Information theory and coding

Source coding: Some guessing games and notion of typical set [MacKay, 2003]

Antonio Sutera
a.sutera@uliege.be

February 21, 2019

The weighing problem (see [MacKay, 2003])

Greedy strategy: not necessarily the best one

The game of "Sixty-three" (see [MacKay, 2003])

What's the smallest number of yes/no questions needed to identify an integer x between 0 and 63 ?

$$
x \in\{0,1,2,3,4,5,6, \ldots, 63\}
$$

The game of "Sixty-three"
Let's play

$$
x=?
$$

The game of "Sixty-three"
Solution

$$
x=42
$$

The game of "Sixty-three"

Strategy

Q	q_{i}	
$1:$	is $x \geqslant 32 ?$	yes
$2:$ is $x \bmod 32 \geqslant 16 ?$	no	
$3:$ is $x \bmod 16 \geqslant 8 ?$	yes	
$4:$ is $x \bmod 8 \geqslant 4 ?$	no	
$5:$ is $x \bmod 4 \geqslant 2$?	yes	
6: is $x \bmod 2=1$?	no	

The game of "Sixty-three"
Binary point of view

Q	q_{i}
is $x \geqslant 32$?	yes
2: is $x \bmod 32 \geqslant 16$?	no
3: is $x \bmod 16 \geqslant 8$?	yes
4: is x mod $8 \geqslant 4$?	no
5: is $x \bmod 4 \geqslant 2$?	yes
6 : is $x \bmod 2=1$?	no

101010 is 42 in binary
What's the information content gained for each question?
And for all questions?

The game of "Sixty-three" Information theory point of view

For each question:

$$
h\left(q_{i}\right)=-\log _{2} \frac{1}{p\left(q_{i}\right)}=-\log _{2} \frac{1}{0.5}=1 \text { Shannon }
$$

For all six questions:

$$
\begin{aligned}
\sum_{i=1}^{6} h\left(q_{i}\right)=1+\cdots+1 & =6 \text { Shannon } \\
& =\log _{2}(64) \\
& =H\left(\frac{1}{64}, \frac{1}{64}, \ldots, \frac{1}{64}\right) \\
& =-64 \frac{1}{64} \log _{2}\left(\frac{1}{64}\right)
\end{aligned}
$$

The game of submarine (see [MacKay, 2003] and TP1)

Find the submarine (one square) in this eight-by-eight grid.

The game of submarine

1. First question: \mathfrak{p} (found $)=\frac{1}{64}$ and $p($ miss $)=\frac{63}{64}$

If found: $h($ found $)=-\log _{2}\left(\frac{1}{64}\right)=6$ Shannon if miss: $h($ miss $)=-\log _{2}\left(\frac{63}{64}\right)=0.0227$ Shannon
2. $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, \ldots$
$h($ miss $)=-\log _{2}\left(\frac{62}{63}\right)=0.0230$ Shannon
... (very bad luck)
$h($ miss $)=-\log _{2}\left(\frac{1}{2}\right)=1$
3. $0.0227+0.0230+\cdots+1=6$ Shannon

The bent coin lottery

Principle

A coin with $p_{1}=0.1$ will be tossed $N=1000$ times.
For example, $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=0, \ldots$
The outcome is $x=x_{1} x_{2} x_{3} \ldots x_{N}$.
In our example, the ticket is $10100 \ldots$
You can buy any of the 2^{N} possible tickets for 1 euro each, before the coin-tossing.

If you own ticket x, you win 1 billion euros. Note that $2^{1000} \gg 10^{9}$.

The bent coin lottery
 Questions

1. If you are forced to buy one ticket, which would you buy?
2. To have a 99% chance of winning, at lowest possible cost,

- which tickets would you buy?
- And how many tickets is that?

The bent coin lottery
Only one ticket

Any idea?

The bent coin lottery

Binomial distribution

Given $p=0.1$ and $1-p=0.9$, the probability to have exactly k ones among N coin-tossing is

$$
C_{N}^{k} p^{k}(1-p)^{N-k}
$$

But for a given order

$$
p^{k}(1-p)^{N-k}
$$

The bent coin lottery
Only one ticket

The all-zeros ticket.
Examples:

1. $k=0 \Rightarrow p(k=0)=1.74 e-46$
2. $k=1 \Rightarrow p(k=1)=1.94 e-44$
3. But... $10000 \ldots 000 \Rightarrow p(100 \ldots 000)=1.94 e-47$

The bent coin lottery 99\% chance of winning

Any idea?

The bent coin lottery
 Binomial distribution

For a binomial distribution of probability p of success:

$$
\begin{aligned}
\text { mean } & =\mathrm{Np} \\
\text { variance } & =\mathrm{Np}(1-\mathrm{p})
\end{aligned}
$$

The bent coin lottery

Gaussian distribution

The bent coin lottery

Number of tickets
$\#$ tickets $=1+C_{1000}^{1}+C_{1000}^{2}+\cdots+C_{1000}^{100}+\cdots+C_{1000}^{123}$

The bent coin lottery
Approximation of C_{N}^{k} (Stirling's approximation)
$\log _{2} \mathrm{C}_{\mathrm{N}}^{\mathrm{k}} \approx \mathrm{NH}_{2}\left(\frac{\mathrm{k}}{\mathrm{N}}\right)$
Example:

$$
\begin{aligned}
& \log _{2} \mathrm{C}_{1000}^{123} \approx 1000 \mathrm{H}_{2}\left(\frac{123}{1000}\right)=537 \\
\Leftrightarrow \quad & \mathrm{C}_{1000}^{123} \approx 2^{537}
\end{aligned}
$$

The bent coin lottery
A lot of tickets

The bent coin lottery

Typical set
99% chance of owning the winning ticket!

The bent coin lottery

Typical set with uniform distribution

What can you notice?

References

MacKay, D. J. (2003). Information theory, inference, and learning algorithms.

