1 Objectives

At the end of this exercise session you should be able to:

- Apply and decode Hamming $(7,4)$ code

2 Exercises

Channel coding

Exercise 1. [1.5] Considering the Hamming $(7,4)$ code. Decode the received strings:
(a) $\mathbf{r}=1101011$
(a) $\frac{1 \wedge 0 \wedge}{s} \underbrace{0 \wedge 1}_{p}$
(b) $\mathbf{r}=0110110$
(c) $\mathbf{r}=0101111$
(d) $\mathbf{r}=0101110$

(b) $r=0110110$
signal 0110 \rightarrow cook wand 0110001
Syndrom $001+110=111$
most puobarke enow pathan: 0010
decoded Wand: 0100

(c) $r=0101^{111}$
cobennd: 0101101
Syncom: 010
most pro bathe err. patten $0000(0,0) P_{1}$
de coded wad: 0101
(d) $r=\underbrace{0101110}_{\begin{array}{r}\text { L codeword } 1101 \\ \text { syncom, } 100+1 \\ \text { An.p.e.p: } 0001\end{array}}$
decoded Wad: 1010 OD

Exercise 2. [1.2] Show that the error probability is reduced by the use of a repetition code R_{3} by computing the error probability of this code for a binary symmetric channel with noise level p.

Source	code
0	000
1	$1 \wedge 1$

An eng is made if two a mane bits
ave flipped.
all thee p^{3} exactly 2 bits are flyfeed: $C_{3}^{2} p^{2}(1-p)$

Exercise 3. [1.6] Calculate the probability of block error p_{B} of the Hamming $(7,4)$ code as a function of the noise level p and show that to leading order it goes as $21 p^{2}$.

The probability of block ens P_{B} of the Taming $(7,4)$ is the sum of events: - $2,3,4,5,6,7$ enow s in one block

$$
\begin{aligned}
P_{B}= & \sum_{r=2}^{7} C_{7}^{r} p^{r}(1-p)^{7-r} \\
& p \ll \quad p_{0} \simeq c_{7}^{2} p^{2}=21 p^{2}
\end{aligned}
$$

Exercise 4. [8.1] Consider three independent random variables $\mathcal{U}, \mathcal{V}, \mathcal{W}$ with entropies H_{u}, H_{v}, H_{w}. Let $\mathcal{X} \equiv(\mathcal{U}, \mathcal{V})$ and $\mathcal{Y} \equiv(\mathcal{V}, \mathcal{W})$. What is $H(\mathcal{X}, \mathcal{Y})$? What is $H(\mathcal{X} \mid \mathcal{Y})$? What is $I(\mathcal{X} ; \mathcal{Y})$?

