Information theory and coding

Data compression: [MacKay, 2003]

Antonio Sutera a.sutera@uliege.be

March 21, 2019

Previously on...

Symbol codes

- Shannon code
- Fano code
- Huffman code: optimal

$$\bar{l}_{Huffman} \leq min\{\bar{l}_{Shannon}, \bar{l}_{Fano}\}$$

but $\bar{l}_{Shannon} \geqslant_? \bar{l}_{Fano}$

Previously on...

Arithmetic coding

Shannon-Fano-Elias:

 $\bar{l}_{Shannon-Fano-Elias} < H_m(f_1, \dots, f_m) + 2$

Dasher [MacKay, 2003]

Riddle

The string:

A good example of how dictionary based compression can be coded as:

1/1 822/3 674/4 1343/60 928/75 550/32 173/46 421/2

How?

Riddle: Solution

The string:

A good example of how dictionary based compression can be coded as:

1/1 822/3 674/4 1343/60 928/75 550/32 173/46 421/2

- Using the dictionary "Random House Dictionary" of the English language, 2nd edition, Unabridged
- Each word is coded as x/y, where x gives the page in the dictionary, and y gives the number of the word on that page.

References

MacKay, D. J. (2003). Information theory, inference, and learning algorithms.