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Abstract

This paper studies the relations between the local minima of a cost function f and the
stable equilibria of the gradient descent flow of f . In particular, it is shown that, under
the assumption that f is real analytic, local minimality is necessary and sufficient for
stability. Under the weaker assumption that f is indefinitely continuously differentiable,
local minimality is neither necessary nor sufficient for stability.
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1 Introduction

Gradient flows are useful in solving various optimization-related problems. Recent examples
deal with principal component analysis [YHS01, MHM05], optimal control [YTM94, JM96],
balanced realizations [HM94], ocean sampling [BL02], noise reduction [RJ02], pose estima-
tion [BHM94] or the Procrustes problem [TL02]. The underlying idea is that the gradient
descent flow will converge to a local minimum of the cost function. It is however well known
that this property does not hold in general: the initial condition can e.g. belong to the stable
manifold of a saddle point. Not as well known is the fact that, even assuming that the cost
function is a C∞ function, the local minima of the cost function are not necessarily stable
equilibria of the gradient-descent system, and vice-versa. The main purpose of this paper is
to shed some light on this issue.
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Specifically, let f be a real, continuously differentiable function on R
n and consider the

continuous-time gradient-descent system

ẋ(t) = −∇f(x(t)) (1)

where ∇f(x) denotes the Euclidean gradient of f at x. Define stability and minimality in the
standard way:

Definition 1 A point z ∈ R
n is a local minimum of f if there exists ǫ > 0 such that

f(x) ≥ f(z) for all x such that ‖x−z‖ < ǫ. If f(x) > f(z) for all x such that 0 < ‖x−z‖ < ǫ,
then z is a strict local minimum of f . An equilibrium point z of (1) is (Lyapunov) stable if,
for each ǫ > 0, there is δ = δ(ǫ) > 0 such that

‖x(0) − z‖ < δ ⇒ ‖x(t) − z‖ < ǫ, ∀t ≥ 0.

It is asymptotically stable if it is stable and δ can be chosen such that ‖x(0)‖ < δ ⇒
lim
t→∞

x(t) = z.

Then we have:

Proposition 2 (i) There exist a function f ∈ C∞ and a point z ∈ R
n such that z is a local

minimum of f and z is not a stable equilibrium point of (1). (ii) There exist a function
f ∈ C∞ and a point z ∈ R

n such that z is not a local minimum of f and z is a stable
equilibrium point of (1).

The proof given in Section 2 consists in producing functions f that satisfy the required
properties.

After smoothness, the next stronger condition one may think of imposing on the cost
function f is real analyticity (a real function is analytic if it possesses derivatives of all orders
and agrees with its Taylor series in the neighborhood of every point). The main result of this
paper is that under the analyticity assumption, local minimality becomes a necessary and
sufficient condition for stability.

Theorem 3 (main result) Let f be real analytic in a neighbourhood of z ∈ R
n. Then z is

a stable equilibrium point of (1) if and only if it is a local minimum of f .

The proof of this theorem, given in Section 3, relies on an inequality by  Lojasiewicz that
yields bounds on the length of solution curves of the gradient system (1).

Moreover, we give in Section 4 a complete characterization of the relations between (iso-
lated, strict) local minima and (asymptotically) stable equilibria for gradient flows of both
C∞ and analytic cost functions. Final remarks are presented in Section 5.

2 Smooth cost function

In this section we prove Proposition 2. Consider f : R
n → R defined by

f(x, y) =
1

1 + x2
g(y)h(y), (2)

where

g(y) =

{

e−1/y2

if y 6= 0,

0 if y = 0,
(3)
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Figure 1: Plots of f(x, y) along the line x = 0 (above) and y = 0.4 (below). The function f
is the one in (2), where g(y) has been replaced by y2 for clarity of the illustration.

and

h(y) =

{

y2 + 1 + sin 1
y2 if y 6= 0,

1 if y = 0.

This function is qualitatively illustrated on Figure 1. We show that this function f satisfies
the properties of point (i) of Proposition 2 with z = (0, 0). It is routine to check that f ∈ C∞,
and it is clear that the origin is a local minimum of f , since f is nonnegative and f(0) = 0.
The gradient system (1) becomes

ẋ =
2x

(1 + x2)2
g(y)h(y) (4a)

ẏ = −
1

1 + x2

g(y)

y3
m(y) (4b)

where m(y) = 1 + sin 1
y2 − 2 cos 1

y2 + y2 + 2y4. Let (x(t), y(t)) be the solution trajectory

of (4) with initial conditions (x(0), y(0)) = (x0, y0) where we pick y0 > 0 and x0 > 0. Then
there exists y1 such that 0 < y1 < y0 and m(y1) = 0. Therefore y(t) > y1 for all t. Then
from (4a), ẋ > 2x

(1+x2)2
g(y1)y2

1 whence lim
t→+∞

x(t) = +∞. We have shown that from an initial

point arbitrarily close to the origin the solution of (4) escapes to infinity. That is, the origin
is not a stable equilibrium point of (4).

Point (ii) of Proposition 2 is easier to show. Take f : R → R given by

f(x) =

{

g(x) sin 1
x if x 6= 0,

0 if x = 0
(5)
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where the function g is given by (3). This function f has (infinitely many) local minima
in any neighbourhood of x = 0. Since solution trajectories of (1) are bounded by the local
minima, it follows that x = 0 is a Lyapunov stable point of (1); yet x = 0 is not a local
minimum of f .

Notice that both functions f defined in (2) and (5) are nonanalytic at the origin. This is
not coincidental in view of Theorem 3 which we prove in the next section.

3 Analytic cost function

This section is dedicated to proving Theorem 3. We assume throughout, without loss of
generality, that f : R

n → R is analytic on an open set U containing the origin, that f(0) = 0
and that ∇f(0) = 0, and we study the stability of the equilibrium point 0 of the gradient
system (1).

The proof relies on the following fundamental property of analytic functions.

Lemma 4 ( Lojasiewicz’s inequality) Let f be a real analytic function on a neighbourhood
of z in R

n. Then there are constants c > 0 and ρ ∈ [0, 1) such that

‖∇f(x)‖ ≥ c|f(x) − f(z)|ρ

in some neighbourhood of z.

Proof. See [ Loj65], [BM88], or the short proof in [KP94]. �

We first prove the “if” part of Theorem 3, i.e., we assume that the origin is a local
minimum of f and we show that the origin is a stable equilibrium point (Definition 1) of the
gradient system (1). The rationale is based on  Lojasiewicz’s argument [ Loj84] which provides
a bound on the length of the trajectories of (1). Since the origin is a local minimum of f , it
follows that there exists a neighbourhood Um of 0 contained in U such that f(x) ≥ 0 for all
x ∈ Um. Let x0 be in Um and let x(t) be the solution trajectory of the gradient system (1)
with initial condition x(0) = x0. We shall parameterize x(t) by its arc-length s starting from
x0. By  Lojasiewicz’s inequality around the origin, in a neighbourhood UL of the origin

‖∇f‖ ≥ c|f |ρ

for some ρ < 1 and c > 0. Thus in UL we have on the trajectory x(s)

df

ds
= 〈∇f,

dx

ds
〉 = 〈∇f,−

∇f

‖∇f‖
〉 = −‖∇f‖ ≤ −c|f |ρ.

In particular f(x(s)) is decreasing and in Um ∩ UL

df1−ρ

ds
≤ −c(1 − ρ) < 0.

By integration of this inequality, if x(s) lies in Um ∩UL for s ∈ [s1, s2] then the length of the
segment of curve between s1 and s2 is bounded by

c1(f(x(s1))1−ρ − f(x(s2))1−ρ) ≤ c1(f(x(s1)))1−ρ

where c1 = (c(1−ρ))−1. Now let Bǫ be a ball of radius ǫ > 0 centered on the origin such that
Bǫ is in Um ∩UL. By continuity of f , there exists δ < ǫ/2 such that f(x) < (ǫ/2c1)1/(1−ρ) for
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all x ∈ Bδ. If x0 belongs to Bδ then the length of the trajectory x(s) inside Bǫ is smaller than
c1(f(x0))1−ρ, which is smaller than ǫ/2. But since δ < ǫ/2 the distance between x0 and the
boundary of Bǫ is greater than ǫ/2. Thus x(t) remains in Bǫ for all t, and this is Lyapunov
stability. We have proven that minimality is sufficient for stability.

The proof of the “only if” part of Theorem 3 uses the following classical convergence result
of gradient systems.

Lemma 5 Assume that f is a C2 function and let x(t) be a solution trajectory of the gradient
system (1) contained in a compact set K ⊂ R

n. Then x(t) approaches the critical set CK =
{y ∈ K : ∇ f(y) = 0} as t approaches infinity, that is, limt→+∞ infy∈CK

||x(t) − y|| = 0.

Proof. The limit points of the trajectories of gradient flows are stationary points [HS74,
Thm 9.4.4]. If the solution trajectory is bounded then it approaches its positive limit
set [Kha96, Lemma 3.1]. �

We suppose that the origin is not a local minimum of f and we show that the origin
is not a stable equilibrium point of the gradient system (1). Since we have assumed that
f(0) = 0 and ∇ f(0) = 0, and since the critical level sets of an analytic function on a
compact set are isolated, it follows that that there exists an ǫ > 0 such that f is zero on
the set {y ∈ B̄ǫ : ∇ f(y) = 0}, where B̄ǫ denotes the closed ball of radius ǫ centered on the
origin. (Notice that this result also directly follows from  Lojasiewicz’s inequality.) Since the
origin is not a local minimum of f , it follows that for all δ > 0, there exists x0 in Bδ with
f(x0) < f(0) = 0. Then we show that the solution trajectory starting from x0 leaves B̄ǫ and
the proof that minimality is necessary for stability will be complete. Suppose for contradiction
that the solution trajectory of (1) starting from x0 stays in B̄ǫ for all t. Then, by Lemma 5,
x(t) approaches the set {y ∈ B̄ǫ : ∇ f(y) = 0} as t approaches infinity. By continuity of f , it
follows that f(x(t)) approaches 0. But f(x(t)) ≤ f(x(0)) < 0 for all t > 0, a contradiction.

4 Strict minimality and asymptotic stability

The previous results were concerned with (simple) Lyapunov stability and (nonstrict) min-
imality. In this section, we also consider asymptotic stability and strict minimality. The
relations between Lyapunov stability, asymptotic stability, and various notions of minimality,
are displayed in Figure 2, with the following notation (see Definition 1 for details). LM: local
minimum; SLM: strict local minimum; ILM: isolated local minimum; LMICP: local minimum
and isolated critical point; SE: stable equilibrium; ASE: asymptotically stable equilibrium.

In the remainder of this section, we briefly review the relations displayed on Figure 2. As
before, we assume that f(0) = 0 and ∇f(0) = 0, and we study the stability of the equilibrium
point 0 of the gradient system (1).

We first consider the case f ∈ C∞. LMICP ⇒ ASE follows from Lyapunov’s stability
theorem (see [Kha96, Thm. 3.1]). To show ILM ; ASE, take n = 1 and consider the

function f(x) =
∫ |x|
0 g(ξ)(1 + sin(1/ξ2))dξ, g as in (3), which exists since the integrand is

bounded; any neighbourhood of the origin contains points where ∇ f vanishes, hence the origin
is not asymptotically stable1. SLM ⇒ SE also follows from Lyapunov’s stability theorem
(see [Kha96, Thm. 3.1]). LM ; SE is point (i) of Proposition 2. ASE ⇒ LMICP: if the

1Note in this respect that the corollary in section 9.4 of [HS74] is subject to possible misinterpretation: the
minimum must be isolated as a critical point to guarantee asymptotic stability.
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Figure 2: Relations between minimality properties of a critical point z of a cost function
f and its stability as an equilibrium point of the gradient descent system (1) for f ; see
Section 4 for the notation. The left-hand graph holds under the assumption that f ∈ Cp

with p ∈ {1, 2, . . .} ∪ {∞} and the right-hand graph holds for f real analytic. A relation A
→ B means that property A implies property B, and A 9 B means that property A is not
sufficient for property B. All the relations that cannot be deduced by transitivity are 9.

origin is not a LMICP, then either it is not a LM, or it is not an isolated critical point; in
both cases, the origin is not an ASE. SE ; LM is point (ii) of Proposition 2.

Now we consider the case where f is real analytic. Then, as can be directly shown from
 Lojasiewicz’s inequality, SLM ⇒ LMICP, and therefore the three properties LMICP, ILM
and SLM are equivalent. Since analytic functions are C∞, the relations that hold for the C∞

case remain valid, hence the three properties are also equivalent to ASE. Finally, the relation
LM ⇔ SE corresponds to Theorem 3.

5 Final remarks

For a general cost function f ∈ Cp, p ∈ {2, 3, . . .} ∪ {∞}, the classical way of studying the
stability of an equilibrium point (say x = 0) of the gradient descent flow (1) is to consider the
Hessian of f at x = 0. If the Hessian is positive definite, then x = 0 is a local minimum and
an isolated critical point of f (LCICP in Figure 2); it follows from Figure 2 that the origin is
asymptotically stable. But the converse is not true, as the simple example f(x) = x4 shows
(the origin is asymptotically stable but the Hessian vanishes). What is more, we have shown
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that local minima of f are not necessarily stable minima of the gradient system (1), and vice
versa. If f is real analytic, however, the main result of this paper (Theorem 3) ensures that
the stable points of the gradient descent flow (1) and the local minima of f coincide; the same
holds for strict local minima and asymptotically stable equilibria. We refer to Figure 2 for a
characterization of the relations between various notions of minimality and stability.

This paper is just one step towards understanding the behaviour of gradient flows. Previ-
ous advances include: the result by  Lojasiewicz [ Loj84] (or see [AMA05]) that the trajectories
of gradient flows cannot have more than one limit point; the proof by Kurdyka et al. [KMP00]
of the gradient conjecture of R. Thom stating that the limit of secants exists; and the univer-
sal bounds for gradient trajectories of polynomial and definable functions given by D’Acunto
and Kurdyka [DK04].

These results, including our Figure 2, remain valid when the Euclidean metric is replaced
by a (nondegenerate) Riemannian metric, i.e., when (1) becomes

ẋi = −
n

∑

j=1

Qij(x)∂jf(x)

where Q(x) is a smooth symmetric positive-definite matrix function.
Several questions remain open, for instance concerning the existence of lim

t→+∞
ẋ/‖ẋ‖,

the eventual monotonicity of ‖x(t) − x∞‖, and the case of degenerate Riemannian metrics
which has a particular importance for inequality-constrained optimization problems (see,
e.g., [AS04]).

Finally, note that the relation between minimality and stability for the system ẍ(t) =
−∇f(x(t))—which differs from (1) by the double dot on x(t)—is a classical problem in me-
chanics. By the Lagrange-Dirichlet theorem, the equilibrium position is stable if the potential
f has a strict local minimum at this position. But (nonstrict) minimality is not sufficient for
stability [Wie92]. Moreover, the converse of the Lagrange-Dirichlet is not true, but several
authors have proposed additional constraints, apart from the absence of a potential minimum,
that make the equilibrium unstable; see [RS94] and references therein.
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