
ELEN0062 - Introduction to Machine Learning
Project 2 - Bias and variance analysis

October 2020

The goal of this second assignment is to help you to better understand the important notions of bias
and variance. Make sure that your experiments are reproducible (e.g., by fixing manually random seeds).
We ask you to write a brief report (pdf format) giving your observations and conclusions. Answers are
expected to be concise. You will need to write several scripts to answer some of the questions below, add
all of them.

The assignment must be carried out by group1 of two students and submitted as a tar.gz or zip file on
Montefiore’s submission plateform (http://submit.montefiore.ulg.ac.be) before November 17, 23:59
GMT+2. Note that attention will be paid to how you present your results. Careful thoughts in particular
- but not limited to - should be given when it comes to plots.

1 Analytical derivations

1.1 Bayes model and residual error in classification
Let us consider a binary classification problem with an output y ∈ {−1,+1} and two real input variables
x0 and x1. Each sample xi = (xi

0, x
i
1) is generated by first selecting its class yi at random (with an equal

probability for each class), and then drawing their values from a multivariate Gaussian distribution(
xi

0
xi

1

)
∼ N

([
0
0

]
,

[
1 ρi

ρi 1

])
where ρi is class-dependent, i.e., ρi = ρ+ > 0 if yi = +1 and ρi = ρ− = −ρ+ if yi = −1.

(a) Derive an analytical formulation of the Bayes model hb(x0, x1) corresponding to the zero-one error
loss. Justify your answer.

(b) Derive an analytical formulation of the residual error, i.e., the generalization error of the Bayes model:

Ex0,x1,y{1(y 6= hb(x0, x1)}.

Then, estimate its value using the analytical formulation (i.e., not empirically) if ρ+ = 0.75. Justify.
Verify your estimation empirically.

1.2 Bias and variance of ridge regression
Let us consider a regression problem y = f(x)+ ε where ε ∼ N (0, σ2) and let LS = {(xi, yi|i = 1, . . . , N}
denote the learning sample (of fixed size N), with yi ∈ R and xi ∈ Rp. Assuming for simplicity that we
know that f(0) = 0 (so that no intercept is needed), we want to approximate this function with a linear
model defined as ŷ(x) = xT w, with w ∈ Rp. Let us consider the following two way to train the vector w:

• Ordinary least-square: wOLS = arg min
w∈Rp

∑N
i=1(yi − xT

i w)2

• Ridge regression: wR = arg min
w∈Rp

∑N
i=1(yi − xT

i w)2 + λwT w

1See instructions on https://people.montefiore.uliege.be/asutera/iml.php.

1

http://submit.montefiore.ulg.ac.be
https://people.montefiore.uliege.be/asutera/iml.php


Let us denote by X the n× p data matrix (x1, . . . ,xN )T .
(a) Assuming that X is orthogonal (i.e., XT X = I), show that

wR = wOLS

1 + λ
.

(b) Even if the data matrix is not orthogonal, let us assume that we use ŷ(x) = xT wOLS

1 + λ
as our model,

with wOLS defined as above.

i. Show analytically the relationships between the bias and variance of xT wOLS and xT wOLS

1 + λ
;

ii. Explain the impact of λ on bias and variance on the basis of these formulas.

2 Empirical analyses
Let us consider a regression problem y = f(x) + ε where ε ∼ N (0, σ2) and x ∼ U(0, 2). Let us denote
by LS = {(xi, yi)|i = 1, . . . , N} the learning sample (of fixed size N) and by A a supervised learning
algorithm.
(a) Give the analytical expressions of the residual error, the squared bias, the variance and the expected

error at a given point x0.

(b) Assuming that you can generate samples for a given value x (as is the case when f and the noise
distribution are known), describe an experimental protocol to estimate at a given point x0:

(i) the value of the Bayes model and the residual error,
(ii) the squared bias of the learning algorithm,
(iii) the variance of the learning algorithm,
(iv) the expected error of the learning algorithm,

Let us now assume that f(x) = −x3 +3x2−2x+1 and σ2 = 0.1. Let us consider as candidate models
ŷm(x) =

∑m
i=0 aix

i of increasing degrees 0 ≤ m ≤ 5 (i.e., ŷ1(x) = a0 + a1x
1, ŷ2(x) = a0 + a1x

1 + a2x
2,

. . . ), fitted by ordinary least-square2).

Answer the following questions by using your protocol of question (b).
(c) Estimate and plot the value of the Bayes model and the residual error for x ∈ [0, 2]. Compare these

(experimental) results with the analytical values.

(d) Estimate and plot the following quantities for x ∈ [0, 2] and using learning samples of size N = 30,
for m ∈ {0, . . . , 5}:

(i) the squared bias of ŷm,
(ii) the variance of ŷm,
(iii) the expected error of ŷm.

Discuss the impact of model complexity m on these quantities and in particular for their values in
x = 0, x = 0.5, x = 1 and x = 1.75.
Remark: For sake of simplicity and to make the estimations more stable, you can use directly f(x)
in your protocol to answer this question (instead of its empirical estimate as obtained in (c)).

(e) Adapt the protocol of question (b) to estimate the mean values of the previous quantities over the
input space. Plot the mean quantities for increasing values of m. Explain what you observe.

(f) Instead of OLS, use ridge regression3 to fit the models. Setting m to 5, observe empirically the effect
of the regularisation level λ ∈ [0.0, 2.0] on squared bias, variance, and the error. Explain what you
observe.

2This method is implemented in Scikit-learn by the function LinearRegression.
3This method is implemented in Scikit-learn by the function Ridge.
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