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On the qualitative vs. quantitative notion of Independence

Motivation

• Objective: Introduce and motivate graphical
representation of qualitative and quantitative probabilistic
knowledge
• Qualitative notion of dependence
• Characterization of desired properties of independence

relations
• Probability calculus as a model of Independence relations

• Two graphical representations of Independence relations
• Undirected graphs: Markov networks
• Directed graphs: Bayesian networks
• Relations between these two types of representations
• Quantitative aspects/questions

• In depth analysis of tree-structured graphical models
• Undirected trees and the Chow-Liu algorithm
• Directed trees and polytrees

NB: Extended/original set of slides at http://www.montefiore.ulg.ac.be/~lwh/Info/chapter3.pdf. 3/43
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On the qualitative vs. quantitative notion of Independence

Motivation

Why do we need a qualitative notion of dependence?

• Making statements about independence (or relevance) is
a profound feature of common-sense reasoning, while
probability calculus gives a formalization and a safe
procedure for testing any (conditional) Independence
statements.
• However, this procedure relies on the computation of the

probabilities of all combinations of statements, and is
essentially intractable in large domains.
• In short, the probability calculus procedure is in itself not

an operational model of reasoning about Independence
relations, specially hen we don’t (yet) have the number.
• We would like to dispose of a kind of ’logic’ of

Independence, in which we can derive easily new
Independence statements from previously established or
postulated ones, without resorting to number crunching.4/43



On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Desired properties of independence relations

Consider a domain characterised by a finite set U of discrete
variables, and let A,B,C denote three disjoint subsets of U.

Let us denote by A ⊥ B|C the statement that

"A is independent of B, given that we know C",
i.e. when we already know the values of the variables in C, we
consider that the knowledge of the values of the variables in B
is irrelevant to our beliefs about the values in A.

We want to derive rules which are characteristics of
independence relations, and which allows us to infer in a sound
way new independence relations from established ones.
We will first propose a set of four rules and then verify that
they are valid inference rules for probabilistic independence
relations. 5/43



On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Semi-graphoids (1)

Desired properties of an independence relation:

(1) Symmetry:
(X ⊥ Y|Z)⇔ (Y ⊥ X|Z)

If Y tells us nothing about X (in some context Z), then
X tells us nothing about Y.

(2) Decomposition:
(X ⊥ (Y ∪W)|Z)⇒ (X ⊥ Y|Z)&(X ⊥W|Z)

If two combined items of information (Y ∪W) are judged
irrelevant to X, then each separate item (Y or W) is
irrelevant as well.
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On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Semi-graphoids (2)

(3) Weak union:
(X ⊥ (Y ∪W)|Z)⇒ (X ⊥ Y|(Z ∪W))

Learning some irrelevant information W cannot help the
other irrelevant information Y become relevant.
NB: "strong" union will be defined later.

(4) Contraction:
(X ⊥ Y|Z)&(X ⊥W|(Z ∪ Y))⇒ (X ⊥ (Y ∪W)|Z)

If we judge W irrelevant to X after learning some
irrelevant information Y, then W must also have been
irrelevant before we learned Y.
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On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Properties of probabilistic independence relation

Notation: If P is a probability distribution defined over the
variables in U, we write:

(A ⊥P B|C)⇔ (∀a, b, c : P(b, c) > 0⇒ P(a|b, c) = P(a|c))

Theorem (Probabilistic independence)
The probabilistic independence relationship (· ⊥P ·|·) induced
by any probabilistic model P satisfies the four properties:
symmetry (1), decomposition (2), weak union (3) and
contraction (4).

Theorem (Intersection property (5))
The probabilistic independence relationship induced by any
strictly positive probabilistic model P also satisfies

(X ⊥P Y|(Z ∪W)&(X ⊥P W|(Z ∪ Y))⇒ (X ⊥P (Y ∪W)|Z)
8/43



On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Induced inference rules

• Chaining rule:
(X ⊥ Z|Y)&((X ∪ Y) ⊥W|Z)⇒ X ⊥W|Y

• Mixing rule:
(X ⊥ (Y ∪W)|Z)&(Y ⊥W|Z)⇒ (X ∪W) ⊥ Y|Z

Exercise: Show that these two rules follow logically from (1) to
(4), and hence are valid inference rules for any probabilistic
independence relation.
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On the qualitative vs. quantitative notion of Independence

Characterization of independence relations

Summary

• We have abstracted from the quantitative notion of
conditional independence defined by probability theory.
• This abstraction is necessary for efficient manipulation of

the notion of independence/irrelevance.
• We have shown, to some extent, that one can axiomatize

the notion of independence in a way which remains
logically coherent with the same notion defined by
probability calculus.
• We have illustrated that such an axiomatization is useful

to derive new independencies from postulated ones, and
even new inference rules from postulated ones.
• However, we are still lacking an intuitive and efficient way

to reason ourselves coherently in this framework.
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Graphical models of independence relations

Motivation

Why graphical (independence) models?

Empty graph Complete graph

11/43



Graphical models of independence relations

Undirected graphical models: Markov networks

Undirected graphs as independence models

Definitions:
• A (general) graph is denoted by G = (V, E) where V is a

finite set of vertices, and E ⊂ V × V is the set of edges.
• A path (of length n > 0) in G, is a sequence of different

vertices v1, v2, . . . , vn+1 such that

(vi, vi+1) ∈ E, i = 1, . . . , n.

• An edge (v, v ′) ∈ E such that v = v ′ is called a loop.
• An edge (v, v ′) ∈ E such that v 6= v ′ and (v ′, v) ∈ E is

called a line.
• An edge which is not a line nor a loop is called an arrow.
• G is an undirected graph if G has no loops and no arrows

(i.e. G has only lines).
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Graphical models of independence relations

Undirected graphical models: Markov networks

Vertex separation in undirected graphs

Let us consider an undirected G = (U, E).

From local to global vertex separation:
• The absence of a line between variables represents the

absence of a direct interaction between them.
• All other relations are induced by the notion of separation:

We say that in a graph G the sets A and B are separated
by C if all paths from A to B traverse C.
We denote this by (A;B|C)G.

In particular:
• The sets A and B are separated if there is no path from
A to B.
• If there is no line connecting A to B, then
(A;B|U \ (A ∪ B))G.
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Graphical models of independence relations

Undirected graphical models: Markov networks

Undirected graphs as independence models

Can we use undirected graphs (UGs) as independence models?

The good news:
• The vertex separation relation satisfies properties (1)-(5).

Exercise: Check this.

• Vertex separation is easy to check (polynomial time).
Questions:
• Is vertex separation compatible with probabilistic

independence?
• How general is vertex separation w.r.t. probabilistic

independence?
• What kind of independence relations can be exactly

represented by vertex separation?
14/43



Graphical models of independence relations

Undirected graphical models: Markov networks

Notions of dependency, independency and perfect maps

Let us consider a distribution P and an undirected graph G
over U.

Definition (D-map (independent subsets are indeed separated))
G is a D-map of P if for any three disjoint A,B,C ⊂ U we
have

(A ⊥P B|C)⇒ (A;B|C)G

Definition (I-map (separated subsets are indeed independent))
G is a I-map of P if for any three disjoint A,B,C ⊂ U we have

(A ⊥P B|C)⇐ (A;B|C)G

Definition (Perfect map (equivalence between "⊥P" and ";"))
G is a perfect map of P if it is a D-map and an I-map of P.

15/43



Graphical models of independence relations

Undirected graphical models: Markov networks

Representation power of undirected graphs

Preliminary comments:
• Any P has at least a D-map (e.g. the empty graph)
• Any P has at least an I-map (e.g. the complete graph)
• Some P have not perfect-map (e.g. two coins and a bell)

There is thus a need to delineate more precisely
• those dependency models that have perfect maps, and
• those graphical models which are perfect maps of a

dependency model
• provide constructive algorithms to switch between P and
G.

We say that a dependency model M (i.e. a rule that assigns
truth values to a three-place relation (A ⊥M B|C) over disjoint
subsets of some U) is graph-isomorph if there exists an
undirected graph (U, E) which is a perfect map of M.
Goal: characterize graph-isomorph probabilistic models. 16/43



Graphical models of independence relations

Undirected graphical models: Markov networks

On the structure of the set of UGs over some U

Lattice structure:
• For a fixed U, we can identify an undirected graph
G = (U, E) with its set of edges E.
• The set of edges can itself be identified with a subset of

the set of pairs {v, v ′} ∈ U.
• For any G = (U, E) and G ′ = (U, E ′), let us write
G ⊂ G ′ if E ⊂ E ′.

Monotonicity w.r.t. addition or removal of edges:
• if G is a D-map of P, any G ′ ⊂ G is also a D-map of P,
• if G is an I-map of P, any G ′ ⊃ G is also an I-map of P.

Extreme maps:
• G is a maximal D-map, if there is no G ′ ⊃ G (other than
G itself) which is also a D-map.
• G is a minimal I-map, if there is no G ′ ⊂ G (other than
G itself) which is also an I-map. 17/43



Graphical models of independence relations

Undirected graphical models: Markov networks

Characterization of graph-isomorph dependency model

Theorem (Graph isomorph dependency model M)
A necessary and sufficient condition for a dependency model
M over some U to be graph-isomorph, is that it satisfies
Symmetry (1), Decomposition (2), Intersection (5), Strong
union and Transitivity,

where Strong union means that

(X ⊥M Y|Z)⇒ (X ⊥M Y|(Z ∪W))

and Transitivity means that:

(X ⊥M Y|Z)⇒ ∀γ ∈ U : (X ⊥M {γ}|Z) or ({γ} ⊥M Y|Z).

NB: {γ} denotes a singleton subset of U.
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Graphical models of independence relations

Undirected graphical models: Markov networks

Construction of a minimal I-map

Goal : Given P, construct a minimal I-map G of P.

Motivation: A minimal I-map is a graph displaying a maximal
number of independencies without false-positives.

Theorem (Existence, unicity, construction of minimal I-map)
Every dependency model M which satisfies symmetry,
decomposition and intersection, has a unique minimal I-map
G0 = (U, E0) produced by connecting only those pairs (v, v ′)
for which ({v} ⊥M {v ′}|U \ {v, v ′}) is FALSE.

Goal : Check whether G is an I-map of P.
If P is strictly positive, we can check whether G is an I-map,
by constructing first a minimal I-map G0 of P (in polynomial
time) and then checking whether G0 ⊂ G.
NB: See more details in the extended set of slides. 19/43



Graphical models of independence relations

Undirected graphical models: Markov networks

Markov networks, blankets and boundaries

Definitions:
• Given P (resp. M), we say that G is a Markov network of
P (resp. M) if it is a minimal I-map of P (resp. M).
• A Markov blanket BLM(v) of v ∈ U is any subset S ⊂ U

for which ({v} ⊥M U \ ({v} ∪ S)|S).
• A Markov boundary BM(v) of v ∈ U is a minimal Markov

blanket.

Theorem (Unicity and construction of Markov boundaries)
Every element v of a dependency model M which satisfies
symmetry, decomposition, intersection and weak union, has a
unique Markov boundary, and this corresponds with the set of
vertices adjacent to v in the minimal I-map G0 of M
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Graphical models of independence relations

Undirected graphical models: Markov networks

Summary of UG models

• We have seen that we can make use of undirected models
to represent useful independencies, in a way compatible
with the definition of probabilistic conditional
independence.
• Not all independence structures may be represented by

UGs.
• But we can commit with the idea of building the most

refined model of them in the form of a minimal I-map.
• Futher topic of relevance:

For any G is there a P such that its G is a perfect map?
(answer is yes, with a few hypotheses)
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Graphical models of independence relations

Directed graphical models: Bayesian networks

Directed acyclic graphs (DAGs)

Definitions:
• A directed graph D = (V, E) is a graph with only arrows,

i.e. no loops and no lines or, in other words,
(v, v ′) ∈ E⇒ v 6= v ′&(v ′, v) 6∈ E.
• A cycle of length n > 0, in a graph G = (V, E), is a

sequence v1, . . . , vn+1 such that (vi, vi+1) ∈ E &
v1 = vn+1.
• The cycle is said to be simple (or proper) if all nodes

except v1 and vn+1 are different.
• A DAG is a directed graph without any cycle.

NB:This definition of DAG is equivalent to saying:

• that a DAG is a directed graph without any simple cycle, or

• that a DAG is a graph without any cycle.
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Graphical models of independence relations

Directed graphical models: Bayesian networks

D-separation in DAGs

Definition (D-separation)
If X,Y,Z are three disjoint sets of vertices in a DAG D, then
Z is said to d-separate X from Y, denoted by (X;Y|Z)D, if
there is no path between a vertex in X and a vertex in Y along
which the following two conditions hold:
(i) every node with converging arrows is in Z or has a

descendant in Z and
(ii) every other node is outside of Z.

• If a path satisfies the above condition, it is said to be active;
otherwise it is said to be blocked.
• A DAG is an I-map of P if all its d-separations correspond to
conditional independencies satisfied in P.
• It is a minimal I-map, or a Bayesian network of P, if none of
its arrows can be deleted without destroying its I-mapness. 23/43



Graphical models of independence relations

Directed graphical models: Bayesian networks

Bayesian networks (BNs)

• Construction of Bayesian networks for a distribution P
involves the notion of boundary DAG of M relative to a
vertex ordering.
• DAGs as minimal I-maps of Semi-graphoids.

Main result: For any semi-graphoid M (in particular, for
any P induced independence model) and any ordering d,
any corresponding boundary DAG is a minimal I-map of
M.

• Corollary of the main result:
A necessary and sufficient condition for a DAG D to be a
Bayesian network of P is that each variable X be
conditionally independent of all its non-descendants,
given its parents ΠX, and that no proper subsets of ΠX
satisfies this condition.

NB: See more details about BNs in the extended set of slides. 24/43



Graphical models of independence relations

Directed graphical models: Bayesian networks

Summary of DAG models

• We have seen that we can make use of directed acyclic
graphical models to represent useful independencies, in a
way compatible with the definition of probabilistic
conditional independence.
• Not all independence structures may be represented

exactly by DAGs.
• But we can commit with the idea of building the most

refined model of them in the form of a minimal I-map.
• As with UGs, we can infer independencies by inspection of

the graph, in polynomial time.
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Discussion and further topics

Relations between UGs and DAGs

The global picture
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Discussion and further topics

Relations between UGs and DAGs

Quantitative aspects

• What do we need to add to a minimal I-map graphical
structure to describe fully a given P?
• UGs: parametrization via potential (or compatibility)

functions over cliques.
• DAGs: parametrization via conditional distributions over

families.
• How can we compute with parametrized DAG or UG

P-models?
• Exact computations: reduce du CG and use (generalized)

forward-backward algorithm.
• Approximations: turn problem into a tractable

optimization problem (subject of current research).

• How can we infer UG or DAG models from data?
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Tree structured graphical models

Tree structured graphical models

Motivations
• Tree structured models offer simple interpretations
• Efficient inference algorithms
• Efficient learning algorithms

Two classes
• Undirected trees and their equivalent directed version
• Polytrees : DAGs whose skeleton is a tree

NB: See more details about shaded points in the extended set of slides.
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Tree structured graphical models

A few additional definitions from graph theory

• Skeleton of a DAG: UG obtained by replacing all arrows
by lines.
• Directing an UG: DAG obtained by replacing every line by

an arrow, under the constraint of producing a DAG.
• Induced subgraph : (of G = (V, E)) by V ′ ⊂ V is the

graph G(V ′) = (V ′, E ∩ V ′ × V ′).
Note: induced subgraphs of UGs (resp. DAGs) are UGs (resp.
DAGs).
• Clique of an UG : a clique of G = (V, E) is an induced

subgraph G(V ′) such that
∀v, v ′ ∈ V ′ : v 6= v ′ ⇒ (v, v ′) ∈ E.
• Maximal clique: a clique which can not be augmented

while maintaining the property of being a clique, i.e. a
maximal subgraph whose vertices are all adjacent to each
other in G. 29/43



Tree structured graphical models

Parameterizing UGs: example of the Markov chain X− Y − Z

• Cliques: X− Y and Y − Z
• Compatibility functions: g1(x, y) and g2(y, z)
• Suppose we know P(X, Y, Z): how to derive the gi from
P?
• g1(x, y) = P(X, y) = P(X)P(y|x) and g2(y, z) = P(z|y),

which corresponds to the parameterization of the DAG
X→ Y → Z;

• or g2(y, z) = P(y, z) = P(z|y)P(y) and g1 = P(x|y)
which corresponds to X← Y → Z;

• or g2(y, z) = P(z)P(y|z) and g1 = P(x|y) which
corresponds to X← Y ← Z.

• But, we could not take the parameterization of the DAG
X→ Y ← Z.
The three first parameterizations correspond to directed
version of the UG which do not introduce a v-structure;
while the fourth one introduces a v-structure. 30/43



Tree structured graphical models

Markov trees

• We use indifferently the term Markov tree, tree, or
tree-structured UG, to denote UGs without any cycles.
• Typically, we assume in addition that these trees are

singly connected, i.e. such that there is a path from any
vertex to any other vertex, and use the term ’forest’ to
denote the case where not all nodes are connected.
• In a singly connected tree over n vertices, we always have

exactly n− 1 edges.
• In a forest over n vertices, we have n− c edges, where c

is the number of connected components.

NB: See more details about the procedure for parameterizing Markov
trees in the extended set of slides.
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Tree structured graphical models

I-map preserving direction of tree-structured UGs

Theorem
Any directed version of a tree-structured UG which has no
v-structure produces a DAG which represents exactly the same
set of independencies as the original undirected tree.

Corollary: tree-structured UGs may be parameterized by first
directing them without introducing any v-structure, and then
parameterizing the resulting DAG.

Algorithm: to direct a tree-structured UG in such a way that
no v-structures are introduced
1. Choose first a root of the tree: any node of the UG
2. Direct its arcs ’away’ from the root
3. Proceed recusively by directing the yet not direct arcs of

the successors ’away’ from them.
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Tree structured graphical models

Summary of tree-structured graphical models

• Like DAGs, tree structured UGs may be parameterized
’easily’ to represent a P which satisfies the independencies
encoded by the UG, by first directing the tree structured
UG without introducing v-structures (which maintains the
encoded independencies (Why?), and by then using the
DAG parameterization procedure to attach conditional
distributions to nodes.

NB: See more details about the chordal graphs in the extended set of
slides.
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Tree structured graphical models

Learning structure from data (Chapter 8 of Pearl)

• Main question: how to infer the graph structure from the
information at hand?
• We will limit ourselves to tree structures
• We will decompose the question in this context into three

successive questions:
• Given a P(x) known to factorize according to a tree

structured graph, how to efficiently recover its
tree-structured perfect map?

• Given a general P(x), can we recover the best
approximation of P(x) in the form of a parametrization
of a tree structured graph?

• Given only a sample from a generative distribution, how
to answer the two preceding questions?

NB: These questions will only be declined with tree structured UGs. For
general tree structured DAGs (polytree), see the extended set of slides.
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Tree structured graphical models

Intuition about structure inference

• Consider the case of three variables X, Y, Z, and suppose
that we known that they form a Markov chain, but that
we don’t known in which order.
• In other words, we hesitate between the three following

structures: X− Y − Z, Y − X− Z, X− Z− Y.
• Suppose that we are able to compute I(X; Y), I(Y;Z) and
I(X;Z):
• Can we infer from these three quantities a correct

structure?
• The answer is YES.
• Sort the quantities I(X; Y), I(Y;Z) and I(X;Z) by

decreasing order of numerical value, take the two first
and create an UG with lines among the corresponding
two pairs of variables.

• Explanation: data processing inequality!
35/43



Tree structured graphical models

Chow and Liu algorithm: generalization to P which factorize
according to tree-structured UG.

• We want to represent graphically the independencies of a
distribution P(X1, . . . , Xn) known to be Markov w.r.t. to
a tree-structured UG (but we do not know the structure).
• Algorithm (Chow and Liu, 1968)

1. Compute the pairwise mutual informations
I(Xi;Xj), ∀i 6= j.

2. Assign a line between the variables corresponding to the
largest mutual information.

3. Examine the next largest information and assign a line,
unless it creates a cycle in the graph.

4. Repeat step 3, until n− 1 branches have been assigned.
• Select an arbitraty node as root, direct the UG from it

(without introducing v-structures) and to each Xi assign
P(Xi|Xp(i)) where p(i) addresses the (sole) parent of Xi.
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Tree structured graphical models

Comments about the Chow and Liu algorithm

• When we want to infer a tree-structured UG (or a
directed version of it without v-structures) for a target
distribution, and dispose of means to compute pairwise
quantities from the target distribution, in the form of
mutual informations among variables and conditional
distributions of one variable given another, we dispose of
an ’efficient’ algorithm for generating a Markov network
(order n2, roughly).
• The Chow Liu algorithm is an instance of the ’maximum

weight spanning tree ’ algorithm of graph theory
(MWST).

NB: In the algorithm, we may in principle be led to situations where the
I(Xi;Xj) of the next line to assign is equal to zero; if this is the case we
can immediately stop the procedure (leading to a ’forest’ model, i.e. a
model where some subsets of variables are disconnected). 37/43



Tree structured graphical models

Approximation of probability distributions

• In many practical situations, we do not dispose of precise
information about the probability distribution at hand.
• In particular, in such contexts, we are not able to verify in

a definite way independencies such as (Xi ⊥ Xj|Xk).
• In other words, we can only estimate/approximate

quantities such as I(Xi;Xj) or P(Xi|Xp(i)).
• Then : How to infer precise probabilistic models from

imprecise data?
• Approach:

• Defined a space of target probability distributions
(model).

• Define a measure of discrepancy between distributions.
• Choose the probability distribution in the target space

which is as ’compatible as possible’ with the information
at hand.
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Tree structured graphical models

Measuring the compatibility among two distributions

Kullback-Leibler divergence:

D(P, P ′) =
∑
x

P(x) log
P(x)

P ′(x)

• tends to zero when P → P ′.
• has the likelihood interpretation, when P is inferred from

a sample.

Furthermore, to minimize D over the space of trees, we can
simply use Chow Liu based on information quantities derived
from P.
NB: See more details on the KL-divergence, the D-projection and the
relevant results in the extended set of slides.
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Tree structured graphical models

Comments about the Chow and Liu algorithm

• Given any probability distribution P and the means to
compute pairwise mutual informations and pairwise
conditional distributions in P, this algorithm allows to
infer (in quadratic time), a tree structured approximation
of P.
• The resulting distribution P ′ is the one, among all that

factorize along UG trees, that is closest according to the
distance measure D(P, P ′).
• In particular, if P is Markov w.r.t. an UG tree, then the

resulting P ′ will be equal to P.
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Tree structured graphical models

Learning from observations drawn from P (1)

Let us consider a sample of observations S = (x1, . . . , xN)
drawn i.i.d. from a target distribution P(x) (where each xi is
actually an n-tuple, having one element for each variable Xj.

• Given any other distribution P ′ defined over the same set
of variables, we define the sample log-likelihood, by

IL(S, P ′) =

N∑
i=1

log P ′(xi) = log

(
N∏
i=1

P ′(xi)

)
.

• Given a space P of candidate distributions, a classical
criterion use in statistics, is to choose the one which
maximizes the sample likelihood.
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Tree structured graphical models

Learning from observations drawn from P (2)

Let us consider a configuration x, and denote by N(x) the
number of observations in our sample which correspond to
that configuration and by F(x) = N(x)/N their relative
frequency among the N observations.
• We can rewrite the log-likelihood of the sample w.r.t. P ′

as
IL(S, P ′) = N

∑
x

F(x) log P ′(x)

• We then immediately see that maximizing the
log-likelihood of the sample by choosing P ′ is equivalent
to choosing P ′ so as to minimize the KL-divergence∑

x F(x) log
F(x)
P ′(x)

. Indeed,∑
x

F(x)
F(x)

P ′(x)
= −

1

N
IL(S, P ′) +

∑
x

F(x) log F(x).
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Tree structured graphical models

Learning a Markov tree approximation from a sample

• Goal: find a tree structure and a parameterization such
that the sample likelihood is maximal (over all possible
trees and parameterizations of them).

• Solution: use sample to estimate mutual informations, by
replacing probabilities by relative frequencies derived from
the sample, then apply Chow-Liu to get MWST, then
choose a root, then use again sample to estimate the
conditional probabilities needed for each vertex.
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