Information theory and coding

Source coding: Some guessing games and notion of typical set [MacKay, 2003]

> Antonio Sutera a.sutera@uliege.be

February 21, 2019

The weighing problem (see [MacKay, 2003])

Greedy strategy: not necessarily the best one

The game of "Sixty-three" (see [MacKay, 2003])

What's the **smallest** number of **yes**/**no** questions needed to identify an integer x between 0 and 63?

$$x \in \{0, 1, 2, 3, 4, 5, 6, \dots, 63\}$$

The game of "Sixty-three" Let's play

x = ?

The game of "Sixty-three" Solution

$$x = 42$$

The game of "Sixty-three" Strategy

Q		qi
1:	is $x \ge 32?$	yes
2:	is x mod $32 \ge 16$?	no
3:	is x mod $16 \ge 8?$	yes
4:	is x mod $8 \ge 4$?	no
5:	is x mod $4 \ge 2?$	yes
6:	is x mod $2 = 1$?	no

The game of "Sixty-three" Binary point of view

Q		qi	
1:	is $x \ge 32$?	yes	1
2:	is x mod $32 \ge 16$?	no	0
3:	is x mod $16 \ge 8?$	yes	1
4:	is x mod $8 \ge 4$?	no	0
5:	is x mod $4 \ge 2$?	yes	1
6:	is x mod $2 = 1$?	no	0

101010 is 42 in binary

What's the information content gained for each question? And for all questions?

The game of "Sixty-three" Information theory point of view

For each question:

$$h(q_i) = -\log_2 \frac{1}{p(q_i)} = -\log_2 \frac{1}{0.5} = 1$$
 Shannon

For all six questions:

$$\sum_{i=1}^{6} h(q_i) = 1 + \dots + 1 = 6 \text{ Shannon}$$

= $\log_2(64)$
= $H\left(\frac{1}{64}, \frac{1}{64}, \dots, \frac{1}{64}\right)$
= $-64\frac{1}{64}\log_2\left(\frac{1}{64}\right)$

The game of submarine (see [MacKay, 2003] and TP1)

Find the submarine (one square) in this eight-by-eight grid.

The game of submarine

1. First question: $p(found) = \frac{1}{64}$ and $p(miss) = \frac{63}{64}$

If found: $h(found) = -\log_2\left(\frac{1}{64}\right) = 6$ Shannon if miss: $h(miss) = -\log_2\left(\frac{63}{64}\right) = 0.0227$ Shannon 2. 2^{nd} , 3^{rd} , 4^{th} , ...

$$h(miss) = -\log_2\left(\frac{62}{63}\right) = 0.0230 \text{ Shannon}$$

... (very bad luck)
$$h(miss) = -\log_2\left(\frac{1}{2}\right) = 1$$

3. 0.0227 + 0.0230 + ... + 1 = 6 Shannon

The bent coin lottery Principle

A coin with $p_1 = 0.1$ will be tossed N = 1000 times. For example, $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0, ...$

The outcome is $\mathbf{x} = x_1 x_2 x_3 \dots x_N$. In our example, the ticket is 10100...

You can buy any of the 2^N possible tickets for 1 euro each, before the coin-tossing.

If you own ticket \mathbf{x} , you win 1 billion euros. Note that $2^{1000} \gg 10^9$.

The bent coin lottery Questions

- 1. If you are forced to buy one ticket, which would you buy?
- 2. To have a 99% chance of winning, at lowest possible cost,
 - which tickets would you buy?
 - And how many tickets is that?

The bent coin lottery Only one ticket

Any idea?

The bent coin lottery Binomial distribution

Given p = 0.1 and 1 - p = 0.9, the probability to have exactly k ones among N coin-tossing is

$$C_N^k p^k (1-p)^{N-k}$$

But for a given order

$$p^k(1-p)^{N-k}$$

The bent coin lottery Only one ticket

The all-zeros ticket.

Examples:

1.
$$k = 0 \Rightarrow p(k = 0) = 1.74e - 46$$

2.
$$k = 1 \Rightarrow p(k = 1) = 1.94e - 44$$

3. But... $10000...000 \Rightarrow p(100...000) = 1.94e - 47$

The bent coin lottery 99% chance of winning

Any idea?

The bent coin lottery Binomial distribution

For a binomial distribution of probability p of success:

The bent coin lottery Gaussian distribution

The bent coin lottery Number of tickets

tickets = $1 + C_{1000}^1 + C_{1000}^2 + \dots + C_{1000}^{100} + \dots + C_{1000}^{123}$

The bent coin lottery Approximation of C_N^k (Stirling's approximation)

$$\log_2 C_N^k \approx NH_2\left(\frac{k}{N}\right)$$

Example:

$$\log_2 C_{1000}^{123} \approx 1000 \text{H}_2 \left(\frac{123}{1000}\right) = 537$$

$$\Leftrightarrow \quad C_{1000}^{123} \approx 2^{537}$$

The bent coin lottery Typical set

99 % chance of owning the winning ticket!

The bent coin lottery Typical set with uniform distribution

What can you notice?

MacKay, D. J. (2003). Information theory, inference, and learning algorithms.