attempt to find a nearly exact solution of
the trust-region subproblem (25). In this case a strong limit-point convergence result is avail-
able [MS83, theorem 4.13] under some additional hypotheses, including nonsingularity of the
Hessian of φ at an accumulation point.
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Assuming that the cost function φ is analytic, we have to check that the strong descent condi-
tions (Definition 3.1) hold in order to apply our main result (Theorem 3.2) and conclude to single
limit-point convergence.

The following technical lemma will prove to be useful.

Lemma 4.3 If pC
k is the Cauchy point defined in (27), then

mk(0) −mk(pC
k ) ≥

1

2
‖∇φ(xk)‖‖pC

k ‖.

Proof. The Cauchy point pC
k is given explicitly by (see, e.g., [NW99, eq. (4.8)])

pC
k = −τk

∆k

‖∇φ(xk)‖
∇φ(xk), (28a)

where

τk =

{

1 if ∇φ(xk)TBk∇φ(xk) ≤ 0;

min( ‖∇φ(xk)‖3

∆k∇φ(xk)T Bk∇φ(xk)
, 1) otherwise.

(28b)

We have

mk(0) −mk(pC
k ) −

1

2
‖∇φ(xk)‖ ‖pC

k ‖ = βk

(

1 −
τk∆k

‖∇φ(xk)‖3
∇φ(xk)TBk∇φ(xk)

)

with βk := 1
2τk∆k‖∇φ(xk)‖, thus the claim is equivalent to

1 −
τk∆k

‖∇φ(xk)‖3
∇φ(xk)TBk∇φ(xk) ≥ 0,

which follows from the definition of τk. �

Due to the variety of trust-region methods and the flexibility in the choice of the update
direction it is not possible to prove a generic convergence result of the nature of Theorem 4.1.
Instead, Theorem 4.4 provides several easily verified conditions for the iterates of Algorithm 4.2 in
order that its iterates satisfy the strong descent conditions (Definition 3.1). Once this is verified
then the results of Theorem 3.2 apply. Convergence to a critical point again depends on additional
weak convergence results for the algorithm considered.

The conditions given in Theorem 4.4 are progressively more restrictive on the iterates of Al-
gorithm 4.2. Condition (B) imposes condition (10) on the model mk. We show that this in turn
implies condition (10) on the cost function φ. Condition (C) imposes a fraction of the Cauchy
decrease that becomes more restrictive as the ratio ‖pk‖/‖p

C
k ‖ grows. Condition (D) simply states

that the model decrease is at least a fraction of that obtained at the Cauchy point. This condi-
tion holds for most of the standard trust region algorithms. However, (D) alone is not sufficient
to guarantee single limit-point convergence for analytic φ. To see this, consider for example the
function in R

3 given by

f(x) = (
√

x2
1 + x2

2 − 1)2 + x2
3

which has a symmetry of revolution around the third axis. If Bk is chosen to be singular along
the θ direction, then a sequence {xk} can be constructed that satisfies (D) but nevertheless loops
endlessly towards the set {x : x2

1 + x2
2 = 1, x3 = 0}. Condition (D) becomes sufficient with

complementary conditions, like (E) which imposes a bound on ‖pk‖/‖p
C
k ‖ or like (F) which imposes

that Bk remains positive definite and does not become ill-conditioned.

Theorem 4.4 Let {xk}, {∆k}, {pk}, {φ(xk)}, {∇φ(xk)} and {Bk} be infinite sequences gener-
ated by Algorithm 4.2 (Trust-Region). Let mk, ρk and pC

k be defined as in (24), (26) and (27),
respectively. Consider the following conditions:

(A) The strong descent conditions (Definition 3.1) hold.
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(B) There exists σ1 > 0 such that for all k with ∇φ(xk) 6= 0

mk(0) −mk(pk) ≥ σ1‖∇φ(xk)‖‖pk‖. (29)

(C) There exists σ2 > 0 such that for all k with ∇φ(xk) 6= 0

mk(0) −mk(pk)

mk(0) −mk(pC
k )

≥ σ2
‖pk‖

‖pC
k ‖
. (30)

(D) There exists c2 > 0 such that for all k with ∇φ(xk) 6= 0

mk(0) −mk(pk) ≥ c2(mk(0) −mk(pC
k )). (31)

(E) There exists κ1 > 0 such that for all k with ∇φ(xk) 6= 0

‖pk‖ ≤ κ1‖p
C
k ‖. (32)

(F) Bk is positive definite for all k and there exists a κ2 ≥ 1 such that cond(Bk) := ‖Bk‖‖B
−1
k ‖ ≤

κ2 for all k (where the matrix norms are 2-norms).

Then (D and F) ⇒ (D and E) ⇒ C ⇒ B ⇒ A. Furthermore, if (A) holds and the cost function
φ is analytic, then either limk→∞ ‖xk‖ = +∞, or there exists a single point x∗ ∈ R

n such that
limk→∞ xk = x∗.

Proof. First note that the condition ∇φ(xk) 6= 0 guarantees that pC
k 6= 0 and mk(0)−mk(pC

k ) >
0.

(D and F) ⇒ (D and E). If ‖pC
k ‖ = ∆k then (E) holds with κ1 = 1. Assume then that

‖pC
k ‖ < ∆k. Let λmax(Bk), resp. λmin(Bk), denote the largest, resp. smallest, eigenvalue of the

positive definite matrix Bk. Then

‖∇φ(xk)‖

λmax(Bk)
≤

‖∇φ(xk)‖3

∇φ(xk)TBk∇φ(xk)
= ‖pC

k ‖, (33)

where the equality follows from (28) and ‖pC
k ‖ < ∆k. In view of (D), one has mk(0)−mk(pk) ≥ 0

and thus −∇φ(xk)T pk − 1
2p

T
kBkpk ≥ 0. Therefore

1

2
λmin(Bk)‖pk‖

2 ≤
1

2
pT

kBkpk ≤ −∇φ(xk)T pk ≤ ‖∇φ(xk)‖ ‖pk‖. (34)

It follows from (33) and (34) that

‖pk‖ ≤ 2
‖∇φ(xk)‖

λmin(Bk)
≤ 2

λmax(Bk)

λmin(Bk)
‖pC

k ‖ = 2cond(Bk)‖pC
k ‖ ≤ 2κ2‖p

C
k ‖,

i.e., (E) holds with κ1 := 2κ2.
(D and E) ⇒ C. Direct, with σ2 = c2/κ1.
C ⇒ B. Directly follows from Lemma 4.3, with σ1 = σ2/2.
B ⇒ A. If xk+1 = xk, then the strong descent conditions trivially hold. Assume then that

xk+1 6= xk, in which case the complementary descent condition (11) holds by the definition of
Algorithm 4.2. If ∇φ(xk) = 0, then the primary descent condition (10) trivially holds. On the
other hand, if ∇φ(xk) 6= 0, then it follows from (B) that (10) holds with σ = ησ1 where η is
defined in Algorithm 4.2.

The final claim follows directly from Theorem 3.2. �

Convergence of the iterates of Algorithm 4.2 to a critical point depends on additional weak
convergence (‖∇φ(xk)‖ → 0) results for the particular algorithm considered. For example, if
assumptions (D) and (E) hold, φ is analytic, and ‖Bk‖ ≤ β for some constant β then either
limk→∞ ‖xk‖ = +∞, or there exists a single point x∗ ∈ R

n such that

lim
k→∞

xk = x∗ and ∇φ(x∗) = 0.

This follows from the above result along with a classical convergence result for trust-region methods
(see [NW99, theorem 4.8]).
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5 Conclusion

We have shown strong limit-point convergence results that do not rely on the usual requirement
that critical points are isolated. Instead, we require two conditions: the  Lojasiewicz gradient
inequality (1), i.e. a lower bound on the norm of the gradient of the cost function in terms
of the cost function itself, and some ‘strong descent conditions’ stated in Definition 3.1. The
 Lojasiewicz gradient inequality is satisfied in particular for analytic cost functions. The strong
descent conditions are satisfied for a wide variety of optimization schemes; they include line-search
methods with an angle condition on the search direction and Armijo’s condition on the step length,
and trust-region methods under the condition that the length of the update vector is bounded by
a multiple of the length of the Cauchy update.
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