Linear optimization
A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker’s hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
Production problem

A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker’s hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
Production problem

A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker’s hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
Production problem

A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker's hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker’s hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
Production problem

A furniture company produces two types of chairs from beech and oak wood.

The first type (basic) requires 9 boards of beech wood and 2 boards of oak wood. A basic chair is easy to construct and requires one worker’s hour.

The second type (classic) requires 7 boards of beech wood and 5 boards of oak wood. Due to the more important completion time, the classic chair requires three worker's hours.

The price of a basic chair is 30 euros whereas a classic chair’s price is 70 euros.

The stock of boards of the entreprise is 800 boards of beech wood and 200 boards of oak wood. There are 4 workers working each 40 hours per week.

What is the number of basic and classic chairs that the entreprise must produce for this week?
Modeling of the problem

Choice of the decision variables

\[x_B = \text{Number of basic chairs to construct this week} \]
\[x_C = \text{Number of classic chairs to construct this week} \]

Objective to optimize

\[
\max 30x_B + 70x_C
\]

Constraints

- **Beech**: \[9x_B + 7x_C \leq 800 \]
- **Oak**: \[2x_B + 5x_C \leq 200 \]
- **Work**: \[x_B + 3x_C \leq 160 \]
- **Other**: \[x_B \geq 0, x_C \geq 0 \] (and \(x_B, x_C \) integer).

\[
\max 30x_B + 70x_C \\
\text{s.t.} \quad 9x_B + 7x_C \leq 1000 \\
2x_B + 5x_C \leq 200 \\
x_B + 3x_C \leq 160 \\
x_B, x_C \geq 0
\]
Modeling of the problem

Choice of the decision variables

\(x_B = \) Number of basic chairs to construct this week
\(x_C = \) Number of classic chairs to construct this week

Objective to optimize

\[
\text{max } 30x_B + 70x_C
\]

Constraints

Beech: \(9x_B + 7x_C \leq 800 \)
Oak: \(2x_B + 5x_C \leq 200 \)
Work: \(x_B + 3x_C \leq 160 \)
Other: \(x_B \geq 0, x_C \geq 0 \) (and \(x_B, x_C \) integer).
Modeling of the problem

Choice of the decision variables

\(x_B = \text{Number of basic chairs to construct this week}\)
\(x_C = \text{Number of classic chairs to construct this week}\)

Objective to optimize

\[
\max 30x_B + 70x_C
\]

Constraints

Beech: \(9x_B + 7x_C \leq 800\)
Oak: \(2x_B + 5x_C \leq 200\)
Work: \(x_B + 3x_C \leq 160\)
Other: \(x_B \geq 0, x_C \geq 0\) (and \(x_B, x_C\) integer).
Modeling of the problem

Choice of the decision variables

\(x_B = \) Number of basic chairs to construct this week
\(x_C = \) Number of classic chairs to construct this week

Objective to optimize

\[
\text{max } 30x_B + 70x_C
\]

Constraints

Beech: \(9x_B + 7x_C \leq 800 \)
Oak: \(2x_B + 5x_C \leq 200 \)
Work: \(x_B + 3x_C \leq 160 \)
Other: \(x_B \geq 0, x_C \geq 0 \) (and \(x_B, x_C \) integer).
Alloy production

The company Steel has received an order for 500 tons of steel to be used in shipbuilding. This steel must have the following characteristics

<table>
<thead>
<tr>
<th>Chemical element</th>
<th>Minimum grade</th>
<th>Maximum grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (C)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>1.2</td>
<td>1.65</td>
</tr>
</tbody>
</table>

The company has seven different raw materials in stock that may be used for the production of this steel. The following Table lists the grades, available amounts and prices for all raw materials.

<table>
<thead>
<tr>
<th>Raw material</th>
<th>C %</th>
<th>Cu %</th>
<th>Mn %</th>
<th>Availability in t</th>
<th>Cost in €/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron alloy 1</td>
<td>2.5</td>
<td>0</td>
<td>1.3</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Iron alloy 2</td>
<td>3</td>
<td>0</td>
<td>0.8</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>Iron alloy 3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>600</td>
<td>150</td>
</tr>
<tr>
<td>Copper alloy 1</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>500</td>
<td>220</td>
</tr>
<tr>
<td>Copper alloy 2</td>
<td>0</td>
<td>96</td>
<td>4</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>Aluminum alloy 1</td>
<td>0</td>
<td>0.4</td>
<td>1.2</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Aluminum alloy 2</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>250</td>
<td>165</td>
</tr>
</tbody>
</table>

The objective is to determine the composition of the steel that minimizes the production cost.
Alloy production

The company Steel has received an order for 500 tons of steel to be used in shipbuilding. This steel must have the following characteristics:

<table>
<thead>
<tr>
<th>Chemical element</th>
<th>Minimum grade</th>
<th>Maximum grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (C)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>1.2</td>
<td>1.65</td>
</tr>
</tbody>
</table>

The company has seven different raw materials in stock that may be used for the production of this steel. The following Table lists the grades, available amounts and prices for all raw materials:

<table>
<thead>
<tr>
<th>Raw material</th>
<th>C %</th>
<th>Cu %</th>
<th>Mn %</th>
<th>Availability in t</th>
<th>Cost in €/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron alloy 1</td>
<td>2.5</td>
<td>0</td>
<td>1.3</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Iron alloy 2</td>
<td>3</td>
<td>0</td>
<td>0.8</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>Iron alloy 3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>600</td>
<td>150</td>
</tr>
<tr>
<td>Copper alloy 1</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>500</td>
<td>220</td>
</tr>
<tr>
<td>Copper alloy 2</td>
<td>0</td>
<td>96</td>
<td>4</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>Aluminum alloy 1</td>
<td>0</td>
<td>0.4</td>
<td>1.2</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Aluminum alloy 2</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>250</td>
<td>165</td>
</tr>
</tbody>
</table>

The objective is to determine the composition of the steel that minimizes the production cost.
Alloy production

The company Steel has received an order for 500 tons of steel to be used in shipbuilding. This steel must have the following characteristics:

<table>
<thead>
<tr>
<th>Chemical element</th>
<th>Minimum grade</th>
<th>Maximum grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (C)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>1.2</td>
<td>1.65</td>
</tr>
</tbody>
</table>

The company has seven different raw materials in stock that may be used for the production of this steel. The following Table lists the grades, available amounts and prices for all raw materials.

<table>
<thead>
<tr>
<th>Raw material</th>
<th>C %</th>
<th>Cu %</th>
<th>Mn %</th>
<th>Availability in t</th>
<th>Cost in €/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron alloy 1</td>
<td>2.5</td>
<td>0</td>
<td>1.3</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Iron alloy 2</td>
<td>3</td>
<td>0</td>
<td>0.8</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>Iron alloy 3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>600</td>
<td>150</td>
</tr>
<tr>
<td>Copper alloy 1</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>500</td>
<td>220</td>
</tr>
<tr>
<td>Copper alloy 2</td>
<td>0</td>
<td>96</td>
<td>4</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>Aluminum alloy 1</td>
<td>0</td>
<td>0.4</td>
<td>1.2</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Aluminum alloy 2</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>250</td>
<td>165</td>
</tr>
</tbody>
</table>

The objective is to determine the composition of the steel that minimizes the production cost.
Formulation

Decision Variables

\(use_i \): Quantity of alloy \(i \) used \((i \in I)\)

Objective to optimize

\[
\min \sum_{i \in I} price_i \cdot use_i
\]

Constraints

- Carbon: \(LB_C \leq \sum_{i \in I} C_i \cdot use_i \leq UB_C \)
- Copper: \(LB_{Cu} \leq \sum_{i \in I} Cu_i \cdot use_i \leq UB_{Cu} \)
- Manganese: \(LB_{Mn} \leq \sum_{i \in I} Mn_i \cdot use_i \leq UB_{Mn} \)
- Availability: \(0 \leq use_i \leq Stock_i \)
- Production: \(\sum_{i \in I} use_i = Demand \)
Formulation

Decision Variables

\(use_i \) : Quantity of alloy \(i \) used \((i \in I)\)

Objective to optimize

\[
\min \sum_{i \in I} price_i \cdot use_i
\]

Constraints

Carbon : \(LB_C \leq \sum_{i \in I} C_i \cdot use_i \leq UB_C \)

Copper : \(LB_{Cu} \leq \sum_{i \in I} Cu_i \cdot use_i \leq UB_{Cu} \)

Manganese : \(LB_{Mn} \leq \sum_{i \in I} Mn_i \cdot use_i \leq UB_{Mn} \)

Availability : \(0 \leq use_i \leq Stock_i \)

Production : \(\sum_{i \in I} use_i = Demand \)
Formulation

Decision Variables

\(\text{use}_i \) : Quantity of alloy \(i \) used (\(i \in I \))

Objective to optimize

\[
\min \sum_{i \in I} \text{price}_i \text{use}_i
\]

Constraints

Carbon : \(LB_C \leq \sum_{i \in I} C_i \text{use}_i \leq UB_C \)

Copper : \(LB_{Cu} \leq \sum_{i \in I} Cu_i \text{use}_i \leq UB_{Cu} \)

Manganese : \(LB_{Mn} \leq \sum_{i \in I} Mn_i \text{use}_i \leq UB_{Mn} \)

Availability : \(0 \leq \text{use}_i \leq \text{Stock}_i \)

Production : \(\sum_{i \in I} \text{use}_i = \text{Demand} \)
Formulation

Decision Variables

\(use_i \) : Quantity of alloy \(i \) used \((i \in I) \)

Objective to optimize

\[
\min \sum_{i \in I} price_i \cdot use_i
\]

Constraints

Carbon : \(LB_C \leq \sum_{i \in I} C_i \cdot use_i \leq UB_C \)
Copper : \(LB_{Cu} \leq \sum_{i \in I} Cu_i \cdot use_i \leq UB_{Cu} \)
Manganese : \(LB_{Mn} \leq \sum_{i \in I} Mn_i \cdot use_i \leq UB_{Mn} \)
Availability : \(0 \leq use_i \leq Stock_i \)
Production : \(\sum_{i \in I} use_i = Demand \)
Different forms of linear programming

\begin{align*}
\text{max } & 2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + x_2 \leq 3 \\
& x_1 - x_2 = 2 \\
& x_1, x_2 \geq 0
\end{align*}

\begin{align*}
\text{min } & -2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + 4x_2 \geq 3 \\
& x_1 - 2x_2 \leq 2 \\
& x_1 \geq 0, \\
& -3 \leq x_2 \leq 0
\end{align*}

\begin{align*}
\text{min } & 2x_1 - 3x_2 \\
\text{s.t. } & 7x_1 - x_2 \leq 3 \\
& x_1 + 2x_2 = 5 \\
& x_1 \geq 0, x_2 \in \mathbb{R}
\end{align*}

Objective : \(\min \) ou \(\max \)
Constraints : \(\geq, \leq, = \)
Bounds : \(\geq 0, \leq 0, [l, u], \mathbb{R} \)
Different forms of linear programming

\[
\begin{align*}
\text{max } & \quad 2x_1 + 3x_2 \\
\text{s.t. } & \quad 3x_1 + x_2 \leq 3 \\
& \quad x_1 - x_2 = 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & \quad -2x_1 + 3x_2 \\
\text{s.t. } & \quad 3x_1 + 4x_2 \geq 3 \\
& \quad x_1 - 2x_2 \leq 2 \\
& \quad x_1 \geq 0, \\
& \quad -3 \leq x_2 \leq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & \quad 2x_1 - 3x_2 \\
\text{s.t. } & \quad 7x_1 - x_2 \leq 3 \\
& \quad x_1 + 2x_2 = 5 \\
& \quad x_1 \geq 0, x_2 \in \mathbb{R}
\end{align*}
\]

Objective : min ou max
Constraints : ≥, ≤, =
Bounds : ≥ 0, ≤ 0, [l, u], \mathbb{R}
Different forms of linear programming

\[
\begin{align*}
\text{max } & \quad 2x_1 + 3x_2 \\
\text{s.t. } & \quad 3x_1 + x_2 \leq 3 \\
& \quad x_1 - x_2 = 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & \quad -2x_1 + 3x_2 \\
\text{s.t. } & \quad 3x_1 + 4x_2 \geq 3 \\
& \quad x_1 - 2x_2 \leq 2 \\
& \quad x_1 \geq 0, \\
& \quad -3 \leq x_2 \leq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & \quad 2x_1 - 3x_2 \\
\text{s.t. } & \quad 7x_1 - x_2 \leq 3 \\
& \quad x_1 + 2x_2 = 5 \\
& \quad x_1 \geq 0, x_2 \in \mathbb{R}
\end{align*}
\]

Objective: min ou max
Constraints: \(\geq, \leq, =\)
Bounds: \(\geq 0, \leq 0, [l, u], \mathbb{R}\)
Different forms of linear programming

\[
\begin{align*}
\text{max } 2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + x_2 \leq 3 \\
& x_1 - x_2 = 2 \\
& x_1, x_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & -2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + 4x_2 \geq 3 \\
& x_1 - 2x_2 \leq 2 \\
& x_1 \geq 0, \\
& -3 \leq x_2 \leq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } 2x_1 - 3x_2 \\
\text{s.t. } & 7x_1 - x_2 \leq 3 \\
& x_1 + 2x_2 = 5 \\
& x_1 \geq 0, x_2 \in \mathbb{R}
\end{align*}
\]

Objective : min ou max
Constraints : ≥, ≤, =
Bounds : ≥ 0, ≤ 0, [l, u], \mathbb{R}
Different forms of linear programming

\[
\begin{align*}
\text{max } & 2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + x_2 \leq 3 \\
& x_1 - x_2 = 2 \\
& x_1, x_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & -2x_1 + 3x_2 \\
\text{s.t. } & 3x_1 + 4x_2 \geq 3 \\
& x_1 - 2x_2 \leq 2 \\
& x_1 \geq 0, \\
& -3 \leq x_2 \leq 0
\end{align*}
\]

\[
\begin{align*}
\text{min } & 2x_1 - 3x_2 \\
\text{s.t. } & 7x_1 - x_2 \leq 3 \\
& x_1 + 2x_2 = 5 \\
& x_1 \geq 0, x_2 \in \mathbb{R}
\end{align*}
\]

Objective: min ou max
Constraints: \(\geq, \leq, =\)
Bounds: \(\geq 0, \leq 0, [l, u], \mathbb{R}\)
Different forms of linear programming

We can go equivalently from one form to the other

Objective:

\[
\max f(x) \equiv -\min -f(x)
\]

\[
\max 2x_1 - 7x_2 \equiv -\min -2x_1 + 7x_2
\]

Constraints:

\[
f(x) \leq b \equiv -f(x) \geq -b
\]

\[
2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]

\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b
\]

\[
3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]

\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0
\]

\[
3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds:

\[
x \leq 0 \equiv \hat{x} := -x \text{ et } \hat{x} \geq 0
\]

\[
y \in \mathbb{R} \rightarrow y = y^+ - y^- \text{ and } y^+, y^- \geq 0 ! \text{ Not equivalent !}
\]
Different forms of linear programming

We can go equivalently from one form to the other

Objective :

\[
\max f(x) \equiv -\min -f(x)
\]

\[
\max 2x_1 - 7x_2 \equiv -\min -2x_1 + 7x_2
\]

Constraints :

\[
f(x) \leq b \equiv -f(x) \geq -b
\]

\[
2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]

\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b
\]

\[
3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]

\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0
\]

\[
3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds :

\[
x \leq 0 \equiv \hat{x} := -x \text{ et } \hat{x} \geq 0
\]

\[
y \in \mathbb{R} \rightarrow y = y^+ - y^- \text{ and } y^+, y^- \geq 0 !\text{Not equivalent}!
\]
Different forms of linear programming

We can go equivalently from one form to the other

Objective:

\[
\max f(x) \equiv -\min -f(x)
\]

\[
\max 2x_1 - 7x_2 \equiv -\min -2x_1 + 7x_2
\]

Constraints:

\[
f(x) \leq b \equiv -f(x) \geq -b \quad 2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]

\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b \quad 3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]

\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0 \quad 3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds:

\[
x \leq 0 \equiv \hat{x} := -x \text{ et } \hat{x} \geq 0
\]

\[
y \in \mathbb{R} \rightarrow y = y^+ - y^- \text{ and } y^+, y^- \geq 0! \text{Not equivalent!}
\]
Different forms of linear programming

We can go equivalently from one form to the other

Objective:

\[
\max f(x) \equiv - \min -f(x)
\]

\[
\max 2x_1 - 7x_2 \equiv - \min -2x_1 + 7x_2
\]

Constraints:

\[
f(x) \leq b \equiv -f(x) \geq -b
\]

\[
2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]

\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b
\]

\[
3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]

\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0
\]

\[
3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds:

\[
x \leq 0 \equiv \hat{x} := -x \text{ et } \hat{x} \geq 0
\]

\[
y \in \mathbb{R} \rightarrow y = y^+ - y^- \text{ and } y^+, y^- \geq 0 \text{! Not equivalent!}
\]
Different forms of linear programming
We can go equivalently from one form to the other

Objective :
\[
\max f(x) \equiv -\min -f(x)
\]
\[
\max 2x_1 - 7x_2 \equiv -\min -2x_1 + 7x_2
\]

Constraints :
\[
f(x) \leq b \equiv -f(x) \geq -b \quad 2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]
\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b \quad 3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]
\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0 \quad 3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds :
\[
x \leq 0 \equiv \hat{x} := -x \text{ et } \hat{x} \geq 0
\]
\[
y \in \mathbb{R} \quad \rightarrow \quad y = y^+ - y^- \text{ and } y^+, y^- \geq 0! \text{Not equivalent!}
\]
Different forms of linear programming

We can go equivalently from one form to the other

Objective:

\[
\max f(x) \equiv -\min -f(x)
\]

\[
\max 2x_1 - 7x_2 \equiv -\min -2x_1 + 7x_2
\]

Constraints:

\[
f(x) \leq b \equiv -f(x) \geq -b \quad 2x_1 - x_2 \leq 1 \equiv -2x_1 + x_2 \geq -1
\]

\[
f(x) = b \equiv f(x) \leq b \text{ et } f(x) \geq b \quad 3x_1 - x_2 = 3 \equiv 3x_1 - x_2 \leq 3 \text{ et } 3x_1 - x_2 \geq 3
\]

\[
f(x) \leq b \equiv f(x) + s = b, \text{ with } s \geq 0 \quad 3x_1 - 2x_2 \geq 0 \equiv 3x_1 - 2x_2 - s \geq 0 \text{ with } s \geq 0
\]

Bounds:

\[
x \leq 0 \quad \equiv \quad \hat{x} := -x \text{ et } \hat{x} \geq 0
\]

\[
y \in \mathbb{R} \quad \rightarrow \quad y = y^+ - y^- \text{ and } y^+, y^- \geq 0 !\text{Not equivalent!}
\]
The standard form consists in

- **Objective**: minimization
- **Constraints**: equalities
- **Bounds**: Nonnegative variables

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \in \mathbb{R}^n_+
\end{align*}
\]

Exercise: Reduce a given problem into standard form.
Standard form

The **standard form** consists in

- **Objective**: minimization
- **Constraints**: equalities
- **Bounds**: Nonnegative variables

\[
\begin{align*}
\min \ & c^T x \\
\text{s.t. } & Ax = b \\
& x \in \mathbb{R}^n_+
\end{align*}
\]

Exercise: Reduce a given problem into standard form
Standard form

The standard form consists in

- **Objective**: minimization
- **Constraints**: equalities
- **Bounds**: Nonnegative variables

\[
\begin{align*}
\text{min } & \quad c^T x \\
\text{s.t. } & \quad Ax = b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

Exercise: Reduce a given problem into standard form
The standard form consists in

- **Objective**: minimization
- **Constraints**: equalities
- **Bounds**: Nonnegative variables

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

Exercise: Reduce a given problem into standard form
Graphic representation
We can represent a problem in two dimensions graphically.

Example:

\[
\begin{align*}
\text{max} & \quad x_1 + 2x_2 \\
-x_1 + 2x_2 & \leq 1 \\
-x_1 + x_2 & \leq 0 \\
4x_1 + 3x_2 & \leq 12 \\
x_1, x_2 & \geq 0
\end{align*}
\]
Graphic representation

\begin{align}
\max \ x_1 + 2x_2 & \quad (1) \\
-x_1 + 2x_2 & \leq 1 \quad (2) \\
-x_1 + x_2 & \leq 0 \quad (3) \\
4x_1 + 3x_2 & \leq 12 \quad (4) \\
x_1, \ x_2 & \geq 0 \quad (5)
\end{align}
max $x_1 + 2x_2$
$-x_1 + 2x_2 \leq 1$
$-x_1 + x_2 \leq 0$
$4x_1 + 3x_2 \leq 12$
$x_1, x_2 \geq 0$
Graphic representation

\[
\begin{align*}
\max & \quad x_1 + 2x_2 & (1) \\
-x_1 + 2x_2 & \leq 1 & (2) \\
-x_1 + x_2 & \leq 0 & (3) \\
4x_1 + 3x_2 & \leq 12 & (4) \\
x_1, x_2 & \geq 0 & (5)
\end{align*}
\]
max \(x_1 + 2x_2 \)
\[-x_1 + 2x_2 \leq 1 \] \hspace{1cm} (1)
\[-x_1 + x_2 \leq 0 \] \hspace{1cm} (2)
\[4x_1 + 3x_2 \leq 12 \] \hspace{1cm} (3)
\[x_1, \ x_2 \geq 0 \] \hspace{1cm} (4)
\[x_1, \ x_2 \geq 0 \] \hspace{1cm} (5)
Graphic representation

\begin{align*}
\text{max } & \quad x_1 + 2x_2 \\
- & \quad x_1 + 2x_2 \leq 1 \\
- & \quad x_1 + x_2 \leq 0 \\
4 & \quad x_1 + 3x_2 \leq 12 \\
& \quad x_1, \quad x_2 \geq 0
\end{align*}
Degenerate cases

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.
Degenerate cases

In the example we had a **unique solution** at a **vertex** of the **polyhedron**. Some degenerate cases can lead to different solutions.

\[
\begin{align*}
\text{min } & \quad x_1 + x_2 \\
\text{s.t. } & \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Degenerate cases

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.

\[
\begin{align*}
\min & \quad x_1 \\
\text{s.t.} & \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Degenerate cases

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.

\[
\begin{align*}
\max & \quad -x_1 + x_2 \\
\text{s.t.} & \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Degenerate cases

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.

\[
\begin{align*}
\text{max } & \quad x_1 + x_2 \\
\text{s.t. } & \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Degenerate cases

In the example we had a unique solution at a vertex of the polyhedron. Some degenerate cases can lead to different solutions.

\[
\begin{align*}
\text{max } & \quad x_1 + 2x_2 \\
\text{s.t. } & \quad -x_1 + x_2 \leq 1 \\
& \quad -x_1 + x_2 \geq 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]
Polyhedra

Definition

A **polyhedron** is a set \(\{ x \in \mathbb{R}^n | Ax \geq b \} \)

A set of the form \(Ax \leq b \) is also a polyhedron.
A set \(\{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \) is a polyhedron in **standard form**.

Definition

Let \(a \in \mathbb{R}^n \setminus \{0\} \).

(a) The set \(\{ x \in \mathbb{R}^n | a^T x = b \} \) is a hyperplane

(b) The set \(\{ x \in \mathbb{R}^n | a^T x \geq b \} \) is a halfspace
Polyhedra

Definition

A **polyhedron** is a set \(\{ x \in \mathbb{R}^n | Ax \geq b \} \)

A set of the form \(Ax \leq b \) is also a polyhedron.

A set \(\{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \) is a polyhedron in **standard form**.

Definition

Let \(a \in \mathbb{R}^n \setminus \{0\} \).

(a) The set \(\{ x \in \mathbb{R}^n | a^T x = b \} \) is a **hyperplane**

(b) The set \(\{ x \in \mathbb{R}^n | a^T x \geq b \} \) is a **halfspace**
Convex Sets

Definition

A set \(S \subseteq \mathbb{R}^n \) is **convex** if for all \(x, y \in S \) and all \(\lambda \in [0, 1] \), \(\lambda x + (1 - \lambda)y \in S \).

Definition

Let \(x^1, \ldots, x^k \) be vectors of \(\mathbb{R}^n \).

1. \(\lambda_1 x^1 + \cdots + \lambda_k x^k \) is a conic combination if \(\lambda_1, \ldots, \lambda_k \geq 0 \)
2. \(\lambda_1 x^1 + \cdots + \lambda_k x^k \) is a convex combination if \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(\lambda_1 + \cdots + \lambda_k = 1 \)
3. The convex hull of \(x^1, \ldots, x^k \) is the set of all convex combinations of \(x^1, \ldots, x^k \).

Theorem

(a) The intersection of two convex sets is convex
(b) Every polyhedron is convex
(c) The convex hull of a finite number of points is a polyhedron.
Convex Sets

Definition

A set $S \subseteq \mathbb{R}^n$ is **convex** if for all $x, y \in S$ and all $\lambda \in [0, 1]$, $\lambda x + (1 - \lambda)y \in S$.

Definition

Let x^1, \ldots, x^k be vectors of \mathbb{R}^n.

(i) $\lambda_1 x^1 + \cdots + \lambda_k x^k$ is a **conic combination** if $\lambda_1, \ldots, \lambda_k \geq 0$

(ii) $\lambda_1 x^1 + \cdots + \lambda_k x^k$ is a **convex combination** if $\lambda_1, \ldots, \lambda_k \geq 0$ and $\lambda_1 + \cdots + \lambda_k = 1$

(iii) The **convex hull** of x^1, \ldots, x^k is the set of all convex combinations of x^1, \ldots, x^k.

Theorem

(a) The intersection of two convex sets is convex

(b) Every polyhedron is convex

(c) The convex hull of a finite number of points is a polyhedron.
Convex Sets

Definition

A set \(S \subseteq \mathbb{R}^n \) is convex if for all \(x, y \in S \) and all \(\lambda \in [0, 1] \), \(\lambda x + (1 - \lambda)y \in S \).

Definition

Let \(x^1, \ldots, x^k \) be vectors of \(\mathbb{R}^n \).

(i) \(\lambda_1 x^1 + \cdots + \lambda_k x^k \) is a conic combination if \(\lambda_1, \ldots, \lambda_k \geq 0 \)

(ii) \(\lambda_1 x^1 + \cdots + \lambda_k x^k \) is a convex combination if \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(\lambda_1 + \cdots + \lambda_k = 1 \)

(iii) The convex hull of \(x^1, \ldots, x^k \) is the set of all convex combinations of \(x^1, \ldots, x^k \).

Theorem

(a) The intersection of two convex sets is convex

(b) Every polyhedron is convex

(c) The convex hull of a finite number of points is a polyhedron.
Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a vertex of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.
Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an **extreme point** of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a **vertex** of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.
Bases of a polyhedron

We subdivide the equalities and inequalities into three categories:

\[a_i^T x \geq b_i \quad i \in M_\geq \]
\[a_i^T x \leq b_i \quad i \in M_\leq \]
\[a_i^T x = b_i \quad i \in M_= \]

Definition

Let \(\bar{x} \) be a point satisfying \(a_i^T \bar{x} = b_i \) for some \(i \in M_\geq, M_\leq \) or \(M_= \). The constraint \(i \) is said to be active or tight.

Theorem

Let \(\bar{x} \in \mathbb{R}^n \) and let \(I \) be the set of active constraints for \(\bar{x} \). The three following statements are equivalent.

(i) There exist \(n \) linearly independent vectors in \(\{ a_i | i \in I \} \).
(ii) \(\text{span}\{ a_i | i \in I \} = \mathbb{R}^n \).
(iii) The system \(a_i^T x = b_i, i \in I \) has a unique solution.
Bases of a polyhedron

We subdivide the equalities and inequalities into three categories:

\[a_i^T x \geq b_i \quad i \in M_{\geq} \]
\[a_i^T x \leq b_i \quad i \in M_{\leq} \]
\[a_i^T x = b_i \quad i \in M_{=} \]

Definition

Let \(\bar{x} \) be a point satisfying \(a_i^T \bar{x} = b_i \) for some \(i \in M_{\geq}, M_{\leq} \) or \(M_{=} \). The constraint \(i \) is said to be **active** or **tight**.

Theorem

Let \(\bar{x} \in \mathbb{R}^n \) and let \(I \) be the set of **active** constraints for \(\bar{x} \). The three following statements are equivalent.

(i) There exist \(n \) **linearly independent** vectors in \(\{a_i | i \in I\} \)
(ii) \(\text{span}\{a_i | i \in I\} = \mathbb{R}^n \)
(iii) The system \(a_i^T x = b_i, \ i \in I \) has a **unique solution**.
Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

(a) \bar{x} is a **basic solution** if
 - all equalities ($i \in M_=$) are **active**
 - among the active constraints, there are n linearly independent

(b) if \bar{x} is a basic solution **that satisfies all constraints**, then \bar{x} is a **feasible basic solution**.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

(i) \bar{x} is a vertex

(ii) \bar{x} is an extreme point

(iii) \bar{x} is a basic feasible solution
Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

(a) \bar{x} is a basic solution if
 - all equalities ($i \in M_{=}$) are active
 - among the active constraints, there are n linearly independent

(b) if \bar{x} is a basic solution that satisfies all constraints, then \bar{x} is a feasible basic solution.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

(i) \bar{x} is a vertex

(ii) \bar{x} is an extreme point

(iii) \bar{x} is a basic feasible solution
Polyhedra in standard form

Consider \(P = \{ x \in \mathbb{R}^n | A x = b, x \geq 0 \} \).
We assume that the rows of \(A \) are linearly independent.

Theorem

A point \(\bar{x} \) is a basic feasible solution if \(A \bar{x} = b \) and if there exist \(m \) indices \(B(1), \ldots, B(m) \) such that

(i) The columns \(A_{B(1)}, \ldots, A_{B(m)} \) are linearly independent

(ii) If \(i \neq B(1), \ldots, B(m) \), then \(x_i = 0 \)

Explanation:

\[
\begin{pmatrix}
A \\
l
\end{pmatrix} x \geq \begin{pmatrix} b \\ 0 \end{pmatrix}
\]

We have \(n + m \) constraints and \(n \) variables.
A basic solution \(\Rightarrow \) \(n \) constraints satisfied with equality.
The \(m \) equalities are automatically satisfied.
There are \(n - m \) inequalities \(x_i \geq 0 \) that are active (the nonbasic variables).
There are \(m \) inequalities \(x_i \geq 0 \) that are possibly not active (basic variables).
Polyhedra in standard form

Consider $P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \}$.
We assume that the rows of A are linearly independent.

Theorem

A point \bar{x} is a basic feasible solution if $A\bar{x} = b$ and if there exist m indices $B(1), \ldots, B(m)$ such that

(i) The columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent

(ii) If $i \neq B(1), \ldots, B(m)$, then $x_i = 0$

Explanation:

$$
\begin{pmatrix}
A \\
I
\end{pmatrix} x \geq
\begin{pmatrix}
b \\
0
\end{pmatrix}
$$

We have $n + m$ constraints and n variables.
A basic solution \Rightarrow n constraints satisfied with equality.
The m equalities are automatically satisfied.
There are $n - m$ inequalities $x_i \geq 0$ that are active (the nonbasic variables).
There are m inequalities $x_i \geq 0$ that are possibly not active (basic variables).
Polyhedra in standard form

Consider \(P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \).
We assume that the rows of \(A \) are linearly independent.

Theorem

A point \(\bar{x} \) is a basic feasible solution if \(A\bar{x} = b \) and if there exist \(m \) indices \(B(1), \ldots, B(m) \) such that

(i) The columns \(A_{B(1)}, \ldots, A_{B(m)} \) are linearly independent

(ii) If \(i \neq B(1), \ldots, B(m) \), then \(x_i = 0 \)

Explanation:

\[
\begin{pmatrix}
A \\
I
\end{pmatrix} x \geq \begin{pmatrix}
b \\
0
\end{pmatrix}
\]

We have \(n + m \) constraints and \(n \) variables.
A basic solution \(\Rightarrow \) \(n \) constraints satisfied with equality.
The \(m \) equalities are automatically satisfied.
There are \(n - m \) inequalities \(x_i \geq 0 \) that are active (the nonbasic variables).
There are \(m \) inequalities \(x_i \geq 0 \) that are possibly not active (basic variables).
Construction of a basis

Procedure (≠ Algorithm)

(i) Choose \(m \) linearly independent columns \(A_{B(1)}, \ldots, A_{B(m)} \)

(ii) \(x_i = 0 \) for all \(i \neq B(1), \ldots, B(m) \)

(iii) Solve \(Ax = b \) for the unknowns \(x_{B(1)}, \ldots, x_{B(m)} \)

If the solution \(x \geq 0 \), then \(x \) is a basic feasible solution.

We construct the basic matrix as

\[
A_B = \begin{pmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{pmatrix}
\]

The nonbasic matrix \(N \) corresponds to nonbasic indices.

The basic vector is \(x_B = (x_{B(1)}, \ldots, x_{B(m)}) \) and the nonbasic vector corresponds to the other indices.

We have

\[
A_B x_B = b
\]

\[
x_N = 0
\]

\[
A_B x_B + A_N x_N = b
\]

Example
Construction of a basis

Procedure (≠ Algorithm)

(i) Choose m linearly independent columns $A_{B(1)}, \ldots, A_{B(m)}$

(ii) $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$

(iii) Solve $Ax = b$ for the unknowns $x_{B(1)}, \ldots, x_{B(m)}$

If the solution $x \geq 0$, then x is a basic feasible solution.

We construct the basic matrix as

$$A_B = \begin{pmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{pmatrix}$$

The nonbasic matrix N corresponds to nonbasic indices.

The basic vector is $x_B = (x_{B(1)}, \ldots, x_{B(m)})$ and the nonbasic vector corresponds to the other indices.

We have

$$A_B x_B = b$$

$$x_N = 0$$

$$A_B x_B + A_N x_N = b$$

Example
Construction of a basis

Procedure (≠ Algorithm)

(i) Choose \(m \) linearly independent columns \(A_{B(1)}, \ldots, A_{B(m)} \)

(ii) \(x_i = 0 \) for all \(i \neq B(1), \ldots, B(m) \)

(iii) Solve \(Ax = b \) for the unknowns \(x_{B(1)}, \ldots, x_{B(m)} \)

If the solution \(x \geq 0 \), then \(x \) is a basic feasible solution.

We construct the **basic matrix** as

\[
A_B = \begin{pmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{pmatrix}
\]

The **nonbasic matrix** \(N \) corresponds to nonbasic indices.

The basic vector is \(x_B = (x_{B(1)}, \ldots, x_{B(m)}) \) and the nonbasic vector corresponds to the other indices.

We have

\[
A_B x_B = b
\]

\[
x_N = 0
\]

\[
A_B x_B + A_N x_N = b
\]

Example
Construction of a basis

Procedure (≠ Algorithm)

(i) Choose \(m \) linearly independent columns \(A_{B(1)}, \ldots, A_{B(m)} \)

(ii) \(x_i = 0 \) for all \(i \neq B(1), \ldots, B(m) \)

(iii) Solve \(Ax = b \) for the unknowns \(x_{B(1)}, \ldots, x_{B(m)} \)

If the solution \(x \geq 0 \), then \(x \) is a basic feasible solution.

We construct the **basic matrix** as

\[
A_B = \begin{pmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{pmatrix}
\]

The **nonbasic matrix** \(N \) corresponds to nonbasic indices. The **basic vector** is \(x_B = (x_{B(1)}, \ldots, x_{B(m)}) \) and the **nonbasic vector** corresponds to the other indices.

We have

\[
A_Bx_B = b
\]

\[
x_N = 0
\]

\[
A_Bx_B + A_Nx_N = b
\]

Example
Construction of a basis

Procedure (≠ Algorithm)

(i) Choose m linearly independent columns $A_{B(1)}, \ldots, A_{B(m)}$

(ii) $x_i = 0$ for all $i \neq B(1), \ldots, B(m)$

(iii) Solve $Ax = b$ for the unknowns $x_{B(1)}, \ldots, x_{B(m)}$

If the solution $x \geq 0$, then x is a basic feasible solution.

We construct the **basic matrix** as

$$A_B = \begin{pmatrix} A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \end{pmatrix}$$

The **nonbasic matrix** N corresponds to nonbasic indices.

The **basic vector** is $x_B = (x_{B(1)}, \ldots, x_{B(m)})$ and the **nonbasic vector** corresponds to the other indices.

We have

$$A_Bx_B = b$$

$$x_N = 0$$

$$A_Bx_B + A_Nx_N = b$$

Example
Some important remarks

Correspondence between the base and the basic solution

Two different bases could lead to the same solution x.

Adjacent Bases

Two bases are adjacent they differ by only one index. Differently stated they have $n - 1$ indices in common!
Some important remarks

Correspondence between the base and the basic solution

Two different bases could lead to the same solution \(x \).

Adjacent Bases

Two bases are adjacent they differ by only one index. Differently stated they have \(n - 1 \) indices in common!
Some important remarks

Correspondence between the base and the basic solution
Two different bases could lead to the same solution x.

Adjacent Bases
Two bases are adjacent they differ by only one index.
Differently stated they have $n - 1$ indices in common!
Some important remarks

Correspondence between the base and the basic solution

Two different bases could lead to the same solution x.

Adjacent Bases

Two bases are adjacent they differ by only one index.
Differently stated they have $n - 1$ indices in common!
Some important remarks

Correspondence between the base and the basic solution
Two different bases could lead to the same solution x.

Adjacent Bases
Two bases are adjacent they differ by only one index. Differently stated they have $n-1$ indices in common!
Some important remarks

Correspondence between the base and the basic solution
Two different bases could lead to the same solution x.

Adjacent Bases
Two bases are adjacent they differ by only one index. Differently stated they have $n - 1$ indices in common!
Degenerescence

Definition

A basic solution \(x \in \mathbb{R}^n \) is **degenerate** if more than \(n \) constraints are active at the solution.

Degenerescence for a standard form

Let \(P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \), with \(A \in \mathbb{R}^{m \times n} \). A basic solution \(x \) is degenerate if \(x \) has more than \(n - m \) zero elements.

Remark: Degenerescence may be representation-dependent. A non degenerate basis can be degenerate in another representation of the problem and conversely.

Example:
Degenerescence

Definition

A basic solution \(x \in \mathbb{R}^n \) is **degenerate** if more than \(n \) constraints are active at the solution.

Degenerescence for a standard form

Let \(P = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0 \} \), with \(A \in \mathbb{R}^{m \times n} \). A basic solution \(x \) is **degenerate** if \(x \) has more than \(n - m \) zero elements.

Remark: Degenerescence may be representation-dependent.

A non degenerate basis can be degenerate in another representation of the problem and conversely.

Example:
Degenerescence

Definition

A basic solution $x \in \mathbb{R}^n$ is degenerate if more than n constraints are active at the solution.

Degenerescence for a standard form

Let $P = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$, with $A \in \mathbb{R}^{m \times n}$. A basic solution x is degenerate if x has more than $n - m$ zero elements.

Remark: Degenerescence may be representation-dependent.

A non degenerate basis can be degenerate in another representation of the problem and conversely.

Example:
The simplex algorithm

Principle

- Start at a **feasible basic solution**
- Check whether the current basis is **optimal**
- If not, find a **direction of improvement**
- The direction of improvement leads to either ... a better **feasible basic solution**
- or ... proving that the problem is **unbounded**

Fundamental question

Let \(x \) be a feasible basic solution.
Find a direction \(d \) such that \(x + \theta d \) is feasible for some \(\theta \geq 0 \).
The simplex algorithm

Principle

- Start at a feasible basic solution
- Check whether the current basis is optimal
- If not, find a direction of improvement
- The direction of improvement leads to either... a better feasible basic solution
- or... proving that the problem is unbounded

Fundamental question

Let x be a feasible basic solution.
Find a direction d such that $x + \theta d$ is feasible for some $\theta \geq 0$
The simplex algorithm

Principle
- Start at a feasible basic solution
- Check whether the current basis is optimal
- If not, find a direction of improvement
- The direction of improvement leads to either...a better feasible basic solution
- or...proving that the problem is unbounded

Fundamental question
Let x be a feasible basic solution.
Find a direction d such that $x + \theta d$ is feasible for some $\theta \geq 0$
Finding a feasible direction from a basic feasible solution

Given: \(x = (x_B \ x_N) \in P \)
Find \(d \) such that \(x + d\theta \in P \)

- We want to change at least one nonbasic solution.
- Select one index \(j \in N \)
 \[
 d_j = 1 \quad d_i = 0 \text{ for all } i \neq j
 \]
- We have \(Ax = b \) and \(A(x + \theta d) = b \Rightarrow Ad = 0 \)

\[
0 = Ad = \sum_{i=1}^{n} A_{B(i)}d_{B(i)} + A_j
\]
\[
Bd_B + A_j
\]

\(d_B = -B^{-1}A_j \) is the \(j^{th} \) basic direction
Finding a feasible direction from a basic feasible solution

Given: \(x = (x_B \ x_N) \in P \)

Find \(d \) such that \(x + d \theta \in P \)

- We want to change at least one nonbasic solution.
 Select one index \(j \in N \)
 \[d_j = 1 \quad d_i = 0 \text{ for all } i \neq j \]

- We have \(Ax = b \) and \(A(x + \theta d) = b \Rightarrow Ad = 0 \)

\[
0 = Ad = \sum_{i=1}^{n} A_{B(i)}d_{B(i)} + A_j \\
Bd_B + A_j
\]

- \(d_B = -B^{-1}A_j \) is the \(j^{th} \) basic direction
Finding a feasible direction from a basic feasible solution

Given : \(x = (x_B \ x_N) \in P \)
Find \(d \) such that \(x + d \theta \in P \)

- We want to change at least one nonbasic solution.
 Select one index \(j \in N \)
 \(d_j = 1 \quad d_i = 0 \) for all \(i \neq j \)

- We have \(Ax = b \) and \(A(x + \theta d) = b \Rightarrow Ad = 0 \)

\[
0 = Ad = \sum_{i=1}^{n} A_{B(i)} d_{B(i)} + A_j
\]

\[
Bd_B + A_j
\]

- \(d_B = -B^{-1} A_j \) is the \(j^{th} \) basic direction
Finding a feasible direction from a basic feasible solution

Given: \(x = (x_B \ x_N) \in P \)
Find \(d \) such that \(x + d\theta \in P \)

- We want to change at least one nonbasic solution.
 Select one index \(j \in N \)
 \[d_j = 1 \quad d_i = 0 \text{ for all } i \neq j \]
- We have \(Ax = b \) and \(A(x + \theta d) = b \Rightarrow Ad = 0 \)

 \[
 0 = Ad = \sum_{i=1}^{n} A_{B(i)}d_{B(i)} + A_j \\
 Bd_B + A_j
 \]
- \(d_B = -B^{-1}A_j \) is the \(j^{th} \) basic direction
Taking care of the nonnegativity constraints

- **Nonbasic variables**: $x_i \ (i \neq j) : = 0 : \Rightarrow \text{OK} !$
 $x_j : \text{goes in the positive direction} \Rightarrow \text{OK} !$

- **Basic Variables**
 Nondegenerate case: $x_B > 0$
 Therefore $x_B + \theta d_B \geq 0$ for θ sufficiently small

- **Degenerate case**: $x_B(i) = 0$ for some i
 2 cases
 (1) $(d_B)_i = (-B^{-1}A_j)_i \geq 0 \Rightarrow \text{feasible for } \theta \text{ small enough}$
 (2) $(d_B)_i = (-B^{-1}A_j)_i < 0 \Rightarrow \text{not feasible for any } \theta$
Taking care of the nonnegativity constraints

- **Nonbasic variables**: \(x_i \ (i \neq j) : = 0 : \Rightarrow \text{OK!} \)
 \(x_j : \text{goes in the positive direction} \Rightarrow \text{OK!} \)

- **Basic Variables**
 - **Nondegenerate case**: \(x_B > 0\)
 Therefore \(x_B + \theta d_B \geq 0\) for \(\theta\) sufficiently small

- **Degenerate case**: \(x_B(i) = 0\) for some \(i\)
 - 2 cases
 - (1) \((d_B)_i = (-B^{-1}A_j)_i \geq 0 \Rightarrow \text{feasible for } \theta \text{ small enough}\)
 - (2) \((d_B)_i = (-B^{-1}A_j)_i < 0 \Rightarrow \text{not feasible for any } \theta\)
Taking care of the nonnegativity constraints

- **Nonbasic variables**: $x_i \ (i \neq j) = 0 \Rightarrow \text{OK}!$
 x_j goes in the positive direction $\Rightarrow \text{OK}!$

- **Basic Variables**
 - Nondegenerate case: $x_B > 0$
 - Therefore $x_B + \theta d_B \geq 0$ for θ sufficiently small

- **Degenerate case**: $x_B(i) = 0$ for some i
 - 2 cases
 1. $(d_B)_i = (-B^{-1}A_j)_i \geq 0 \Rightarrow$ feasible for θ small enough
 2. $(d_B)_i = (-B^{-1}A_j)_i < 0 \Rightarrow$ not feasible for any θ
Checking optimality

Essential question: Is the current basis optimal or can we find a basic direction that improves the objective function?

Definition: $c_B = (c_{B(1)}, \ldots, c_{B(m)})$

Let us compute the rate of objective change for the j^{th} basic direction.

$d = (d_B \ d_N)$ with $d_B = -B^{-1}A_j$ \hspace{1em} $d_N = e_j$

$$c^T d = c^T d_B + c^T d_N$$

$$= -c_B^T B^{-1} A_j + c_j$$

Definition

The reduced cost of the j^{th} nonbasic variable is

$$\bar{c}_j = c_j - c_B^T B^{-1} A_j.$$
Checking optimality

Essential question: Is the current basis optimal or can we find a basic direction that improves the objective function?

Definition: \(c_B = (c_{B(1)}, \ldots, c_{B(m)}) \)

Let us compute the rate of objective change for the \(j^{th} \) basic direction.

\[d = (d_B \ d_N) \text{ with } d_B = -B^{-1}A_j \quad d_N = e_j \]

\[c^T d = c^T d_B + c^T d_N \]
\[= -c_B^T B^{-1}A_j + c_j \]

Definition

The reduced cost of the \(j^{th} \) nonbasic variable is

\[\bar{c}_j = c_j - c_B^T B^{-1}A_j. \]
Optimality Criterion

Theorem

Consider a basic feasible solution x

(i) If $\bar{c} \geq 0$ then x is optimal

(ii) If x is optimal and nondegenerate then $\bar{c} \geq 0$.

Definition

A basis matrix B is said to be optimal if

(i) $B^{-1}b \geq 0$ and

(ii) $\bar{c} = -c^T_B B^{-1} A \geq 0$
Optimality Criterion

Theorem

Consider a basic feasible solution x

(i) If $\bar{c} \geq 0$ then x is optimal

(ii) If x is optimal and nondegenerate then $\bar{c} \geq 0$.

Definition

A basis matrix B is said to be optimal if

(i) $B^{-1}b \geq 0$ and

(ii) $\bar{c} = -c_B^T B^{-1} A \geq 0$
Simplex algorithm

Iterative step : From a basis B do

If $\bar{c}_j \geq 0$ for all j

then the current basis is optimal

else select a nonbasic variable j with $\bar{c}_j < 0$

We bring j into the basis
We now look for θ maximal such that $x + \theta d \in P$

If $d_i \geq 0$ for all $i \in B$

then $x + \theta d \geq 0$ for all $\theta \geq 0$

The problem is unbounded and $OPT = -\infty$

If $d_i < 0$ for some $i \in B$

then $\theta^* = \min\{i \in B | d_B(i) < 0\} \left(-\frac{x_B(i)}{d_B(i)} \right)$

Variable i achieving the minimum goes out of the basis
We move to the next vertex (basic feasible solution)

$B \leftarrow B \cup \{j\} \setminus \{i\}$
New point := $x + \theta^* d$
Simplex algorithm

Iterative step: From a basis B do

If $\bar{c}_j \geq 0$ for all j

then the current basis is optimal

else select a nonbasic variable j with $\bar{c}_j < 0$

\[\text{We bring } j \text{ into the basis} \]
\[\text{We now look for } \theta \text{ maximal such that } x + \theta d \in P \]

If $d_i \geq 0$ for all $i \in B$

then $x + \theta d \geq 0$ for all $\theta \geq 0$

\[\text{The problem is unbounded and } \text{OPT} = -\infty \]

If $d_i < 0$ for some $i \in B$

then $\theta^* = \min\{i \in B | d_B(i) < 0\} \left(-\frac{x_B(i)}{d_B(i)} \right)$.

\[\text{Variable } i \text{ achieving the minimum goes out of the basis} \]
\[\text{We move to the next vertex (basic feasible solution)} \]

$B \leftarrow B \cup \{j\} \setminus \{i\}$

New point: $x + \theta^* d$
Simplex algorithm

Iterative step: From a basis B do

If $\bar{c}_j \geq 0$ for all j
 then the current basis is optimal
else select a nonbasic variable j with $\bar{c}_j < 0$
 We bring j into the basis
 We now look for θ maximal such that $x + \theta d \in P$

If $d_i \geq 0$ for all $i \in B$
 then $x + \theta d \geq 0$ for all $\theta \geq 0$
 The problem is unbounded and $OPT = -\infty$

If $d_i < 0$ for some $i \in B$
 then $\theta^* = \min\{i \in B | d_B(i) < 0\} \left(-\frac{x_B(i)}{d_B(i)} \right)$.
 Variable i achieving the minimum goes out of the basis
 We move to the next vertex (basic feasible solution)

$B \leftarrow B \cup \{j\} \setminus \{i\}$
New point: $x + \theta^* d$
Simplex algorithm

Iterative step: From a basis B do

If $\bar{c}_j \geq 0$ for all j
 then the current basis is optimal
else select a nonbasic variable j with $\bar{c}_j < 0$
 We bring j into the basis
 We now look for θ maximal such that $x + \theta d \in P$

If $d_i \geq 0$ for all $i \in B$
 then $x + \theta d \geq 0$ for all $\theta \geq 0$
 The problem is unbounded and $OPT = -\infty$

If $d_i < 0$ for some $i \in B$
 then $\theta^* = \min_{\{i \in B : d_B(i) < 0\}} \left(-\frac{x_B(i)}{d_B(i)}\right)$.
 Variable i achieving the minimum goes out of the basis
 We move to the next vertex (basic feasible solution)

$B \leftarrow B \cup \{j\} \setminus \{i\}$
New point: $x + \theta^* d$
Simplex algorithm

Iterative step: From a basis B do

If $\bar{c}_j \geq 0$ for all j
 then the current basis is optimal
else select a nonbasic variable j with $\bar{c}_j < 0$
 We bring j into the basis
 We now look for θ maximal such that $x + \theta d \in P$

If $d_i \geq 0$ for all $i \in B$
 then $x + \theta d \geq 0$ for all $\theta \geq 0$
 The problem is unbounded and $\text{OPT} = -\infty$

If $d_i < 0$ for some $i \in B$
 then $\theta^* = \min \{i \in B | d_B(i) < 0\} \left(-\frac{x_B(i)}{d_B(i)} \right)$.
 Variable i achieving the minimum goes out of the basis
 We move to the next vertex (basic feasible solution)

$B \leftarrow B \cup \{j\} \setminus \{i\}$
New point $:= x + \theta^* d$
Simplex algorithm

Iterative step : From a basis B do

- If $\bar{c}_j \geq 0$ for all j

 then the current basis is optimal

- else select a nonbasic variable j with $\bar{c}_j < 0$

 We bring j into the basis

 We now look for θ maximal such that $x + \theta d \in P$

- If $d_i \geq 0$ for all $i \in B$

 then $x + \theta d \geq 0$ for all $\theta \geq 0$

 The problem is unbounded and $OPT = -\infty$

- If $d_i < 0$ for some $i \in B$

 then $\theta^* = \min \{i \in B | d_{B(i)} < 0\} \left(-\frac{x_{B(i)}}{d_{B(i)}} \right)$.

 Variable i achieving the minimum goes out of the basis

 We move to the next vertex (basic feasible solution)

 $B \leftarrow B \cup \{j\} \setminus \{i\}$

 New point $:= x + \theta^* d$
Simplex algorithm

Iterative step: From a basis B do

1. If $\bar{c}_j \geq 0$ for all j
 - then the current basis is optimal
2. else select a nonbasic variable j with $\bar{c}_j < 0$
 - We bring j into the basis
 - We now look for θ maximal such that $x + \theta d \in P$

3. If $d_i \geq 0$ for all $i \in B$
 - then $x + \theta d \geq 0$ for all $\theta \geq 0$
 - The problem is unbounded and $OPT = -\infty$
4. If $d_i < 0$ for some $i \in B$
 - then $\theta^* = \min \{ i \in B | d_B(i) < 0 \} \left(-\frac{x_B(i)}{d_B(i)} \right)$
 - Variable i achieving the minimum goes out of the basis
 - We move to the next vertex (basic feasible solution)

 $B \leftarrow B \cup \{ j \} \setminus \{ i \}$

 New point: $x + \theta^* d$
The operation of moving to another basis

In an iteration of the simplex algorithm, in the basis, we replace the variable \(i\) such that

\[
i = \arg \min \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \mid i \in B \text{ with } d_{B(i)} < 0 \right\}
\]

by the variable \(j\) entering the basis (that was chosen with \(\bar{c}_j < 0\)).

Theorem

(i) The columns \(A_{B(k)}\), \(k \neq i\) and \(A_j\) are linearly independent

(ii) The vector \(y = x + \theta^* d\) is a basic feasible solution associated with the new basis matrix.
The operation of moving to another basis

In an iteration of the simplex algorithm, in the basis, we replace the variable i such that

$$ i = \arg \min \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \mid i \in B \text{ with } d_{B(i)} < 0 \right\} $$

by the variable j entering the basis (that was chosen with $\bar{c}_j < 0$).

Theorem

(i) The columns $A_{B(k)}$, $k \neq i$ and A_j are linearly independent

(ii) The vector $y = x + \theta^* d$ is a basic feasible solution associated with the new basis matrix.
Finding an initial basis

2 issues: finding a feasible solution and finding the corresponding basis.

One easy case

Consider a problem of the type \(Ax \leq b \) where \(b \geq 0 \).
The standard form, if we add the slack variables

\[
\begin{align*}
 a_{11}x_1 + \cdots + a_{1n}x_n + s_1 &= b_1 \\
 & \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n + s_m &= b_m
\end{align*}
\]

The point \((x_1 = 0, \cdots, x_n = 0)\) is a feasible solution and \((s_1 \cdots s_m)\) is the corresponding basis.

In general

It is not easy to find a feasible basis.
One can try any basis (choice of \(m\) variables) but there is no guarantee that it is feasible.
In some cases, the problem is infeasible \(\rightarrow\) it might be impossible to find a basic feasible solution.
Finding an intial basis

2 issues: finding a **feasible solution** and finding the corresponding basis.

One easy case

Consider a problem of the type $Ax \leq b$ where $b \geq 0$.

The **standard form**, if we add the **slack variables**

$$
\begin{align*}
a_{11}x_1 + \cdots + a_{1n}x_n + s_1 &= b_1 \\
& \vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n + s_m &= b_m
\end{align*}
$$

The point $(x_1 = 0, \cdots, x_n = 0)$ is a feasible solution and $(s_1 \cdots s_m)$ is the corresponding basis.

In general

It is not easy to find a **feasible basis**.

One can try any basis (choice of m variables) but there is no guarantee that it is feasible.

In some cases, the problem is **infeasible** → it might be impossible to find a basic feasible solution.
Using a linear program and the simplex algorithm to find an initial basis

Phase I

Consider a problem of the type $Ax = b, x \in \mathbb{R}^n$ where we assume (after suitable multiplication of rows by -1) that $b \geq 0$.

\[
\begin{align*}
\text{min} & \quad \xi_1 + \cdots + \xi_m \\
\text{subject to} & \quad a_{11}x_1 + \cdots + a_{1n}x_n + \xi_1 = b_1 \\
& \quad \vdots \\
& \quad a_{m1}x_1 + \cdots + a_{mn}x_n + \xi_m = b_m
\end{align*}
\]

- If the optimal solution of the phase 1 problem is $> 0 \Rightarrow$ the initial problem is infeasible.
- If the initial problem is feasible \Rightarrow the phase 1 problem has 0 as optimal solution.
- One more issue: how to obtain an initial basis for the original problem without ξ_i variables in it.
Using a linear program and the simplex algorithm to find an initial basis

Phase I

Consider a problem of the type \(Ax = b, x \in \mathbb{R}^n \) where we assume (after suitable multiplication of rows by \(-1\)) that \(b \geq 0 \).

\[
\begin{align*}
\min & \quad \xi_1 + \cdots + \xi_m \\
\text{s.t.} & \quad a_{11}x_1 + \cdots + a_{1n}x_n + \xi_1 = b_1 \\
& \quad \vdots \end{align*}
\]

\[
\begin{align*}
& \quad a_{m1}x_1 + \cdots + a_{mn}x_n + \xi_m = b_m
\end{align*}
\]

- If the optimal solution of the phase 1 problem is \(> 0 \) \(\Rightarrow \) the initial problem is infeasible.
- If the initial problem is feasible \(\Rightarrow \) the phase 1 problem has 0 as optimal solution
- One more issue: how to obtain an initial basis for the original problem without \(\xi_i \) variables in it.
Using a linear program and the simplex algorithm to find an initial basis

Phase I

Consider a problem of the type $Ax = b$, $x \in \mathbb{R}^n$ where we assume (after suitable multiplication of rows by -1) that $b \geq 0$.

$$
\begin{align*}
&\text{min} & & \xi_1 + \cdots + \xi_m \\
& & a_{11}x_1 + \cdots + a_{1n}x_n + \xi_1 &= b_1 \\
& & \vdots & \vdots \\
& & a_{m1}x_1 + \cdots + a_{mn}x_n + \xi_m &= b_m \\
\end{align*}
$$

- If the optimal solution of the phase 1 problem is $> 0 \Rightarrow$ the initial problem is infeasible.
- If the initial problem is feasible \Rightarrow the phase 1 problem has 0 as optimal solution.
- One more issue: how to obtain an initial basis for the original problem without ξ_i variables in it.