Logic

Tutorial 8 07 December 2017

- 1. What is the link (in terms of logical consequence) between the following couples of formulas?
 - (a) p(x) and $\forall x p(x)$
 - (b) p(x) and $\exists x p(x)$
 - (c) $\forall x \, p(x) \land \forall x \, q(x) \text{ and } \forall x \, [p(x) \land q(x)]$
 - (d) $\forall x \, p(x) \vee \forall x \, q(x)$ and $\forall x \, (p(x) \vee q(x))$
 - (e) $\forall x \, \forall y \, p(x, y)$ and $\forall x \, \forall y \, p(y, x)$
- 2. What is the link between the following formulas?
 - (a) $A \triangleq \forall x P(x) \Rightarrow \forall x Q(x)$
 - (b) $B \triangleq \exists x P(x) \Rightarrow \forall x Q(x)$
 - (c) $C \triangleq \forall x P(x) \Rightarrow \exists x Q(x)$
 - (d) $D \triangleq \forall x [P(x) \Rightarrow Q(x)]$
- 3. What is the link between the following formulas?
 - (a) $A \triangleq \forall x \exists y [P(x) \Rightarrow Q(x,y)]$
 - (b) $B \triangleq \forall x [P(x) \Rightarrow \exists y Q(x, y)]$
 - (c) $C \triangleq \forall x P(x) \Rightarrow \exists y Q(x, y)$
 - (d) $D \triangleq \forall x [P(x) \Rightarrow \forall x \exists y Q(x, y)]$
- 4. What is the link between the following formulas?
 - (a) $\alpha \triangleq \exists x \exists y \exists z [P(x,y) \Rightarrow [Q(x,z) \Rightarrow R(y,z)]]$
 - (b) $\beta \triangleq \exists x \,\exists y \, [P(x,y) \Rightarrow [\forall z \, Q(x,z) \Rightarrow \exists z \, R(y,z)]]$
 - (c) $\gamma \triangleq \forall x \, \forall y \, P(x,y) \Rightarrow \left[\forall x \, \forall z \, Q(x,z) \Rightarrow \exists y \, \exists z \, R(y,z) \right]$
- 5. What can you say about the following inference rule?

$$\frac{H \Rightarrow \forall x A(x), H \Rightarrow \exists x \left[A(x) \Rightarrow \forall y B(x, y) \right]}{H \Rightarrow \exists x \forall y B(x, y)}$$

- 6. Using the semantic tableaux method, determine whether the following formulas are valid, consistent or inconsistent.
 - (a) $\forall y [p(y) \Rightarrow \forall x p(x)]$
 - (b) $\forall x [p(x) \Rightarrow q(x)] \Rightarrow [\forall x p(x) \Rightarrow \forall x q(x)]$
 - (c) $[\forall x \, p(x) \land \neg \forall y \, q(y)] \lor \forall z \, [p(z) \Rightarrow q(z)]$
 - (d) $\forall x \exists y \ p(x,y) \land \forall x \neg p(x,x) \land \forall x \forall y \forall z \left[(p(x,y) \land p(y,z)) \Rightarrow p(x,z) \right]$
- 7. Consider the following inference rules:

$$\frac{\forall xA \quad \forall x (A \Rightarrow B)}{\forall xB} \qquad \frac{\exists xA \quad \forall x (A \Rightarrow B)}{\exists xB}$$

$$\frac{\exists xA \quad \exists x \, (A \Rightarrow B)}{\exists xB} \qquad \qquad \frac{\forall xA \quad \exists x \, (A \Rightarrow B)}{\exists xB}$$

Are they correct?

If not, do they become correct if one adds restrictions on the occurences of the variable x within A and/or B? Motivate your answers.