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Introduction

Two datasets with two input variables, and two classes (output values).
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Q1 (DT): Questions

1. For both problems, observe how the decision boundary is affected by tree
depth:

(a) illustrate and explain the decision boundary for each depth;
(b) discuss when the model is clearly under- and over-fitting and

detail your evidence for each claim;
(c) explain why the model seems more confident when the depth

is unconstrained.
2. Report the average test set accuracies (over five generations of the dataset)

along with the standard deviation for each depth. Briefly comment on them.

3. Based on both the decision boundaries and the test accuracies, discuss the
differences between the two problems.
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Q1 (DT): Algorithm of the decision tree

Algorithm 1: learn_dt(LS)
if all objects from LS have the same class or if all objects have the
same values for every attribute then

Create a leaf with a label corresponding to the majority class of
the objects of LS;

end if
else

Use LS to find the best splitting attribute A∗ ;
Create a test node for that attribute ;
forall different values a of A∗ do

Build LSa = {o ∈ LS | A∗(o) is a} ;
Use learn_dt(LSa) to grow a subtree from LSa

end forall
end if
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Q1 (DT): decision boundaries (1)
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(a) Depth = 1
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(b) Depth = 2
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(c) Depth = 4
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(d) Depth = 8
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(e) Depth = None
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Q1 (DT): decision boundaries (2)
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(a) Depth = 1
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(b) Depth = 2
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(c) Depth = 4
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(d) Depth = 8
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(e) Depth = None
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Q1 (DT): Why should we plot the TS instead of the LS?

What do you think in terms of under- or over-fitting?
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(a) Boundary decision with LS.

Can you say
anything?
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(a) Boundary decision with LS.
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(b) Boundary decision with TS.

No over-fitting!
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Q1 (DT): Why should we plot the TS instead of the LS?

What do you think in terms of under- or over-fitting?
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(a) Boundary decision with LS.
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(b) Boundary decision with TS.

Over-fitting!
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Q1 (DT): test accuracies over five generations
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Q1 (DT): test accuracies over five generations

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
tree depth

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

Average test/train set error rate wrt tree depth
dataset1 (TS)
dataset2 (TS)
dataset1 (LS)
dataset2 (LS)

8 / 26



Q1 (DT): test accuracies over five generations
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Q2: K-nearest neighbors

1. For both datasets, observe how the decision boundary is affected by the
number of neighbors:
[...]

2. Optimize the value of the n_neighbors parameter using a five-fold cross
validation strategy and obtain an unbiased estimate of the test accuracy for
the second dataset:
[...]

3. For both datasets, observe the evolution the optimal value of the number of
neighbors with respect to the size of the learning sample set. To do so:
[...]

4. Given the results of question 2.3 and a LS of size 250, what do you think of
using five-fold cross-validation to determine the optimal value of
n_neighbors as you did in question 2.2? Discuss.
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Q2 (KNN): decision boundaries (1)
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(a) Nb of neigh. = 1
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(b) Nb of neigh. = 5
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(c) Nb of neigh. = 10
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(d) Nb of neigh. = 75
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(e) Nb of neigh. = 100
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(f) Nb of neigh. = 150
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Q2 (KNN): decision boundaries (2)
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(b) Nb of neigh. = 5
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(c) Nb of neigh. = 10

1.5 1.0 0.5 0.0 0.5 1.0 1.5
X_0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

X_
1

(d) Nb of neigh. = 75
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Q2 (KNN): Estimating the performance of a model theory

Given a model learned from some data set of size N , how to
estimate its performance from this data set?

What for?
I Model selection: choosing the best model among several models.

Example: determining the right complexity of a model or
choosing between different learning algorithms.

I Model assessment: having chosen a final model, it consists in
estimating its performance on new data.
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Q2 (KNN): test set method theory

Idea: randomly divide the data set into two parts: a learning set and
a test set.
Example: 70%− 30%

TSLS

Method:
1. Fit the model on the learning set
2. Test it on the test set

The resulting estimate is an estimate of the error of a model learned on
the whole data set.
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Q2 (KNN): k-fold cross-validation theory

Idea: randomly divide the data set into k subsets (e.g. k = 10).

TS

Method:
- For each subset:

1. Learn the model on the objects that are not in the subset.
2. Compute a prediction with this model for the points in the subset.

- Report the mean error over these predictions.

When k = N , the method is called leave-one-out cross-validation.
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Q2 (KNN): using a cross validation strategy...

How do you obtain an unbiased estimate of the test accuracy for the
second dataset?

Do you think it could be the mean test accuracy over the folds?
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Q2 (KNN): Model selection: typical scenario theory

Given a data set of N objects (input-output pairs), how to best exploit
this data set to obtain:
I The best possible model (e.g. among regression trees and k-NN)
→ model selection

I An estimate of its prediction error → model assessment
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Q2 (KNN): Large data sets: test set method theory

Idea: randomly divide the data set into 3 parts:
1. A learning set LS
2. A validation set V S
3. A test set TS

Example: 50%− 25%− 25%

LS VS TS

1. Fit the models to compare on the learning set, using different
algorithms or different complexity values.

2. Select the best one based on its performance on the validation set.
3. Retrain this model on LS + V S.
4. Test it on the test set → performance estimate.
5. Retrain this model on LS + V S + TS. This yields the finally

chosen model.
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Q2 (KNN): Small data sets: cross-validation theory

Idea: use two stages of k-fold cross-validation.

TS1 First stage

TS2 Second stage

The first stage is used for the assessment of the final model, while the
second one is used for model selection.
Note: we could also combine test set and cross-validation.
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Q2 (KNN): unbiased estimate of the test accuracy

Note: we could also combine test set and cross-validation.
Test set method

LS VS TS

Test set + CV method

CV (LS+VS in test set method)

TS
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Q2 (KNN): optimal values
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Q3: Residual fitting

Residual fitting is a simple algorithm to fit iteratively a linear regression model (see
Lecture 3: linear regression, slide 20). We propose to implement this algorithm
and to use it here to address the two classification problems by encoding the two
classes in numerical values 0/1. Answer the following questions.

1. In the algorithm in the lecture slides, proof that the best weight wk for the
attribute ak introduced in the model at step k is ρak,∆kyσ∆ky, where ρak,∆ky

is the Pearson correlation between ak and ∆ky and σ∆ky is the standard
deviation of ∆ky.

2. Implement the algorithm as described in the slides.

3. Learn a residual fitting model on both datasets:
[...]

4. Learn a residual fitting model on a modified version of the second dataset that
includes three new attributes corresponding to X1 ∗X1, X2 ∗X2 and
X1 ∗X2, in addition to the two original ones X1 and X2:
[...]
Comment on these results and compare them with those obtained in
question 3.3.
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Q3: Residual fitting (a.k.a. Forward-Stagewise Regression)

Residual fitting: alternative algorithm, of general interest
I Start by computing w0 for the no-variable case: w0 = y

I Introduce attributes (assumed of zero mean, unit variance)
progressively, one at the time
I Define residual at step k by

∆ky(o) = y(o)− w0 −
∑k−1

i=1 wiai(o)

I Find best fit of residual with only attribute ak:
wk = ρak,∆kyσ∆ky.

(since residuals have zero mean, and attributes are pre-whitened)

Note that this algorithm is in general suboptimal w.r.t. to the direct solution given

previously, but it is linear in the number of attributes.
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Q3: residual fitting on datasets 1 and 2
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• Only X0 and X1.
⇒ Not very good.
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Q3: residual fitting on extended dataset 2
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⇒ Very good. Why?

• Is it supposed to work on the first dataset?
• Can we create other features that may be very useful for the first

dataset?

• For instance
√
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0 +X2
1 and tan−1

(
X0
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)
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Project 2: Reminder: bias/variance decomposition theory

ELS

{
Ey|x

{
(y − ŷ(x))2

}}
= noise(x) + bias2(x) + variance(x)

• noise(x) = Ey|x

{
(y − hB(x))2

}
:

Quantifies how much y varies from hB(x) = Ey|x{y} (the Bayes
model).
• bias2(x) = (hB(x)− ELS{ŷ(x)})2:

Measures the error between the Bayes model and the average
model.
• variance(x) = ELS

{
(ŷ − ELS{ŷ(x)})2

}
:

Quantifies how much ŷ(x) varies from one learning sample to
another.
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Project 2

• On bias and variance analysis
• Two parts: analytical derivations and empirical analyses
• By 17 November
• Concise report & codes must be submitted.

By next week

� Register on the Submission Platform.
� Fill in the second form (Project 2) for updating Slack.
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