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Abstract

This thesis investigates the following question: Can supervised learning techniques be

successfully used for finding better solutions to multistage stochastic programs? A similar

question had already been posed in the context of reinforcement learning, and had led to

algorithmic and conceptual advances in the field of approximate value function methods

over the years (Lagoudakis and Parr, 2003; Ernst, Geurts, and Wehenkel, 2005; Lang-

ford and Zadrozny, 2005; Antos, Munos, and Szepesvári, 2008). This thesis identifies

several ways to exploit the combination “multistage stochastic programming/supervised

learning” for sequential decision making under uncertainty.

Multistage stochastic programming is essentially the extension of stochastic program-

ming (Dantzig, 1955; Beale, 1955) to several recourse stages. After an introduction to

multistage stochastic programming and a summary of existing approximation approaches

based on scenario trees, this thesis mainly focusses on the use of supervised learning for

building decision policies from scenario-tree approximations.

Two ways of exploiting learned policies in the context of the practical issues posed

by the multistage stochastic programming framework are explored: the fast evaluation

of performance guarantees for a given approximation, and the selection of good scenario

trees. The computational efficiency of the approach allows novel investigations relative

to the construction of scenario trees, from which novel insights, solution approaches and

algorithms are derived. For instance, we generate and select scenario trees with random

branching structures for problems over large planning horizons. Our experiments on

the empirical performances of learned policies, compared to golden-standard policies,

suggest that the combination of stochastic programming and machine learning techniques

could also constitute a method per se for sequential decision making under uncertainty,

inasmuch as learned policies are simple to use, and come with performance guarantees

that can actually be quite good.

Finally, limitations of approaches that build an explicit model to represent an optimal

solution mapping are studied in a simple parametric programming setting, and various

insights regarding this issue are obtained.
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Chapter 1

Introduction

Multistage stochastic programming has attracted a lot of interest over the last years,

as a promising framework for formulating sequential decision making problems under

uncertainty. Several potential applications of the framework are often cited:

• Capacity planning: finding the location and size of units or equipment, such as

power plants or telecommunication relays.

• Production planning: selecting components to produce, allocating components to

machines, managing stocks.

• Transportation and logistics: sending trucks and deliver goods.

• Financial management: balancing a portfolio of assets and liabilities according to

market conditions and subject to regulatory constraints.

In these applications, uncertainty may refer to the evolution of the demand for goods or

services, temperature and rainfall patterns affecting consumption or production, inter-

est rates affecting the burden of debt, . . . Under growing environmental stress, resource

limitations, concentration of populations in cities, many believe that these applications

can only get a higher societal impact in the future, and that even better quantitative

methods for tackling them are needed, especially methods able to take into account a

large number of constraints.

In general, problems where a flexible plan of successive decisions has to be imple-

mented, under uncertainties described by a probabilistic model, can be formulated as a

multistage stochastic program (Chapter 2). However, scalable numerical solution algo-

rithms are not always available, so that restrictions to certain classes of programs and

then further approximations are needed.

Interestingly, the approximations affect primarily the representation of the uncer-

tainty, rather than the space of possible decisions or the space of possible states reachable

by the controlled system. Thus, the limitations with the problem dimensions suffered by

the multistage stochastic framework are of a different nature than those found in dynamic

programming (the so-called curse of dimensionality). The multistage stochastic program-

ming framework is very attractive for settings where decisions in high-dimensional spaces

must be found, but suffers quickly from the dimensions of the uncertainty, and from the

extension of the planning horizon.

This thesis deals with some aspects related to multistage stochastic programming.

Our research was initially motivated by finding ways to incorporate to the multistage
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stochastic programming framework recent advances in statistics and machine learning,

especially perturb-and-combine estimation methods, and value function approximation

methods from approximate dynamic programming.

In this thesis, we propose and implement on a series of test problems a fast approach,

based on supervised learning, for estimating the quality of an approximate solution. We

show that this approach is flexible and tractable enough to foster advances in the ways

multistage stochastic programming problems are approximated, by explicitly proposing

and evaluating novel approximation procedures, according to two criteria: the quality of

the approximate solution for the true problem, and the overall computational complexity

of the procedure.

A detailed account of the contributions presented in the thesis can be found in Sec-

tion 7.1.

1.1 Outline of the Thesis

The thesis is organized as follows.

Chapter 2 introduces the multistage stochastic programming approach to sequential

decision making under uncertainty, and several notions used throughout the thesis. It

discusses the value of multistage stochastic programming with respect to related ap-

proaches, and presents the main challenges and limitations of the multistage stochastic

programming approach.

Chapter 3 reviews some approaches to statistical estimation investigated in machine

learning. Then, it explores the idea of aggregating in a certain sense the solutions to

various approximations of the same multistage problem.

Chapter 4 develops the principles of a solution validation approach, based on super-

vised learning, and shows how it can be exploited so as to identify good approximations

to multistage programs under tight complexity limitations. Then, it proposes and eval-

uates on a family of test problems a new approximate solution approach, based on the

generation of several approximations (scenario trees) rather than a single one.

Chapter 5 investigates further methods for estimating the value of a single approxi-

mation to a multistage program, in the practical context of a test problem.

Chapter 6 develops an efficient procedure for predicting the optimal solution of a

certain class of parametric programs, with the aim of better characterizing the potential

limitations of approaches based on learning.

Chapter 7 concludes by a summary of contributions, a discussion on future research

directions, and some thoughts about the possible impacts on machine learning and arti-

ficial intelligence of the research in stochastic programming.

Some mathematical background, deemed not essential to be imposed as a preliminary

reading, has been put in a series of appendices. The reasons for including in the thesis

the material of a given appendix are detailed at the beginning of the appendix. The

appendices could also be handy to clarify some statements in the main body of the

thesis, and to this end, the content of the appendices has been referenced in an index

placed at the end of the thesis.

The appendices are organized as follows.
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Appendix A defines notions from optimization and variational analysis.

Appendix B defines notions from measure and probability theory.

Appendix C defines notions from functional analysis related to kernel methods.

Appendix D summarizes some results from two-stage stochastic programming.

1.2 Published Work

Whereas the material of Chapters 5 and 6 is still unpublished, most of the material of

Chapters 2, 3, 4 has been published in the following papers.

• B. Defourny, L. Wehenkel. 2007. Projecting generation decisions induced by a stochastic

program on a family of supply curve functions. Third Carnegie Mellon Conference on the

Electricity Industry. Pittsburgh PA. 6 pages.

• B. Defourny, D. Ernst, L. Wehenkel. 2008. Lazy planning under uncertainty by optimizing

decisions on an ensemble of incomplete disturbance trees. S. Girgin, M. Loth, R. Munos, editors,

Recent Advances in Reinforcement Learning, Eighth European Workshop (EWRL-2008). LNCS

(LNAI) 5323, Springer, 1–14.

• B. Defourny, D. Ernst, L. Wehenkel. 2009. Planning under uncertainty, ensembles of

disturbance trees and kernelized discrete action spaces. IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning (ADPRL-2009). 145–152.

• B. Defourny, D. Ernst, L. Wehenkel. 2009. Bounds for multistage stochastic programs

using supervised learning strategies. O. Watanabe, T. Zeugmann, editors, Stochastic Algo-

rithms: Foundations and Applications. Fifth International Symposium, SAGA 2009. LNCS

5792, Springer, 61–73.

• B. Defourny, D. Ernst, L. Wehenkel. 2010. Multistage stochastic programming: A scenario

tree based approach to planning under uncertainty. Accepted as a contributing chapter to

L.E. Sucar, E.F. Morales, and J. Hoey, editors, Decision Theory Models for Applications in

Artificial Intelligence: Concepts and Solutions. To be published by IGI Global.
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Chapter 2

The Multistage Stochastic Programming

Framework

This chapter presents the multistage stochastic programming approach to sequential

decision making under uncertainty. It points out important issues posed by the approach,

and discusses the value of the framework with respect to related frameworks.

The chapter is organized as follows. Section 2.1 presents the multistage stochastic

programming framework, the discretization techniques, and the considerations on nu-

merical optimization methods that have an influence on the way problems are modeled.

Section 2.2 compares the approach to Markov Decision Processes, discusses the curse

of dimensionality, and puts in perspective simpler decision making models based on nu-

merical optimization, such as two-stage stochastic programming with recourse or Model

Predictive Control. Section 2.3 explains the issues posed by the dominant approxima-

tion/discretization approach for solving multistage programs (which is suitable for han-

dling both discrete and continuous random variables). Section 2.4 provides some back-

ground information on existing approximation methods. Finally, Section 2.5 concludes

by our summary of today’s perception of multistage stochastic programming among re-

searchers.

2.1 Description of the Framework

In this section, we describe an attitude towards risk and uncertainty that can motivate

decision makers to employ multistage stochastic programming. Then, we detail the ele-

ments of the decision model and the approximations that can make the model tractable.

2.1.1 From Nominal Plans to Decision Processes

In their first attempt towards planning under uncertainty, decision makers often set up a

course of actions, or nominal plan (reference plan), deemed to be robust to uncertainties

in some sense, or to be a wise bet on future events. Then, they apply the decisions, often

departing from the nominal plan to better take account of actual events. To further

improve the plan, decision makers are then led to consider (i) in which parts of the

plan flexibility in the decisions may help to better fulfill the objectives, and (ii) whether

the process by which they make themselves (or the system) “ready to react” impacts the

initial decisions of the plan and the overall objectives. If the answer to (ii) is positive, then

it becomes valuable to cast the decision problem as a sequential decision making problem,
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even if the net added value of doing so (benefits minus increased complexity) is unknown

at this stage. During the planning process, the adaptations (or recourse decisions) that

may be needed are clarified, their influence on prior decisions is quantified. The notion of

nominal plan is replaced by the notion of decision process, defined as a course of actions

driven by observable events. As distinct outcomes have usually antagonist effects on ideal

prior decisions, it becomes crucial to determine which outcomes should be considered, and

what importance weights should be put on these outcomes, in the perspective of selecting

decisions under uncertainty that are not regretted too much after the dissipation of the

uncertainty by the course of real-life events.

2.1.2 Incorporating Probabilistic Reasoning

In the robust optimization approach to decision making under uncertainty, decision mak-

ers are concerned by worst-case outcomes. Describing the uncertainty is then essentially

reduced to drawing the frontier between events that should be considered and events

that should be excluded from consideration (for instance, because they would paralyze

any action). In that context, outcomes under consideration form the uncertainty set, and

decision making becomes a game against some hostile opponent that selects the worst

outcome from the uncertainty set. Ben-Tal et al. (2004) provide arguments in favor of

robust approaches.

In a stochastic programming approach, decision makers use a softer frontier between

possible outcomes, by assigning weights to outcomes and optimizing some aggregated

measure of performance that takes into account all these possible outcomes. In that

context, the weights are often interpreted as a probability measure over the events, and

a typical way of aggregating the events is to consider the expected performance under

that probability measure.

Furthermore, interpreting weights as probabilities allows reasoning under uncertainty.

Essentially, probability distributions are conditioned on observations, and Bayes’ rule

from probability theory quantifies how decision makers’ initial beliefs about the likelihood

of future events — be it from historical data or from bets — should be updated on the

basis of new observations.

Technically, it turns out that the optimization of a decision process contingent to

future events is more tractable (read: suitable to large-scale operations) when the “rea-

soning under uncertainty” part can be decoupled from the optimization process itself. In

particular, such a decoupling occurs when the probability distributions describing future

events are not influenced in any way by the decisions selected by the agent, that is, when

the uncertainty is exogenous to the decision process.

2.1.3 The Elements of the General Decision Model

We can now describe the main elements of a multistage stochastic programming decision

model. These elements are:

i. A sequence of random variables ξ1, ξ2, . . . , ξT defined on a probability space

(Ω,B,P). The random variables represent the uncertainty in the decision problem,

and their possible values represent the possible observations to which the decision
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maker will react. The probability measure P serves to quantify the prior beliefs

about the uncertainty. There is no restriction on the structure of the random vari-

ables; in particular, the random variables may be dependent. When the realization

of ξ1, . . . , ξt−1 is known, there is a residual uncertainty represented by the random

variables ξt, . . . , ξT , the distribution of which in now conditioned on the realization

of ξ1, . . . , ξt−1.

ii. A sequence of decisions u1, u2, . . . , uT defining the decision process for the problem.

Many models also use a terminal decision uT+1. We will assume that ut is valued in

a Euclidian space Rm (the space dimension m, corresponding to a number of scalar

decisions, could vary with the index t, but we will not stress that in the notation).

iii. A convention specifying when decisions should actually be taken and when the

realizations of the random variables are actually revealed. This means that if ξt−1

is observed before taking a decision ut, we can actually adapt ut to the realization

of ξt−1. To this end, we identify decision stages: see Table 2.1. A row of the

table is read as follows: at decision stage t > 1, the decisions u1, . . . , ut−1 are

already implemented (no modification is possible), the realization of the random

variables ξ1, . . . , ξt−1 is known, the realization of the random variables ξt, . . . , ξT is

still unknown but a density P(ξt, . . . , ξT | ξ1, . . . , ξt−1) conditioned on the realized

value of ξ1, . . . , ξt−1 is available, and the current decision to take concerns the

value of ut. Once such a convention holds, we need not stress in the notation the

difference between random variables ξt and their realized value, or decisions as

functions of uncertain events and the actual value for these decisions: the correct

interpretation is clear from the context of the current decision stage.

The adaptation of a decision ut to prior observations ξ1, . . . , ξt−1 will always be

made in a deterministic fashion, in the sense that ut is uniquely determined by the

value of (ξ1, . . . , ξt−1).

A sequential decision making problem has more than two decision stages inas-

much as the realizations of the random variables are not revealed simultaneously:

the choice of the decisions taken between successive observations has to take into

account some residual uncertainty on future observations. If the realization of

several random variables is revealed before actually taking a decision, then the

corresponding random variables should be merged into a single random vector;

if several decisions are taken without intermediary observations, then the corre-

sponding decisions should be merged into a single decision vector (Gassmann and

Prékopa, 2005). This is how a problem concerning several time periods could ac-

tually be a two-stage stochastic program, involving two large decision vectors u1

(first-stage decision, constant), u2 (recourse decision, adapted to the observation of

ξ1). What is called a decision in a stochastic programming model may thus actually

correspond to several actions implemented over a certain number of discrete time

periods.

iv. A sequence of feasibility sets U1, . . . ,UT describing which decisions u1, . . . , uT are

admissible. When ut ∈ Ut, one says that ut is feasible. The feasibility sets

U2, . . . ,UT may depend, in a deterministic fashion, on available observations and

prior decisions. Thus, following Table 2.1, Ut may depend on ξ1, u1, ξ2, u2,

. . . , ξt−1 in a deterministic fashion. Note that prior decisions are uniquely deter-
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Tab. 2.1: Decision stages, setting the order of observations and decisions.

Stage Available information for taking decisions Decision

Prior Observed Residual

decisions outcomes uncertainty

1 none none P(ξ1, . . . , ξT ) u1

2 u1 ξ1 P(ξ2, . . . , ξT | ξ1) u2

3 u1, u2 ξ1, ξ2 P(ξ3, . . . , ξT | ξ1, ξ2) u3

...
...

T u1, . . . , uT−1 ξ1, . . . , ξT−1 P(ξT | ξ1, . . . , ξT−1) uT

optional:

T+1 u1, . . . , uT ξ1, . . . , ξT none (uT+1)

mined by prior observations, but for convenience we keep track of prior decisions

to parametrize the feasibility sets.

An important role of the feasibility sets is to model how decisions are affected by

prior decisions and prior events. In particular, a situation with no possible recourse

decision (Ut empty at stage t, meaning that no feasible decision ut ∈ Ut exists) is

interpreted as a catastrophic situation to be avoided at any cost.

We will always assume that the planning agent knows the set-valued mapping from

the random variables ξ1, . . . , ξt−1 and the decisions u1, . . . , ut−1 to the set Ut of

feasible decisions ut.

We will also assume that the feasibility sets are such that a feasible sequence of

decisions u1 ∈ U1, . . . , uT ∈ UT exists for all possible joint realizations of ξ1, . . . , ξT .

In particular, the fixed set U1 must be nonempty. A feasibility set Ut parametrized

only by variables in a subset of {ξ1, . . . , ξt−1} must be nonempty for any possi-

ble joint realization of those variables. A feasibility set Ut also parametrized by

variables in a subset of {u1, . . . , ut−1} must be implicitly taken into account in the

definition of the prior feasibility sets, so as to prevent immediately a decision maker

from taking a decision at some earlier stage that could lead to a situation at stage t

with no possible recourse decision (Ut empty), be it for all possible joint realiza-

tions of the subset of {ξ1, . . . , ξt−1} on which Ut depends, or for some possible joint

realization only. These implicit requirements will affect in particular the definition

of U1.

For example, assume that ut−1, ut ∈ Rm, and take Ut = {ut ∈ Rm : ut �
0, At−1ut−1 + Btut = ht(ξt−1)} with At−1, Bt ∈ Rq×m fixed matrices, and ht an

affine function of ξt−1 with values in Rq. If Bt is such that {Btut : ut ≥ 0} = Rq,

meaning that for any v ∈ Rq, there exists some ut � 0 with Btut = v, then this

is true in particular for v = ht(ξt−1)− At−1ut−1, so that Ut is never empty. More

details on such conditions can be found in Appendix D.

v. A performance measure, summarizing the overall objectives of the decision maker,

that should be optimized. It is assumed that the decision maker knows the perfor-
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Fig. 2.1: (From left to right) Nested partitioning of the event space Ω, starting from a trivial

partition representing the absence of observations. (Rightmost) Scenario tree corre-

sponding to the partitioning process.

mance measure. In this chapter, we write the performance measure as the expecta-

tion of a function f that assigns some scalar value to each realization of ξ1, . . . , ξT
and u1, . . . , uT , assuming the integrability of f with respect to the joint distribution

of ξ1, . . . , ξT .

For example, one could take for f a sum of scalar products
∑T

t=1 ct · ut, where

c1 is fixed and where ct depends affinely on ξ1, . . . , ξt−1. The function f would

represent a sum of instantaneous costs over the planning horizon. The decision

maker would be assumed to know the vector-valued mapping from the random

variables ξ1, . . . , ξt−1 to the vector ct, for each t.

Besides the expectation, more sophisticated ways to aggregate the distribution

of f into a single measure of performance have been investigated (Ruszczyński and

Shapiro, 2006; Pflug and Römisch, 2007). An important element considered in the

choice of the performance measure is the tractability of the resulting optimization

problem.

The planning problem is then formalized as a mathematical programming problem.

The formulation relies on a particular representation of the random process ξ1, . . . , ξT in

relation with the decision stages, referred to as a scenario tree in the stochastic program-

ming literature, and described in the next section.

2.1.4 The Tree Representation of Gradually Revealed Scenarios

Let us call scenario an outcome of the random process ξ1, . . . , ξT . A scenario tree is an

explicit representation of the branching process induced by the gradual observation of

ξ1, . . . , ξT , under the assumption that the random variables have a finite discrete support.

It is built as follows. A root node is associated to the first decision stage and to the initial

absence of observations. To the root node are connected children nodes associated to

stage 2, one child node for each possible outcome of the random variable ξ1. Then, to

each node of stage 2 are connected children nodes associated to stage 3, one for each

outcome of ξ2 given the observation of ξ1 relative to the parent node. The branching

process construction goes on until the last stage is reached; at this point, the outcomes

associated to the nodes on the unique path from the root to a leaf define together a

particular scenario, that can be associated to the leaf.

The probability distribution of the random variables is also taken into account. Prob-

ability masses are associated to the nodes of the scenario tree. The root node has

probability 1, whereas children nodes are weighted by probabilities that represent the
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probability of the value to which they are associated, conditioned on the value associated

to their ancestor node. Multiplying the probabilities of the nodes of the path from the

root to a leaf gives the probability of a scenario.

Clearly, an exact construction of the scenario tree would require an infinite num-

ber of nodes if the support of (ξ1, . . . , ξT ) is discrete but not finite. A random process

involving continuous random variables cannot be represented as a scenario tree; never-

theless, the scenario tree construction turns out to be instrumental in the construction

of approximations to nested continuous conditional distributions.

Branchings are essential to represent residual uncertainty beyond the first decision

stage. At the planning time, the decision makers may contemplate as many hypothetical

scenarios as desired, but when decisions are actually implemented, the decisions can-

not depend on observations that are not yet available. We have seen that the decision

model specifies, with decision stages, how the scenario actually realized will be gradually

revealed. No branchings in the representation of the outcomes of the random process

would mean that after conditioning on the observation of ξ1, the outcome of ξ2, . . . , ξT
could be predicted (anticipated) exactly. Under such a representation, decisions spanning

stages 2 to T would be optimized on the anticipated outcome. This would be equivalent

to optimizing a nominal plan for u2, . . . , uT that fully bets on some scenario anticipated

at stage 2.

To visualize how information on the realization of the random variables becomes

gradually available, it is convenient to imagine nested partitions of the event space (Fig-

ure 2.1): refinements of the partitions appear gradually at each decision stage in cor-

respondence with the possible realizations of the new observations. To each subregion

induced by the partitioning of the event space can be associated a constant recourse

decision, as if decisions were chosen according to a piecewise constant decision policy.

On Figure 2.1, the surface of each subregion could also represent probabilities (then by

convention the initial square has a unit surface and the thin space between subregions

is for visual separation only). The dynamical evolution of the partitioning can be rep-

resented by a scenario tree: the nodes of the tree corresponds to the subregions of the

event space, and the edges between subregions connect a parent subregion to its refined

subregions obtained by one step of the recursive partitioning process.

Ideally a scenario tree should cover the totality of possible outcomes of a random

process. But unless the support of the distribution of the random variables is finite, no

scenario tree with a finite number of nodes can represent exactly the random process and

the probability measure, as we already mentioned, while even if the support is finite, the

number of scenarios grows exponentially with the number of stages.

2.1.5 Approximating Random Processes with Scenario Trees

In the general decision model, the agent is assumed to have access to the joint probability

distributions, and is able to derive from it the conditional distributions listed in Table 2.1.

In practice, computational limitations will restrict the quality of the representation of

P. Let us however reason at first at an abstract and ideal level to establish the program

that an agent would solve for planning under uncertainty.

For brevity, let ξ denote (ξ1, . . . , ξT ), and let π(ξ) denote a decision policy mapping

realizations of ξ to realizations of the decision process u1, . . . , uT . Let πt(ξ) denote
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ut viewed as a function of ξ. To be consistent with the decision stages, the policy

must be non-anticipative, in the sense that ut cannot depend on observations relative to

subsequent stages. Equivalently one can say that π1 must be a constant-valued function,

π2 a function of ξ1, and in general πt a function of ξ1, . . . , ξt−1 for t = 2, . . . , T .

The planning problem can then be stated as the search for a non-anticipative policy π,

restricted by the feasibility sets Ut, that minimizes an expected total cost f spanning the

decision stages and determined by the scenario ξ and the decisions π(ξ):

P : minimize E {f(ξ, π(ξ))} subject to πt(ξ) ∈ Ut(ξ) ;

π(ξ) non-anticipative.

Here we used an abstract notation which hides the nested expectations corresponding

to the successive random variables, and the possible sum decomposition of the function f

among the decision stages. Concrete formulations are presented in Appendix D. Note

that it is possible to be more general by replacing the expectation operator by a func-

tional Φ{·} that maps the distribution of f to a single number in [−∞,∞]. We also

stressed the possible dependence of Ut on ξ1, u1, ξ2, u2, . . . , ξt−1 by writing Ut(ξ).

A program more amenable to numerical optimization techniques is obtained by repre-

senting π(·) by a set of optimization variables for each possible argument of the function

— for each possible outcome ξk = (ξk
1 , . . . , ξ

k
T ) of ξ, one associates the optimization vari-

ables (uk
1 , . . . , u

k
T ), written uk for brevity. The non-anticipativity of the policy can be

expressed by a set of equality constraints: for the first decision stage (t = 1) we require

uk
1 = uj

1 for all (k, j), and for subsequent stages (t ≥ 2) we require uk
t = uj

t for each (k, j)

such that (ξk
1 , . . . , ξ

k
t−1) ≡ (ξj

1, . . . , ξ
j
t−1).

A finite-dimensional approximation to the program P is obtained by considering a

finite number n of outcomes, and assigning to each outcome a probability pk > 0. This

yields a formulation on a scenario tree covering the scenarios ξk:

P ′ : minimize
∑n

k=1 p
k f(ξk, uk) subject to uk

t ∈ Ut(ξ
k) ∀ k ;

uk
1 = uj

1 ∀ k, j ,
uk

t = uj
t whenever (ξk

1 , . . . , ξ
k
t−1) ≡ (ξj

1, . . . , ξ
j
t−1) .

Once again we used a simple notation ξk for designating outcomes of the process ξ,

which hides the fact that outcomes can share some elements according to the branching

structure of the scenario tree.

Non-anticipativity constraints can also be accounted for implicitly. A partial path

from the root (depth 0) to some node of depth t of the scenario tree identifies some

outcome (ξk
1 , . . . , ξ

k
t ) of (ξ1, . . . , ξt). To the node can be associated the decision uk

t+1, but

also all decisions uj
t+1 such that (ξk

1 , . . . , ξ
k
t ) ≡ (ξj

1, . . . , ξ
j
t ). Those decisions are redundant

and can be merged into a single decision on the tree, associated to the considered node

of depth t.

2.1.6 Simple Example of Formulation

To fix ideas, we illustrate the scenario tree technique on a trajectory tracking problem

under uncertainty with control penalization. In the proposed example, the uncertainty

is such that the exact problem can be posed on a small finite scenario tree.
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Say that a random process ξ = (ξ1, ξ2, ξ3), representing perturbations at time t =

1, 2, 3, has 7 possible outcomes (scenarios), denoted by ξk, 1 ≤ k ≤ 7, with known

probabilities pk:

k 1 2 3 4 5 6 7

ξk
1 -4 -4 -4 3 3 3 3

ξk
2 -3 2 2 -3 0 0 2

ξk
3 0 -2 1 0 -1 2 1

pk 0.1 0.2 0.1 0.2 0.1 0.1 0.2 .

The random process is fully represented by the scenario tree of Figure 2.2 (Left): the

first possible outcome is ξ1 = (−4,−3, 0) with probability p1 = 0.1, and so on. Note that

the random variables ξ1, ξ2, ξ3 are not mutually independent.

Assume that an agent can choose actions vt ∈ R at t = 1, 2, 3 (the notation vt instead

of ut is justified in the sequel). The goal of the agent is the minimization of an expected

sum of costs E{∑3
t=1 ct(vt, xt+1) | x1 = 0}. Here xt ∈ R is the state of a continuous-

state, discrete-time dynamical system, that starts from the initial state x1 = 0 and

follows the state transition equation xt+1 = xt + vt + ξt. Costs ct(vt, xt+1), associated

to the decision vt and the transition to the state xt+1, are defined by ct = (dt+1 + v2
t /4)

with dt+1 = |xt+1−αt+1| and α2 = 2.9, α3 = 0, α4 = 0 (αt+1: nominal trajectory; dt+1:

tracking error; v2
t /4: penalization of control effort).

An optimal policy mapping observations ξ1, . . . , ξt−1 to decisions vt can be obtained

by solving the following convex quadratic program over variables vk
t , x

k
t+1, d

k
t+1, where k

runs from 1 to 7 and t from 1 to 3, and over xk
1 trivially set to 0:

minimize
∑7

k=1 pk
[
∑3

t=1(d
k
t+1 + (vk

t )2/4)
]

subject to − dk
t+1 ≤ xk

t+1 − αt+1 ≤ dk
t+1 ∀ k, t

xk
1 = 0 , xk

t+1 = xk
t + vk

t + ξk
t ∀ k, t

v1
1 = v2

1 = v3
1 = v4

1 = v5
1 = v6

1 = v7
1

v1
2 = v2

2 = v3
2 , v4

2 = v5
2 = v6

2 = v7
2

v2
3 = v3

3 , v5
3 = v6

3 .

Here, the vector of optimization variables (vk
1 , x

k
1) plays the role of uk

1 , the vector

(vk
t , x

k
t , d

k
t ) plays the role of uk

t for t = 2, 3, and the vector (xk
4 , d

k
4) plays the role of uk

4 ,

showing that the decision process u1, . . . , uT+1 of the general multistage stochastic pro-

gramming decision model can in fact include state variables and more generally any

element that serves to evaluate costs conveniently.

The optimal objective value is +7.3148, and the optimal solution is depicted on Fig-

ure 2.2. In this example, the final solution can be recast as a mapping π̃t from xt

to vt: π̃1(0) = −0.1, π̃2(−4.1) = 2.1, π̃2(2.9) = −1.16, π̃3(−5) = 2, π̃3(−1.26) = 1.26,

π̃3(0) = 0.667, π̃3(1.74) = −0.74, π̃3(3.74) = −2. Hence in this case the modeling as-

sumption of an agent observing ξt instead of the system state xt is not a fundamental

restriction.
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Fig. 2.2: (Left) Scenario tree representing the 7 possible scenarios for a random process ξ =

(ξ0, ξ1, ξ2). The outcomes ξk
t are written in bold, and the scenario probabilities pk are

reported at the leaf nodes. (Middle) Optimal actions vt for the agent. (Right) Visited

states xt under the optimal actions, treated as artificial decisions (see text).

2.2 Comparison to Related Approaches

This section discusses several modeling and algorithmic complexity issues raised by the

multistage stochastic programming framework and scenario-tree based decision making.

2.2.1 The Exogenous Nature of the Random Process

A frequent assumption made in the stochastic programming framework is that decision

makers do not influence by their decisions the realization of the random process repre-

senting the uncertainty. The random process is said to be exogenous. This allows to

simulate, select and organize in advance possible realizations of the exogenous process,

before any observation is actually made, and then optimize jointly (by opposition to

individually for each scenario) the decisions contingent to the possible realizations.

The need to decouple the description of uncertainties and the optimization of decisions

might appear at first as a strong limitation on the situations that can be modeled and

treated by stochastic programming techniques. This impression is in part justified for a

large family of problems of control theory in which the uncertainty is identified to some

zero-mean noise perturbing the observations or the dynamics of the system, or when the

uncertainty is understood as the uncertainty on the value of system parameters. But in

another large family of sequential decision making problems under uncertainty, major

sources of uncertainty are precisely the ones that are the less influenced by the behavior

of the decision makers. We also note that random processes strongly influenced by the

behavior of the decision makers can sometimes be handled by incorporating them to the

initial decision process and treating them as a virtual decision process.

A probabilistic reasoning based on a subset of possible of scenarios could easily be

tricked by an adversarial random process that would exploit one of the scenarios discarded

during the planning process. In many practical problems however, the environment is

not totally adversarial. In situations where the environment is mildly adversarial, it is

often possible to choose measures of performances that are more robust to bad outcomes,

and that can still be optimized in a tractable way.

Finally, it is easier in terms of sample complexity to learn a model (find model pa-

rameters from finite data sets) for an exogenous process than for an endogenous process.

Learning a model for an exogenous process is possible from observations of the process,

such as time series, whereas learning a model for an endogenous process forces us to be
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able to simulate possible state transitions for every possible action, or at least to have at

one’s disposal a fairly exhaustive data set relating actions to state transitions.

2.2.2 Comparison to Markov Decision Processes

In Markov Decision Processes (MDP) (Bellman, 1954; Howard, 1960), the decision maker

seeks to optimize a performance criterion decomposed into a sum of instantaneous re-

wards. The information state of the decision maker at time t coincides with the state xt

of a dynamical system For simplicity, we do not consider in this discussion partial ob-

servability (POMDP) or risk-sensitivity, for which the system state need not be the

information state of the agent. Optimal decision policies are often found by a reasoning

based on the dynamic programming principle, to which is essential the notion of state as

a sufficient statistic for representing the complete history of the system’s evolution and

agent’s beliefs.

Multistage stochastic programming problems could be viewed as a subclass of finite-

horizon Markov Decision Processes, by identifying the growing history of observations

(ξ1, . . . , ξt−1) to the agent’s state. However, the mathematical assumptions under the

MDP and the stochastic programming formulations are in fact quite different. Complex-

ity results suggest that the algorithmic resolution of MDPs is efficient when the decision

space is finite and small (Littman et al., 1995; Rust, 1997; Mundhenk et al., 2000; Kearns

et al., 2002), while for the scenario-tree based stochastic programming framework, the

resolution is efficient when the optimization problem is convex — in particular the deci-

sion space is continuous — and the number of decision stages is small (Shapiro, 2006).

One of the main appeals of stochastic programming techniques is their ability to deal

efficiently with high-dimensional continuous decision spaces structured by numerous con-

straints, and with sophisticated, non-memoryless random processes. At the same time,

if stochastic programming models have traditionally been used for optimizing long-term

decisions that are implemented once and have lasting consequences, for example in net-

work capacity planning (Sen et al., 1994), they are now increasingly used in the context

of near-optimal control strategies that Bertsekas (2005a) calls limited-lookahead strate-

gies. In this usage, at each decision stage an updated model over the remaining planning

horizon is rebuilt and optimized on the fly, from which only the first-stage decisions are

actually implemented. Indeed, when a stochastic program is solved on a scenario tree, the

initial search for a decision policy degenerates into the search for sequences of decisions

relative to the scenarios covered by the tree. The first-stage decision does not depend

on observations and can thus always be implemented on any new scenario, whereas the

recourse decisions relative to any particular scenario in the tree could be infeasible on a

new scenario, especially if the feasibility sets depend on the random process.

2.2.3 The Curse of Dimensionality

The curse of dimensionality is an algorithmic-complexity phenomenon by which comput-

ing optimal policies on higher dimensional input spaces requires an exponential growth

of computational resources, leading to intractable problem formulations. In dynamic

programming, the input space is the state space or a reduced parametrization of it. In

practice the curse of dimensionality limits attempts to cover inputs to spaces embedded
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in Rd with d at most equal to 5-10.

Approximate Dynamic Programming methods (Bertsekas and Tsitsiklis, 1996; Bert-

sekas, 2005a; Powell, 2007) and Reinforcement Learning approaches (Sutton and Barto,

1998) help to mitigate the curse of dimensionality, for instance by attempting to focus

on the part of the state space that is actually reached under an optimal policy. An ex-

ploratory phase may be added to the original dynamic programming solution strategy so

as to discover the relevant part of the state space. Those approaches work well in several

cases:

i. The structure of a near-optimal policy is already known. For example, policy

search methods assume that a near-optimal policy can be parametrized a priori

by a small number of parameters, and rely on the user’s expertise to find such a

parametrization.

ii. Value-function based methods assume that there is a finite set of actions (or policy

parameters), given a priori, that are the elementary building blocks of a near-

optimal policy, and that can be used to drive the exploratory phase. The value

function represents or approximates the expected value-to-go from the current state,

and can be used to rank candidate actions (or policy parameters).

iii. By the structure of the optimization problem, the decisions and the state space

subregions identified as promising early in the exploratory phase are those that are

actually relevant to a near-optimal policy. This ensures the success of optimistic

exploratory strategies, that refine decisions within promising subregions.

Stochastic programming algorithms do not rely on the covering of the state space

of dynamic programming. Instead, they rely on the covering of the random exogenous

process, which needs not correspond to the complete state space (see how the auxiliary

state xt is treated in the example of the previous section). The complement of the state

space and the decision space are “explored” during the optimization procedure itself. The

success of the approach will thus depend on the tractability of the joint optimization in

those spaces, and not on insights on the structure of near-optimal policies.

In multistage stochastic programming approaches, the curse of dimensionality is

present when the number of decision stages increases, and in face of high-dimensional

exogenous processes. Therefore, methods that one could call, by analogy to approxi-

mate dynamic programming, approximate stochastic programming methods, will attempt

to cover only the realizations of the exogenous random process that are truly needed to

obtain near-optimal decisions. These methods work with a number of scenarios that does

not grow exponentially with the dimension of the exogenous process and the number of

stages.

2.3 The Value of Multistage Stochastic Programming

Due to the curse of dimensionality, multistage stochastic programming is in competition

with more tractable decision models. At the same time it provides a unifying framework

between several simplified decision making paradigms, that we now describe.
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2.3.1 Reduction to Model Predictive Control

A radical simplification consists in discarding the detailed probabilistic information on the

uncertainty, taking a nominal scenario, and optimizing decisions on the nominal scenario.

The common practice for defining a nominal scenario is to replace random variables by

their expectation. The resulting problem is called the expected value problem, the solution

of which constitutes a nominal plan. Even if the nominal plan could be used as an open-

loop decision policy, that is, implemented over the complete planning horizon, decision

makers will usually want to recompute the plan at the next decision stage by solving

an updated expected value problem. In control theory, the approach is known as Model

Predictive Control (MPC) (Bertsekas, 2005b).

An indicator of the value of multistage programming decisions over model predictive

control decisions is given by the value of the stochastic solution (VSS). To make the

notion precise, let us define successively:

• V ∗, the optimal value of the multistage stochastic program minπ E{f(ξ, π(ξ))}. For

notational simplicity, we adopt the convention that f(ξ, π(ξ)) =∞ if the policy π

is anticipative or yields infeasible decisions.

• ζ = (ζ1, . . . , ζT ), the nominal scenario.

• uζ , the optimal solution to the expected value problem minu f(ζ, u). Note that the

optimization is over a single fixed sequence of feasible decisions; the problem data

is determined by ζ.

• uζ
1, the first-stage decision of uζ .

• V ζ , the optimal value of the multistage stochastic program minπ E{f(ξ, π(ξ))}
subject to the additional constraint π1(ξ) = uζ

1 for all ξ. If by a slight abuse of

notation, we write π1, viewed as an optimization variable, for the value of the

constant-valued function π1, then the additional constraint is simply π1 = uζ
1.

By definition, V ζ is the value of a policy implementing the first decision from

the expected value problem, and then selecting optimal recourse decisions for the

subsequent decision stages. The recourse decisions differ in general from those that

would be selected by a policy optimal for the original multistage program.

The VSS is then defined as the difference V ζ − V ∗ ≥ 0. For maximization problems, it

would be defined by V ∗ − V ζ ≥ 0. Birge and Louveaux (1997) describe special cases

(with two decision stages, and restrictions on the way randomness affects problem data)

for which it is possible to compute bounds on the VSS. They also come to the conclusion,

from their survey of works studying the VSS, that there is no rule that can predict a priori

whether the VSS is low or high for a given problem instance — for example increasing

the variance of random variables may increase or decrease the VSS.

2.3.2 Reduction to Two-Stage Stochastic Programming

A less radical simplification consists in discarding the distinction between recourse stages,

keeping in the model a first stage (associated to full uncertainty) and a second stage (as-

sociated to full knowledge). A multistage model degenerates into a two-stage model when
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the scenario tree has branchings only at one stage. The situation arises for instance when

scenarios are sampled over the full horizon independently: the tree has then branchings

only at the root. In Huang and Ahmed (2009), the value of multistage stochastic program-

ming (VMS) is defined as the difference of the optimal values of the multistage model

versus the two-stage model. The authors establish bounds on the VMS and describe an

application (in the semiconductor industry) where the VMS is high. Note however that a

generalization of the notion of VSS would rather quantify how multistage decisions out-

perform two-stage decisions when those two-stage decisions are implemented with model

rebuilding at each stage, in the manner of the Model Predictive Control scheme.

2.3.3 Reduction to Heuristics based on Parametric Optimization

As an intermediate simplification between the expected value problem and the reduction

to a two-stage model, it is possible to optimize sequences of decisions separately on

each scenario. The decision maker can then use some averaging, consensus or selection

strategy to implement a first-stage decision inferred from the so-obtained ensemble of

first-stage decisions. Here again, the model should be rebuilt with updated scenarios at

each decision stage.

The problem of computing optimal decisions separately for each scenario is known as

the distribution problem. The problem appears in the definition of the expected value of

perfect information (EVPI), which quantifies the additional value that a decision maker

could reach in expectation if he or she were able to predict the future. To make the

notion precise, let V ∗ denote as before the optimal value of the multistage stochastic

program minπ E{f(ξ, π(ξ))} over non-anticipative policies π; let V (ξ) denote the optimal

value of the deterministic program minu f(ξ, u); and let V A be the expected value of

V (ξ), according to the distribution of ξ. Observe that V A is also the optimal value of the

program minπA E{f(ξ, πA(ξ))} over anticipative policies πA, the optimization of which

is now decomposable among scenario subproblems. The EVPI is then defined as the

difference V ∗ − V A ≥ 0. For maximization problems, it is defined by V A − V ∗ ≥ 0.

Intuitively, the EVPI is high when having to delay adaptations to final outcomes due to

a lack of information results in high costs.

The EVPI is usually interpreted as the price a decision maker would be ready to pay

to know the future (Raiffa and Schlaifer, 1961; Birge, 1992). The EVPI also indicates

how valuable the dependence of decision sequences is on the particular scenario they are

optimized over. Mercier and Van Hentenryck (2007) show on an example with low EVPI

how a strategy based on a particular aggregation of decisions optimized separately on

deterministic scenarios can be arbitrarily bad. Thus even if the EVPI is low, heuristics

based on the decisions of anticipative policies can perform poorly.

This does not mean that the approach cannot perform well in practice. Van Henten-

ryck and Bent (2006) have studied and refined various aggregation and regret-minimization

strategies on a series of stochastic combinatorial problems already hard to solve on a sin-

gle scenario, as well as schemes that build a bank of pre-computed reference solutions

and then adapt them online to accelerate the optimization on new scenarios. They show

that their strategies perform well on vehicle routing applications.



18 Chapter 2. The Multistage Stochastic Programming Framework

Remark 2.1. The progressive hedging algorithm (Rockafellar and Wets, 1991) is

a decomposition method that computes the solution to a multistage stochastic

program on a scenario tree by solving repeatedly separate subproblems on the

scenarios covered by the tree. First-stage decisions and other decisions coupled

by non-anticipativity constraints are obtained by aggregating the decisions of the

concerned scenarios, in the spirit of the heuristics based on the distribution problem

presented above. The algorithm modifies the scenario subproblems at each iteration

to make the decisions coupled by non-anticipativity constraints converge towards

a common and optimal decision.

As the iterations are carried out, first-stage decisions evolve from decisions hedged

by the aggregation strategy to decisions hedged by the multiple recourse deci-

sions computed on the scenario tree. Therefore, the progressive hedging algorithm

shows that there can be a smooth conceptual transition between the decision model

based on the distribution problem and the decision model based on the multistage

stochastic programming problem.

Example 2.1. We illustrate the computation of the VSS and the EVPI on an artifi-

cial multistage problem, with numerical parameters chosen in such a way that the

full multistage model is valuable. By valuable we mean that the presented simpli-

fied decision-making schemes will output first-stage decisions that are suboptimal.

If those decisions were implemented, and subsequently the best possible recourse

decisions were applied, the value of the objective over the full horizon would be

significantly suboptimal.

Let w1, w2, w3 be mutually independent random variables uniformly distributed on

{+1,−1}. Let ξ = (ξ1, ξ2, ξ3) be a random walk such that ξ1 = w1, ξ2 = w1 + w2,

ξ3 = w1 + w2 + w3. Let the 8 equiprobable outcomes of ξ form a scenario tree

and induce non-anticipativity constraints (the tree is a binary tree of depth 3).

Consider the decision process u = (u1, u2, u3) with u2 ∈ R and ut = (ut1, ut2) ∈ R2

for t = 1, 3. Then consider the multistage stochastic program

maximize

1
8

∑8
k=1{[0.8uk

11 − 0.4(uk
2/2 + uk

31 − ξk
3 )2]

+ uk
32ξ

k
3 + [1− uk

11 − uk
12]}

subject to

uk
11 + uk

12 ≤ 1 ∀k
− uk

11 ≤ uk
2 ≤ uk

11 ∀k
− uk

1j ≤ uk
3j ≤ uk

1j ∀k and j = 1, 2

C1: uk
1 = u1

1 ∀k
C2: uk

2 = uk+1
2 = uk+2

2 = uk+3
2 for k = 1, 5

C3: uk
3 = uk+1

3 for k = 1, 3, 5, 7 .

The non-anticipativity constraints C1, C2, C3, which are convenient to state the

problem, indicate in practice the redundant optimization variables that can be

eliminated.
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• The optimal value of the multistage stochastic program is V ∗ = 0.35 with

optimal first-stage decision u∗1 = (1, 0).

• The expected value problem for the mean scenario ζ = (0, 0, 0) is obtained by

setting momentarily ξk = ζ for all k and adding the constraints

C2’: uk
2 = u1

2 for all k ,

C3’: uk
3 = u1

3 for all k .

Its optimal value is 1 with first-stage decision uζ
1 = (0, 0). When equality

constraints are made implicit the problem can be formulated using 5 scalar

optimization variables only.

• The two-stage relaxation is obtained by relaxing the constraints C2, C3. Its

optimal value is 0.6361 with uk
1

def
= uII

1 = (0.6111, 0.3889).

• The distribution problem is obtained by relaxing the constraints C1, C2, C3.

Its optimal value is V A = 0.6444. The two extreme scenarios ξ1 = (1, 2, 3)

and ξ8 = (−1,−2,−3) have first-stage decisions u1
1 = u8

1 = (0.7778, 0.2222)

and value -0.0556. The 6 other scenarios have uk
1 = (0.5556, 0.3578) and value

0.8778, k = 2, . . . , 7. Note that in general, (i) scenarios with the same optimal

first-stage decision and values may still have different recourse decisions, and

(ii) the first-stage decisions can be distinct for all scenarios.

• The EVPI is equal to V A − V ∗ = 0.2944.

• Solving the multistage stochastic program with the additional constraint

C1ζ : uk
1 = uζ

1 ∀k

yields an upper bound on the optimal value of any scheme using the first-stage

decision of the expected value problem. This value is V ζ = −0.2000.

• The VSS is equal to V ∗ − V ζ = 0.55.

• Solving the multistage stochastic program with the additional constraint

C1II: uk
1 = uII

1 ∀k

yields an upper bound on the optimal value of any scheme using the first-stage

decision of the two-stage relaxation model. This value is V II = 0.2431. Thus,

the value of the multistage model over a two-stage model, in our sense (distinct

from the VMS of Huang and Ahmed (2009)), is at least V ∗ − V II=0.1069.

To summarize, observe the collapse of the optimal value from V ∗ = 0.35 to V II =

0.2431 (with the first-stage decision of the two-stage model) and then to V ζ = −0.2

(with the first-stage decision of the expected value model).

We can also consider the anticipative decision sequences of the distribution problem,

and check if there exist plausible strategies that could exploit the set of first-stage

decisions to output a good first-stage decision (with respect to any decision-making

scheme for the subsequent stages).

• Selection strategy: Solving the multistage stochastic program with a con-

straint that enforces one of the first-stage decisions extracted from the dis-

tribution problem yields the following results: optimal value 0.3056 if uk
1 =
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(0.7778, 0.2222), optimal value 0.2167 if uk
1 = (0.5556, 0.3578). But one has

to concede that in contrast to other simplified models, for which we solve

multistage programs only to measure the quality of a suboptimal first-stage

decision, the selection strategy needs good estimates of the different optimal

values to actually output the best decision.

• Consensus strategy: The outcome of a majority vote out of the set of the 8

first-stage decisions would be the decision (0.5556, 0.3578) associated to the

scenarios 2 to 7. With value 0.2167, this turns out to be the worst decision

between (0.7778, 0.2222) and (0.5556, 0.3578).

• Averaging strategy: The mean first-stage decision of the set of 8 first-stage

decisions is ū1 = (0.6111, 0.3239). Solving the multistage program with uk
1 =

ū1 for all k yields the optimal value 0.2431.

The best result is the value 0.3056 obtained by the selection strategy. Note that

we are here in a situation where the multistage program and its variants could be

solved exactly, that is, with a scenario tree representing the possible outcomes of

the random process exactly.

2.4 Practical Scenario-Tree Approaches

We now focus on a practical question essential to the deployment of a multistage stochas-

tic programming model: if a problem has to be approximately represented by a scenario

tree in order to compute a decision strategy, how should a tractable and at the same

time representative scenario-tree approximation be selected for a given problem?

After some background on discretization methods for two-stage stochastic program-

ming, we pose the scenario tree building problem in an abstract way and then discuss

the antagonist requirements that make its solution very challenging. Then we review the

main families of methods proposed in the literature to build tractable scenario-tree ap-

proximations for a given problem, and highlight their main properties from a theoretical

point of view.

Given the difficulty of determining a priori good scenario-tree approximations for

many problems of practical interest (a difficulty which is to some extent surprising, given

the practical success of related approximation methods for two-stage stochastic program-

ming), there is a growing consensus on the necessity of being able to test a posteriori

the quality of scenario-tree based approximations on a large independent sample of new

scenarios. We present in this light a standard strategy based on the so-called shrinking-

horizon approach — the term is used, for instance, in Balasubramanian and Grossmann

(2003).

2.4.1 Approximation Methods in Two-stage Stochastic Programming

Let P denote a two-stage stochastic program, where the uncertainty is modeled by a

random vector ξ, possibly of high-dimension, following a certain distribution with either a

discrete support of large cardinality, or a continuous support. Let P ′ be an approximation
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to P, where ξ is approximated by a random vector ξ′ that follows a distribution with

a finite discrete support, the cardinality of the support being limited by the fact that

to each possible realization of ξ′ is associated a number of optimization variables for

representing the corresponding recourse decisions. To obtain a good approximation, one

would ideally target the problem of finding a finite discrete distribution for ξ ′ (values

for the support and associated probability masses) such that any first-stage decision u′
1

optimal for P ′ yields on P a minimal regret, in the sense that with optimal recourse

decisions, the value on P of the solution made of u′1 and of optimal recourse decisions is

close to the exact optimal value of P. By analogy to the VSS, we could also say that the

distribution for ξ′ should minimize the value of the exact program P with respect to the

approximate program P ′.

Many authors have found it more convenient to restrict the attention on the problem

of finding a finite discrete distribution for ξ′ such that the optimal value of P ′ is close

to the optimal value of P, and the solutions u′1 optimal for P ′ are close to solutions

optimal for P. For this approach to work, one might want to impose some weak form of

continuity of the objective of P with respect to solutions. One may also want to ensure

that small perturbations of the probability measure for ξ have a bounded effect on the

perturbation of optimal solutions u1.

An interesting deterministic approach (Rachev and Römisch, 2002) consists in ana-

lyzing the structure of optimal policies for a given problem class, the structure of the

objective when the optimal policy is implicitly taken into account, and inferring from it

a relevant measure of distance between probability distributions. The distance is based

on the worst-case difference among objectives taken from a class of functions with the

identified structure (or from a larger class of functions if this is technically convenient

for the computation of the distance measure). Finding a good approximation to a two-

stage stochastic program is then reformulated as the problem of finding a discrete dis-

tribution minimizing the relevant probability distance to the original distribution. Note

that probability distance minimization problems can be difficult to solve, especially with

high-dimensional distributions. Thus, the approach, which reformulates the approxi-

mation problem as the optimal quantization of the initial probability distribution, can

have essentially two sources of suboptimality with respect to the ideal approximation

problem: (i) in order to get a tractable computation of the distance, the class of func-

tions over which worst-case distances are evaluated has often to be enlarged; (ii) even

on the enlarged class, the probability distance minimization problem is often difficult to

solve (for instance NP-hard), so that the minimal distance is not necessarily attained,

especially when heuristics for finding solutions are used. Despite these limitations, the

approach has been shown to work well. Moreover, the reduction of the initial approxi-

mation problem to an optimal quantization problem indicates the relevance of existing

work on vector quantization and probability density estimation (MacKay, 2003, Chapter

20), and on discretization methods explored in approximate dynamic programming.

Randomized approaches are based on Monte Carlo sampling (Metropolis and Ulam,

1949) and its many extensions, including variance reduction techniques, and quasi Monte

Carlo techniques (MacKay et al., 1979). All these techniques have more or less been tried

for solving two-stage stochastic programs: Infanger (1992), for instance, investigates im-

portance sampling. They have been shown to work well in practice. Random approxi-

mations based on Monte Carlo have been shown to be consistent, in the sense that with
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an infinite number of samples, optimal solutions to discretized programs can converge to

solutions optimal for P. More detailed results can be found in Shapiro (2003b).

2.4.2 Challenges in the Generation of Scenario Trees

In two-stage stochastic programming, the large or infinite set of recourse decisions of the

original program is reduced to a finite set of recourse decisions for the approximation.

Hence the exact and approximate solutions lie in different spaces and cannot be com-

pared directly. Still, recourse decisions can be treated implicitly, as if they were already

incorporated to the objective function, and as if the only remaining element to optimize

were the first-stage decision.

In multistage stochastic programming, we face the same issue: one cannot directly

compare finite-dimensional solutions obtained from finite scenario-tree approximations to

exact optimal solutions lying in a space of functions. But now, using the same technique

of treating all recourse decisions implicitly leads to a dilution of the structural properties

of the objective function. As these structural properties are weaker, the class of objective

functions to consider becomes very general. Worst-case distances between functions in

such classes may cease to guide satisfactorily a discretization procedure. In addition, as

the random process runs over several stages, the discretization problems are posed over

typically larger spaces, making them more difficult to solve, even approximately.

For these reasons, rather than presenting the generation of scenario trees as a natu-

ral extension of discretization methods for two-stage stochastic programming, with the

incorporation of branchings for representing the nested conditional probability densities,

we state the problem in a more open way, which also highlights complexity aspects:

Construct a tractable algorithm A that,

• given a multistage stochastic program P : minπ E{f(ξ, π(ξ))} defined

over a probability space (Ω,B,P) with objective f (including by conven-

tion the constraints) and non-anticipative policies π(ξ),

• will produce an approximate finite-dimensional surrogate program of the

form P ′ : minu

∑n
k=1 p

k{g(ξk, uk)} defined over some reduced space

(Ω′,B′,P′) and objective g, and from which a surrogate policy π̂(ξ) sub-

ject to non-anticipativity constraints may be computed in a tractable way,

• with the goal of making the regret

R = E{f(ξ, π̂(ξ))} −min
π

E{f(ξ, π(ξ))} ≥ 0

as small as possible.

Notice that we allow, for the sake of generality, that the surrogate program may refer

to a function g different from the original objective f , and that we impose that the

algorithm A, the solving strategy associated to the problem P ′, as well as the evaluation

of the induced policy π̂ on any new scenario, are all tractable. At this stage, we do not

specify how π̂ is inferred or understood; π̂ needs to be introduced here only to be able

to write a valid expression for the regret on the original multistage program.
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Depending on situations, the problem P (random process model and function f) can

be described analytically, or be only accessible through sampling and/or simulation. The

problem P ′ will be described by a scenario tree and the choice of the function g, under

limitations intrinsically due to the tractability of the optimization of the approximate

program.

As we have seen, there are many derived decision-making schemes and usages of

the multistage stochastic programming framework. Also, various classes of optimization

programs can be distinguished — with the main distinctions being between two-stage and

multistage settings, and among linear, convex, and integer/mixed-integer formulations —

and thus several possible families of functions over which one might attempt to minimize

a worst-case regret.

In the stochastic programming literature, several scenario tree generation strategies

have been studied. The scenario tree generation problem is there often viewed in one or

another of two reduced ways with respect to the above definition, namely

(i) as the problem of finding a scenario tree with an associated optimal value

min
u

n
∑

k=1

pk{f(ξk, uk)}

close to the exact optimal value minπ E{f(ξ, π(ξ))}, or

(ii) as the problem of finding a scenario tree with its associated optimal first-stage

decision û1 close to a first-stage decision π1 optimal for the exact program.

Indeed, version (i) is useful when the goal is merely to estimate the optimal value of the

original program P, while version (ii) is useful when the goal is to extract only the first

stage decision, assuming that later on, recourse decisions are recomputed using a similar

algorithm, given the new observations.

The generic approximation problem that we have described is more general, since it

covers also the case where the scenario tree approach may be exploited offline to extract

a complete policy π̂(ξ) that may then be used later on, in a stand-alone fashion for

decision making over arbitrary scenarios and decision steps, be it in the real world or in

the context of Monte Carlo simulations.

To give an idea of theoretical results established in the scenario tree generation lit-

erature, we now briefly discuss two representative trends of research: works that study

Monte Carlo methods for building the tree, and works that seek to minimize in a deter-

ministic fashion a certain measure of discrepancy between the original process and the

approximate process represented by the scenario tree.

Monte Carlo Scenario Tree Sampling Methods.

Monte Carlo methods have several advantages: they are easy to implement and they scale

well with the dimension, in the sense that with enough samples, one can get close to the

statistical properties of high-dimensional target distributions with high probability. The

major drawback of (pure) Monte Carlo methods is the variance of the results (in our case,

the optimal value and optimal solutions of the approximate programs) in small-sample

conditions.
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Let us describe the Sample Average Approximation method (SAA) (Shapiro, 2003b),

which uses Monte Carlo for generating the scenario tree. One starts by building the

branching structure of the tree. Note that the method does not specify how to carry out

that step. Practitioners often use the same branching factor for each node relative to

a given decision stage. They also often concentrate the branchings at early stages: the

branching factor is high at the root node and then decreases with the index of the decision

stage. The next step of the method consists in sampling the node values according to the

distributions conditioned on the values of the ancestor nodes. The procedure, referred to

as conditional sampling, is implemented by sampling the realizations of random variables

at stage t before sampling those of stage t+1. Distinct realizations are assigned to distinct

nodes, which are given a conditional probability equal to the inverse of the branching

factor. The last step consists in solving the program on the so-obtained scenario tree

and thus, although part of the description of the SAA method, does not concern the

generation of the tree itself.

Consider scenario trees obtained by conditional sampling. For simplicity assume a

uniform branching factor nt at each stage t, so that the number of scenarios is n =
∏T

t=1 nt. Shapiro (2006) shows under some technical assumptions that if we want to

guarantee, with a probability at least 1− α, that implementing the first-stage decision û1

optimized on a scenario tree of size n while implementing subsequently optimal recourse

decisions conditionally to the first-stage decision will yield an objective value ε-close to

the exact optimal value, then the size n of the tree we use for that purpose has to grow

exponentially with the number of stages. The result goes against the intuition that

by asking for ε-optimality with probability 1 − α only, one could get moderate sample

complexity requirements. Now, as the exponential growth of the number of scenarios is

not sustainable, one can only hope solving multistage models in small-sample conditions,

and obtain solutions that at least with the SAA method may vary from tree to tree

and be of uncertain value for the real problem. Perhaps surprisingly, it is not possible to

obtain valid statistical bounds for that uncertain value by imposing as first-stage decision

the tested first-stage decision and reoptimizing recourse decisions on several new random

trees (Shapiro, 2003a).

Deterministic Scenario Tree Optimization Methods.

There exist various deterministic techniques for selecting jointly the scenarios of the tree.

Note that there is a part of numerical experimentation in the development of scenario tree

methods, and a risk of overestimating the domain of validity of the proposed methods,

since research efforts are oriented by experiments on particular problems.

Moment-matching methods (Høyland and Wallace, 2001; Høyland et al., 2003) at-

tempt to produce discrete distributions with some statistical moments matching those

of a target distribution. Moment matching may be done at the expense of other statis-

tics, such as the number and the location of the modes, that might also be important.

Hochreiter and Pflug (2007) give an example illustrating that risk.

The theoretical analysis underlying the so-called probability metrics methods, that

we have briefly evoked in the context of two-stage stochastic programming, was initially

believed to be easily extensible to the multistage case (Heitsch and Römisch, 2003); but

then it turned out that more elaborated measures of probability distances, integrating the
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intertemporal aspect of observations, were needed (Heitsch and Römisch, 2009). These

elaborated metrics are more difficult to compute and to minimize, so that well-justified

discretizations of multistage programs are more difficult to obtain.

We can also mention methods that come with approximation guarantees, such as

bounds on the suboptimality of the approximation (Frauendorfer, 1996; Kuhn, 2005).

However, they are applicable only under relatively strong assumptions concerning the

problem class and the type of randomness. Quasi Monte Carlo techniques are perhaps

among the more generally applicable methods (Pennanen, 2009).

Most deterministic methods end up with the formulation of difficult optimization

problems, such as nonconvex or NP-hard problems (Høyland et al., 2003; Hochreiter and

Pflug, 2007), with computationally demanding tasks (such as multidimensional integra-

tions), especially for high-dimensional random processes.

The field is still in a state where the scope of existing methods is not well defined,

and where the algorithmic description of the methods is incomplete, especially concerning

the branching structure of the trees. That the domains of applicability are not known

or overestimated makes it delicate to select a sophisticated deterministic technique for

building a scenario tree on a new problem.

2.4.3 The Need for Testing Scenario-Tree Approximations

Theoretical analyses of scenario tree generation algorithms, often based on worst-case

reasonings or large deviation theory, provide guarantees on the quality of approximate

solutions that are usually too loose in practice or equivalently call for intractable sce-

nario tree sizes. Hence they do not really solve the basic question of how to build a priori

small scenario trees in a generic, scalable, and computationally efficient way, potentially

jeopardizing the practical relevance of the multistage extension of stochastic program-

ming for sequential decision making under uncertainty. Now if we are ready to renounce

to worst-case guarantees embedded in the scenario tree generation method, new tools

are needed for computing, a posteriori, guarantees on the value of a given numerical

approximation scheme.

If we want to assess on an independent test set of scenarios the performance of deci-

sions optimized on a scenario tree, a difficulty arises: first-stage decisions can be tested

but subsequent recourse decisions are only defined for the scenarios covered by the sce-

nario tree. Therefore, it is necessary to extend the approach so as to allow one to test

solutions on new scenarios, at a computational cost low enough to allow the validation

on a sufficiently large number of test scenarios.

We have to stress that this extension is not really necessary for two-stage stochastic

programming. First, approximations of two-stage models yield constant first-stage deci-

sions, that are implementable on any scenario, while recourse decisions on new scenarios

can then often be found analytically, or by running a myopic one-stage optimization pro-

cedure for each new scenario, or by implementing a known recourse procedure that the

initial two-stage model was only approximating for optimizing the first-stage decisions

— a strategy found efficient in capacity planning (Sen et al., 1994). Thus, testing is gen-

erally straightforward for two-stage models. Second, finite-dimensional approximations

of two-stage stochastic programming models do not use scenario trees. They only use a

finite set of outcomes. Theoretical results show that in the two-stage situation, statistical
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confidence bounds on the quality of an approximate solution can be computed (Norkin

et al., 1998b; Mak et al., 1999). These results break down in the multistage case, giving

its true interest to guarantees based on testing (Shapiro, 2003a).

2.4.4 The Inference of Shrinking-Horizon Decision Policies

Several authors have proposed to use a generic scheme similar to Model Predictive Control

to assess the performances associated to a particular algorithmA for building the scenario

tree (Kouwenberg, 2001; Chiralaksanakul, 2003; Hilli and Pennanen, 2008). The scheme

can be sketched as follows.

i. Generate a scenario tree using algorithmA. Solve the resulting program and extract

from its solution the value of the first-stage decision u1, say ū1.

ii. Generate a test sample, of n′′ mutually independent scenarios by drawing i.i.d.

realizations ξj of the random process ξ.

iii. For each scenario ξj of the test sample, set uj
1 = ū1, and obtain sequentially

the recourse decisions uj
2, . . . , u

j
T , as follows: each decision uj

t is obtained as a

first-stage decision computed by taking as an initial condition the past decisions

uj
1, . . . , u

j
t−1 and the history ξj

1, . . . , ξ
j
t−1 of the test scenario ξj , by conditioning the

joint distribution of ξt, . . . , ξT on the history, by using the algorithm A to build

a new scenario tree that approximates the random process ξt, . . . , ξT , by solving

the program formulated on this tree over the optimization variables relative to the

decisions ut, . . . , uT , and by discarding all but the decision ut, the optimal value of

which is then assigned to uj
t .

iv. Estimate the overall performance of the scheme by Monte Carlo simulation. This

consists in evaluating on the test sample the empirical average

VTS(A) = (1/n′′)
∑n′′

j=1 f(ξj , uj) ,

where we have denoted by uj = (uj
1, . . . , u

j
T ) the sequence of decisions associated

to the scenario ξj , and where TS recalls that the estimate is computed on the test

sample.

The Monte Carlo estimate VTS(A) can provide an unbiased estimation of the value

of the scenario tree building algorithm A in the context of the other approximations

involved in the numerical computations of the sequences of decisions, such as for instance

simplifications of the objective function, or early stopping at low-accuracy solutions.

The estimator VTS(A) may have a high variance, but we can expect a high positive

correlation between this estimator and an estimator VTS(A′) using the same test sample

but relative to another tree generation algorithm A′. This would allow a reliable com-

parison of the relative performance of the two algorithms A, A′ on the problem instance

at hand.

The validation is generic in the sense that it can be applied to any algorithm A, but

also in the sense that it addresses the general scenario tree building problem in the larger

context of the decision making scheme actually implemented in practice.
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2.4.5 Alternatives to the Scenario Tree Approach

We point out that alternative numerical methods for solving infinite-dimensional two-

stage stochastic programs exist, based on an incorporation of the discretization procedure

to the optimization, for instance by updating the discretization or carrying out impor-

tance sampling within the iterations of a given optimization algorithm (Slyke and Wets,

1969; Higle and Sen, 1991; Norkin et al., 1998a), or by using stochastic subgradient meth-

ods (Nemirovski et al., 2009). Also, heuristics for finding good policies directly on the

infinite-dimensional multistage problem have been suggested: a possible idea, akin to di-

rect policy search procedures in Markov Decision Processes, is to optimize a combination

of feasible non-anticipative basis policies πj(ξ) specified beforehand (Koivu and Penna-

nen, 2010). These methods are nevertheless less general than the standard scenario tree

approach, because they seem to be reserved to applications with rather simple feasibility

sets.

2.5 Conclusions

Elaborating strategies involving complex quantitative decisions calls for optimization

techniques that can avoid a systematic enumeration and evaluation of possible options

at each decision stage. Multistage stochastic programming has been recognized by several

industries (Dempster et al., 2008; Kallrath et al., 2009) as a promising framework to for-

mulate complex problems under uncertainty, exploit domain knowledge, use risk-averse

objectives, incorporate probabilistic and dynamical aspects, and preserve structures that

allow to apply large-scale optimization techniques. These techniques for sequential de-

cision making under uncertainty are particularly interesting to study: Puterman (1994),

citing Arrow (1958) on the early roots of sequential decision processes, recalls the role of

the multi-period inventory models from the industry in the development of the theory of

Markov Decision Processes (Bellman, 1954; Howard, 1960). We could also mention the

role of applications in finance as a motivation for the early theory of multi-armed ban-

dits and for the theory of sequential prediction (Cesa-Bianchi and Lugosi, 2006), now an

important field of research in machine learning (Auer et al., 2002; Coquelin and Munos,

2007).

In the preceding sections, where the problem of inferring a good scenario-tree approx-

imation for a given multistage stochastic programming problem was presented, we have

seen that the state of the art does not currently provide strong enough methods with

broad enough practical coverage and good enough theoretical guarantees in terms of the

quality of the approximate solutions derived in this way.

Researchers in the field were thus led to suggest the use of the shrinking-horizon

recursive procedure for exploiting the scenario tree based approach in practice. However,

evaluating the resulting performance estimator on an independent sample of scenarios is

extremely demanding, as it requires, for each test scenario and at each stage of recourse

decisions, the automatic construction of a new scenario tree and the optimization of

the resulting program on the tree. Doing this is still beyond the possibility of available

computational approaches when considering the solution of large-scale problems.

For these reasons, there is currently no scalable off-the-shelf method for generating

and testing scenario-tree based approximations of multistage stochastic programs, and
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the framework of stochastic programming based on scenario trees has in this way, in spite

of its theoretical appeal, lost its practical attractiveness during the last years in many

environments dealing with large-scale systems (Powell and Topaloglu, 2003; Van Henten-

ryck and Bent, 2006).



Chapter 3

Solution Averaging in Structured Spaces

In this chapter, we consider an extension to the multistage stochastic programming frame-

work, based on the simultaneous use of several scenario trees for making decisions.

This work is motivated by the excellent performances of the perturb-and-combine

estimation methods from machine learning (P&C) (Breiman, 1998).

In fact, stochastic programs are usually formulated in a way very similar to maximum

likelihood estimation problems (Dupacova and Wets, 1988). Yet, since Fisher’s contri-

butions to maximum likelihood estimation, considerable methodological advances have

been made on the problem of estimating a parameter of interest with a finite amount of

data, through a mix of optimization, resampling and averaging techniques.

The chapter is organized as follows. Section 3.1 provides an unified view to a series of

estimation methods used in machine learning, that have finally led to ensemble methods.

Section 3.2 proposes an approach that seeks to better estimate the first-stage decision

of a multistage program by aggregating several first-stage decisions optimal with re-

spect to different scenario-tree approximations. Section 3.3 illustrates and evaluates the

proposed approach on a test problem having an interesting discrete decision space. Sec-

tion 3.4 concludes the chapter with some ideas concerning the regularization of stochastic

programming approximations.

3.1 The Perturb-and-Combine Paradigm

Let X be a random vector following some fixed but unknown density PX , referred to as

the data-generating density.

Let D = {x1, . . . , xn} denote a set of realizations of X drawn from PX in some way.

Call D the data set. For brevity we write xn for x1, . . . , xn. A data set of n samples

is a random quantity. Its density is written PD. There is a wide spectrum of methods

from statistics and machine learning that can be used to explain the data, and predict

(forecast) future samples. We discuss those methods in the context of the inference of

a predictive density px|D for a new sample x, given the data. One could also condition

the density of x
def
= (y, z) on some of its components y and interpret the resulting density

pz|y,D as the predictive distribution of output variables z given input variables y and

data set D.

The later use of densities is not discussed in this section. We simply recall that the

summary of a density through a single value is addressed by decision theory, and is usually
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done through the choice of a loss function (Robert, 2007, Chapter 2). The quality of the

inference can also be quantified through a measure of divergence between the predicted

and true densities (Ali and Silvey, 1966; Csizár, 1967). A particular divergence that has

been found useful (Clarke and Barron, 1990) is the Kullback-Leibler divergence between

two densities g, h, defined by

KL(g||h) =

∫

g(x) log
g(x)

h(x)
dx . (3.1)

The KL divergence is also referred to as the cross-entropy distance (Rubinstein and

Kroese, 2004).

3.1.1 Maximum Likelihood Estimation

In the simplest frequentist approach to explaining data, one assumes that the samples

are drawn independently, and that the data-generating density belongs to a family of

densities parametrized by θ ∈ Rd. The density at x with parameter θ is written p(x; θ).

As the joint density of independent random variables is the product of the marginal

densities, we can write the joint density of the samples as

pD|θ(x
n; θ) =

n
∏

k=1

p(xk; θ) .

The parameter θ can be inferred (estimated) from the finite data set by maximizing the

log-likelihood of the data (Fisher, 1925):

θ̂ ∈ argmaxθ

n
∑

k=1

log p(xk; θ) , (3.2)

where argmax f denotes the set of maximizers of f (often a singleton). The predictive

density, defined as the density of a new sample xn+1, conditionally to the data set, is

then given by

px|D(xn+1;x
n) = p(xn+1; θ̂) ,

where θ̂ is in this context referred to as a plug-in estimate.

Remark 3.1. If log p(x; θ) is a continuously differentiable concave function with

respect to θ ∈ Θ ⊂ Rd, the maximum in (3.2) can be obtained from the first-order

optimality condition

∇θ

n
∑

k=1

log p(xk; θ) =
n
∑

k=1

∇θp(xk; θ)

p(xk; θ)
= 0 , (3.3)

provided that the resulting estimate θ̂ is in the interior of Θ. The left-hand side of

(3.3) is called the score function. The random vector

δ(θ) =

n
∑

k=1

∇θp(Xk; θ)

p(Xk; θ)
with Xk drawn according to p(·; θ)
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is called the efficient score. The covariance matrix of the efficient score is called

the Fisher information matrix, written I(θ;n) ∈ Rd×d — the argument n stresses

that we define the Fisher information matrix for n observations. We write I(θ)

for I(θ; 1). Under suitable conditions on p(X; θ) allowing the interchange of the

expectation and differentiation operators,

Iij(θ;n) = −n E{∂
2 log p(X; θ)

∂θi∂θj
} ,

which shows that the Fisher information is related to the curvature of p evaluated

at θ.

Let φ(D) ∈ Rd, with D made of n observations, denote an unbiased estimator of θ,

that is, an Rd-valued mapping such that E{φ(D)} = θ. Let us also assume that the

true density PX is p(·; θ). Then under some regularity conditions, the covariance

matrix of φ(D), written Σφ, satisfies the Cramér-Rao inequality:

Σφ � I−1(θ;n) ,

the inequality referring to the cone of positive semi-definite matrices. If the maxi-

mum likelihood estimate θ̂ in (3.2) is unique and “far enough” from the boundary

of Θ, then for n “large enough”, θ̂ is “approximately” normally distributed with

mean θ and covariance I−1(θ;n) = n−1I−1(θ). This result is usually expressed by

saying that

√
n(θ̂ − θ) converges in distribution to N (0, I−1(θ)) .

As θ̂ has asymptotically the best possible covariance for unbiased estimators, the

maximum likelihood estimator is said to be an efficient estimator. Note, however,

that the covariance matrix relative to a biased estimator could be smaller.

For asymptotic results in situations where p(x; θ) is not twice differentiable in

a neighborhood of θ, see Dupacova and Wets (1988); for asymptotic results in

situations where θ is on the boundary of Θ, see Shapiro (2000).

The function `(x; θ) = − log p(x; θ) is a loss function, called the negative log-likelihood

loss function. If the samples are truly drawn independently, the maximization of the log-

likelihood of the data in (3.2) is a surrogate program for the minimization of E{`(X; θ)},
where the expectation is taken with respect to the true data-generating density PX .

Hence, as the surrogate problem is ill-posed, it may be preferable to penalize the objective

when the number n of samples is small, for example (Tikhonov and Arsenin, 1977) by

adding a regularization term − 1
2λ||θ||2 with λ > 0 to the log-likelihood:

θ̂ ∈ argmaxθ

n
∑

k=1

(

log p(xk; θ)− 1
2n

−1λ||θ||2
)

. (3.4)

When the objective can be written as a sum
∑n

k=1 ρ(xk; θ) for some function ρ, the cor-

responding estimates θ̂ are sometimes referred to as M-estimates (Maximum Likelihood

Type Estimates) (Huber, 1964).

When the true density of the data set PD cannot be identified to pD|θ for some θ,

be it because the data-generating density does not belong to the parametric family of



32 Chapter 3. Solution Averaging in Structured Spaces

densities, or because the samples are not drawn independently, the probability model is

said to be misspecified. This is the most common situation encountered in practice. Using

maximum likelihood type estimators with misspecified models does not necessarily lead

to inconsistent estimates (estimates with non vanishing bias as the number of samples

grows to infinity): what can really harm consistency is rather to omit some of the relevant

variables for explaining the data, or to assume wrong constraints between the components

of x (White, 1982).

3.1.2 Bayesian Averaging

In the simplest Bayesian approach to explaining data, one assumes that the samples are

drawn independently, that the data-generating density belongs to a family of densities

parametrized by θ ∈ Rd, and in addition that the parameter θ has been drawn from a

fixed density pθ, called the prior. The conditional density of θ given the data, written

pθ|D, is called the posterior. It is computed according to the Bayes formula for conditional

distributions

pθ|D(θ;xn) =
pD|θ(x

n; θ)pθ(θ)
∫

Θ
pD|θ(xn; θ)pθ(θ)dθ

(3.5)

where Θ denotes the domain of θ, and dθ denotes the Lebesgue measure if θ is continu-

ous, or the counting measure if θ is countable. Note that the normalization of pθ|D by

the integral makes it possible to (formally) use improper priors (Jeffrey, 1939), that is,

“generalized” densities pθ such that
∫

Θ
pθ(θ)dθ = +∞. In particular, using a uniform

prior pθ(θ) = 1 amounts to identify pθ|D to the likelihood, pD|θ. On the other hand, for

certain families of distributions p(x; θ), there exists a special choice for the prior, referred

to as the conjugate prior, such that the prior and the posterior belong to the same family

(Raiffa and Schlaifer, 1961). This is convenient for evaluating pθ|D in closed-form, but

reduces the prior to a mere device for making tractable predictions.

Note that the frequentist approach also makes prior assumptions, for instance through

the choice of λ in (3.4), which is formally set to 0 in the maximum likelihood estimate

(3.2). The family p(x; θ) and the type of regularization are also often chosen to facilitate

the evaluation of the M -estimate.

If (3.5) cannot be evaluated in closed-form, the simplest approximation is Maximum A

Posteriori (MAP) estimation, which consists in approximating pθ|D by a distribution with

all the probability mass concentrated on the mode of pθ|D (with ties broken arbitrarily).

Maximum A Posteriori estimation with a uniform prior coincides with Maximum Likeli-

hood estimation. More advanced approximation techniques include asymptotic methods

such as Laplace’s method (MacKay, 2003, Chapter 27) which consists in replacing a

distribution by a Gaussian approximation, importance sampling, multiple quadrature,

and Markov Chain Monte Carlo methods (MCMC) (Metropolis et al., 1953; Neal, 1993,

2010), which essentially consists in approximating the integration over θ by accumulat-

ing evaluations at points θk generated by a random walk in the parameter space Θ. The

relative merit of these methods are discussed in Evans and Swartz (1995) and in MacKay

(2003, Chapters 29 & 30). The methods that scale well with the dimension d are the

MCMC methods.

The Bayesian approach aims at taking into account (through the prior) the uncer-

tainty associated to the selection of a particular value θ̂ for making predictions after
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having observed the data. The density of a new sample xn+1, conditionally to the data

set, is given by a mixture of all members of the parametric family, obtained by averaging

all the members with importance weights given by pθ|D (Bayesian averaging):

px|D(xn+1;x
n) =

∫

Θ

p(xn+1; θ)pθ|D(θ;xn)dθ . (3.6)

Here again approximations can be employed so as to carry out the integration.

The frequentist approach takes the uncertainty into account through regularization.

In many cases, there is a connection between particular prior distributions and particular

regularization mechanisms, so that regularization can be reinterpreted as an implicit

prior, and vice-versa (Kimeldorf and Wahba, 1970).

Remark 3.2. Under suitable conditions (Walker, 1969), one can show that if the

true density PX is p(·; θ) for some θ in the interior of its domain Θ, then for n

“large enough”, the posterior distribution px|D given the data is “approximately” a

normal distribution with mean θ̂ (maximum likelihood estimator on the data) and

covariance matrix I−1(θ;n) (inverse of the Fisher information matrix for n obser-

vations).

3.1.3 Mixture Models

Bayesian averaging suggests to consider a more expressive class of probability models,

formed by combining models p(x; θ) from the parametric family.

Following this idea, one assumes that the samples of the data set are drawn inde-

pendently by first drawing a density from a family of densities parametrized by θ ∈ Rd,

according to some fixed but unknown distribution pθ, and then by drawing the sample

from the selected density p(x; θ). Note that θ is a latent variable: it is not part of the

observed samples collected in the data set. The density for a new sample xn+1 will be

given by (3.6), except that now pθ|D loses its Bayesian interpretation and is viewed as a

free component of the probability model. When pθ|D has a finite support of fixed cardi-

nality (finite mixture models), pθ|D is described by a finite number of parameters (values

and probability masses) and can thus be optimized according to the maximum likelihood

principle (Hasselblad, 1966), for example through the Expectation-Maximization (EM)

iterative procedure (Dempster et al., 1977), that treats a sample x as an incomplete

observation of (θ, x).

3.1.4 Model Selection

In a more advanced approach to explaining data, one assumes that the data-generating

density PX belongs to a space of densities described by a model structure M ∈ M with

model parameters θM ∈ ΘM . The dimension of θM can vary with M . One speaks of

nested models when there exists a complete ordering M1,M2, . . . of the models such that

all the densities representable by Mν are also representable by Mν+1.

Models of different complexity (flexibility) coexist in the hypothesis space. Loosely

speaking, low complexity was originally associated to a small number of parameters for
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describing a model (Rissanen, 1978), or to a greater smoothness of the model (Good and

Gaskins, 1971). It is convenient to view a model through the pair (M, s), where s is a

complexity parameter associated to M . For nested models Mν , we can assume that there

exists an increasing function that maps structure indices ν to complexity parameters s.

Model selection methods aim at identifying the model M that best explains the data,

often by adapting the complexity s of the selected model to the size n of the data set.

Note that the misspecification issue is completely irrelevant here inasmuch as one seeks

to explain learnable properties of the data (Vapnik, 1998): assumptions on a hypothetical

true distribution PX are a matter of pure convenience.

In finite mixture density estimation for instance, the cardinality of the finite support

of pθ|D determines the model structure and induces a model ordering, so that compet-

ing models can be ranked according to the log-likelihood of the data penalized by a

complexity parameter s (Li and Barron, 2000).

3.1.5 Bayesian Model Averaging

Bayesian Model Averaging is the extension of Bayesian averaging to hypothesis spaces

formed of several model structures. Instead of performing model selection, one defines,

for nested models Mν , a prior pν on the structure index ν ∈ N ⊂ N relative to the

model Mν . If p(x; ν, θν) denotes the density associated to Mν with parameter θν ∈ Θν ,

the predictive distribution is given by

px|D(xn+1;x
n) =

∑

ν∈N

pν|D(ν;xn)

∫

Θν

p(xn+1; ν, θν)pθν |D(θν ;xn)dθν (3.7)

with pν|D interpreted as the importance weight of the model Mν , determined by updating

the prior pν using the observed data.

For models M identified by some continuous hyper-parameter α ∈ Rq, so that x fol-

lows f(x;α, θ), it is common to define a joint prior pα,θ = pαpθ|α on (α, θ) ∈ A×Θ. The

predictive distribution is then given by

px|D(xn+1;x
n) =

∫

A

(

∫

Θ(α)

p(xn+1;α, θ)pθ|α,D(θ;α, xn)dθ

)

pα|D(α;xn)dα . (3.8)

Approximations include MAP-type simplifications (selection of the model that maxi-

mizes pα,θ|D), model expansion techniques that restrict the integration to a neighborhood

of a good model (Draper, 1995), selective model averaging that restrict the integration

to a series of good models, and Markov Chain Monte Carlo techniques that perform a

random walk in the space of models (Madigan and York, 1995). There also exist connec-

tions between particular model selection criteria and particular priors on models (Zhang

et al., 2009).

3.1.6 Ensemble Methods

Ensemble methods build on the principles suggested by Bayesian averaging, Bayesian

model averaging, and MCMC or importance sampling Monte Carlo techniques. We

will present these methods under a common umbrella by saying that ensemble methods
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assume a predictive distribution of the form (3.8) with a MCMC approximation already

applied to the integral, that is,

px|D(xn+1;x
n) =

m
∑

ν=1

p(xn+1;αν , θν)wν , (3.9)

where

• αν describes the structure of a model Mν ,

• θν refers to the parameters of the model Mν ,

• p(·;αν , θν) stands for the predictive distribution according to the model Mν ,

• m is the number, possibly depending on xn, of models Mν that are generated

sequentially given the data xn, and possibly given information extracted from pre-

vious models — this information would be represented by the state of the Markov

Chain in MCMC,

• wν ≥ 0 is the weight of the model Mν in the ensemble, with weight updates

permitted during the construction of the sequence — in particular, setting an initial

sequence of weights to 0 amounts to discard models generated during a first “burn

in” period.

Each term in the sum represent the contribution of a weighted sample as if it were drawn

from the joint density pα,θ|D = pθ|α,Dpα|D in (3.8), duplicate samples being permitted.

Bagging.

In bagging methods (bootstrap aggregating methods) (Breiman, 1996), the sequence

M1, . . . ,Mm is built by sampling models Mν as follows: the parameters of a model Mν

are particularized (plug-in estimate) to a random resampling Dν of the elements in the

data set D with replacement (bootstrap) (Efron and Tibshirani, 1993), each element of D

having the same probability to be drawn, repetitions permitted. The number of draws

is usually set to a fixed ratio α of the cardinality of D.

The idea of bagging has originally been proposed in the context of prediction, but

has then also been applied to density estimation. In the context of prediction, bagging

has been shown to reduce the variance of estimators that are unstable with respect to

perturbations of the data xn (assuming that the number n of samples is held fixed), with

a beneficial effect on the bias/variance tradeoff provided that the resampling ratio α is

large enough (Buja and Stuetzle, 2006) (α = 1 in Breiman’s original algorithm).

Boosting.

In boosting methods (Schapire, 1990; Freund and Schapire, 1996; Schapire et al., 2002),

the sequence M1, . . . ,Mm is built by sampling models Mν as follows: the parameters of a

model Mν are particularized to a random resampling Dν of the elements in a data set D,

each element of D having a certain probability to be drawn, determined by assigning to

each element k of the data set D an importance weight that is relatively greater if the
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element k is not well explained (or predicted) by the previous models. The m models are

then aggregated by weighted averaging (Littlestone and Warmuth, 1989), the weights

reflecting the respective quality of each model at explaining the data. The weighted

aggregation scheme depends on generalization bounds proper to the loss function chosen

for scoring the models.

Boosting has been shown to induce predictive models with excellent generalization

capabilities starting from a family of models Mk having their prediction slightly bet-

ter than random predictions once their parameters θk are adapted to the data (weak

models). The reasons for the empirical success of boosting may not still be fully eluci-

dated (Mease and Wyner, 2008). The aggregation schemes used for the online prediction

of (bounded) sequences X1, X2, . . . without assuming a probabilistic model PX (Cesa-

Bianchi and Lugosi, 1999), as advocated by Dawid (1984), are similar to the aggregation

schemes used in boosting (Cesa-Bianchi et al., 1997), and have been analyzed in terms of

their generalization ability in the context of online prediction (Cesa-Bianchi et al., 2004).

Other Ensemble Methods.

While bagging and boosting exploit perturbations of the data set based on the temporary

presence or absence of particular samples, other ensemble methods use perturbations of

the data set based on the temporary presence or absence of certain components of x

(features) (Dietterich, 2000; Breiman, 2001; Geurts et al., 2006). Research is still very

active in machine learning for finding beneficial ways to perturb data sets by further ran-

domizing the features, be it in the context of ensemble methods stricto sensu (Breiman,

2000), or in the context of kernel methods (Rahimi and Recht, 2008, 2009; Shi et al.,

2009).

3.2 Adaptation to Stochastic Programming

Most stochastic programs of practical interest use unbounded objective functions. This

is in strong contrast with the usual assumptions made in machine learning and online se-

quence prediction. A large body of theoretical work based on empirical processes theory

(Pollard, 1990), large-deviation theory and concentration inequalities such as Hoeffding’s

inequality (Hoeffding, 1963), Azuma’s inequality (Azuma, 1967), McDiarmid’s inequal-

ity (McDiarmid, 1989), ultimately relies on a bounded range assumption for establishing

the generalization bounds that back the predictions realized by mixtures of experts or

boosting-type approaches (Koltchinskii and Panchenko, 2002; Audibert et al., 2007; Shiv-

aswamy and Jebara, 2010). Results and reasonings from those works are thus difficult

to adapt to the usual models of stochastic programming. Note that when one accepts to

focus on bounded objective functions, theoretical investigations are possible (Nesterov

and Vial, 2008).

We follow another path here, and investigate empirically the use of bagging methods

for estimating an optimal first-stage decision to a multistage stochastic program. We

consider perturbed scenario-tree approximations to multistage stochastic programs with

decisions valued in a nonconvex feasible set. The standard averaging rule is not imple-

mentable, calling for a more sophisticated aggregation strategy. The first-stage decision

plays the role of the parameter θ considered in Section 3.1.
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3.2.1 Principle of the Approach

In this section, we outline the principle of the proposed approach, and discuss the main

underlying assumptions. We start by describing the class of problems that we address

and then provide an overview of the main ingredients of the proposed solution approach,

namely, a procedure for generating an ensemble of scenario trees, an algorithm based

on the cross-entropy method for computing near-optimal first-stage decisions, and a

kernel-based method for aggregating the first-stage decisions derived from the ensemble

of scenario trees. Background material on kernel methods can be found in Appendix C.

Problem Formulation and Assumptions.

We consider a system that evolves according to a state transition equation

xt+1 = ft(xt, ut, wt) ,

starting from a fixed initial state x0 ∈ X. The state trajectory x0, x1, . . . is controlled by

the decisions ut ∈ U and perturbed by disturbances wt ∈W generated by a memoryless,

exogenous process, so that wt is drawn from a fixed probability distribution Pt,w. A

reward process r0, r1, . . . , rT−1 is defined by mappings rt fromX×U×W to R with values

rt(xt, ut, wt). The initial state x0, system dynamics ft, reward functions rt, disturbance

model Pt,w, are assumed to be known by the decision maker, whose goal is to find a non-

anticipative decision strategy µ for selecting actions ut and maximizing the expectation

of the cumulated rewards over T stages, written

J∗(x0) = max
µ

E{
T−1
∑

t=0

rt(xt, ut, wt)|x0}. (3.10)

The candidate strategies µ for selecting the decisions ut at times 0 ≤ t < T is a sequence of

time-indexed deterministic mappings µt from the current history ht = (w0, w1, . . . , wt−1)

of the disturbance process to a fixed decision ut = µt(ht) ∈ U .

(To compare this setup to the Markov Decision Process framework, one may assume

temporarily that the disturbance process is observable. Then, the mappings from ht to

ut are as expressive as mappings from states xt to actions ut, since the states xt are

ultimately a function of ht: xt can be recovered from ht, given x0, u0, the decision rules

µ1,. . .µt−1, and the state transition functions f0, . . . , ft−1).

No assumption is made about the dimensionality or the structure of the state space X.

The space U of possible actions, and the space W of possible disturbances, are assumed

to be made of a finite number of elements.

The notations xt, ut, wt, ft, rt, the assumption of a memoryless disturbance process,

the initial condition for t = 0 rather than t = 1, are meant to facilitate the connection

with the usual discrete-time optimal control framework (Bertsekas, 2005a). The memo-

ryless assumption may be relaxed, by simply requiring that the probabilities of all future

disturbance sequences are known by the decision maker. The temporal decomposition of

the performance criterion in Equation (3.10) is fundamental in an optimization procedure

based on dynamic programming, but is not essential in the present approach.
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Exact Solution Based on a Complete Scenario Tree.

A complete scenario tree of depth T represents all the possible realizations of the process

w0, w1, . . . , wT−1, together with their probabilities. In such a tree, the root node (depth 0)

corresponds to time t = 0 and to an empty process history. To each node n of depth

t ∈ {1, 2, . . . , T} in the tree corresponds a possible history hn = [w0, . . . , wt−1]n of the

process, through the unique path from the root to the node n. The disturbance (wt−1)n

is directly assigned to the node n together with its probability, while [w0, . . . , wt−2]n and

their joint probability can be collected from the disturbances and probabilities associated

to the nodes in the path.

Any strategy µ can be represented on the completetree by assigning to each node n of

depth 0 ≤ t < T a fixed value un = µ(hn) ∈ U . Consequently, searching for an optimal

strategy is equivalent to jointly optimizing the values un assigned to the internal nodes

of the tree.

The performance criterion defined in (3.10) can be evaluated once decisions have

been assigned to the nodes. Indeed, given the value of x0, u0 = µ0 and a particular w0,

one can evaluate r0 = r0(x0, u0, w0) and x1 = f0(x0, u0, w0) by the knowledge of rt

and ft at t = 0. The values r0 and x1 can thus be assigned to the node associated to

the disturbance process history [w0]. The probability P0,w(w0) is determined from the

disturbance process model. Given the nodal decision for u1 = µ1(w0), and using x1

and a particular w1, one gets the values of x2 and r1 for the corresponding particular

value of [w0, w1]. The value r1 can be assigned to the node corresponding to [w0, w1], to

which is also assigned a probability P0,w(w0) ·P1,w(w1), since we assume that w0, w1 are

independent. The propagation of nodal values is pursued until values are assigned to xT

and rT−1. It can be carried out for each disturbance path in the tree. Therefore, for

a given decision strategy µ, all the rewards and probabilities entering the evaluation of

the expectation in (3.10) can be computed, given the system model ft, rt,Pt,w and the

initial state x0.

Without any particular structure assumed for ft and rt, the optimization of the

policy µ may be done by a direct search of the decisions un assigned to the nodes of

the tree. However, the number of possible combinations is of the order of |U ||W |T−1

,

meaning that as soon as the cardinalities |U |, |W |, or the time horizon T are large, an

exact optimization is intractable.

Approximate Solution Based on an Ensemble of Incomplete Scenario Trees.

Conceptually, an incomplete scenario tree is obtained by selecting a subset of the nodes

of a complete tree, by removing the arcs leading to these nodes as well as the subtrees

emanating from them, and by adjusting the probabilities of successor nodes so that they

still sum up to one. Each node of depth inferior to T in the resulting incomplete tree must

still have at least one successor node. In practice, incomplete trees can be constructed in a

top-down fashion, by subsampling the disturbance process according to its probabilities,

in such a way that the resulting incomplete scenario tree is small enough to induce a

tractable optimization problem.

While the decisions associated to the nodes of an incomplete scenario tree yield an

incomplete decision strategy, such a strategy always provides a value for the first-stage
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decision u0. Therefore, building an incomplete tree, optimizing an incomplete decision

strategy over it, and extracting the first-stage decision, can be viewed as a simplified

estimation procedure for the search of u0 on the complete tree.

Rather than this usual estimate for an optimal u0, we propose to consider the model

space of all incomplete trees, sample an ensemble of models in that space, and estimate

u0 by aggregating the optimal first-stage decisions associated to these models.

Recalling the conditions for the success of bagging approaches (Section 3.1.6), we can

expect that this estimation procedure can be beneficial when the individual incomplete

trees are not too small. Working on a small tree or on a single scenario could induce too

large a bias on the individual first-stage decisions with respect to the optimal first-stage

decision.

The main ingredients of this approach are further discussed below, with an emphasis

on decision problems with large discrete action and disturbance spaces.

3.2.2 Generation of an Ensemble of Incomplete Trees

Under our assumptions, the disturbance space can be written as W = {w1, . . . , w|W |},
where wj stands for a specific realization of the disturbance. To each disturbance wj is

associated a probability mass Pt,w(wt = wj) = pj > 0 for each j ∈ J = {1, . . . , |W |},
with

∑|W |
j=1 p

j = 1.

In our proposal, the generation of an ensemble of incomplete scenario trees is based on

the random sampling of a small number of successor nodes, in a top-down fashion. This

amounts to replace the discrete distributions Pt,w defined by the pairs (wj , pj), j ∈ J ,

by simpler distributions P̃t,w (the approximation can be different at each node), and

proceed by developing the nodes recursively. We assume that the simpler distributions

are described by the pairs (wj , p̃j) with j ∈ J̃ ⊂ J and
∑|J̃|

j=1 p̃
j = 1. In fact, as the

disturbance space is discrete, there would be no obvious way to define intermediary

or averaged values for the disturbances. We write V for the set {wj}j∈J̃ . The set

W \ V = {wj}j∈J\J̃ is the set of disturbances omitted by the approximation.

The probability masses of the disturbances in W \V must be reallocated (transported)

to one or several disturbances in V . To do that in a way consistent with approximation

methods based on probability metrics (Section 2.4.2), we assume that the user can define

distances between the elements in W , ideally in such a way that close disturbances

induce similar state transitions and similar rewards. These ideas will be illustrated in

Section 3.3. Under this assumption, it makes sense to redistribute the probability mass of

a disturbance inW \V among the nearest disturbances in V , so as to reduce (heuristically)

approximation errors.

A generic way to induce distances in a discrete space is to introduce a positive-definite

kernel k : W ×W → R with values k(w,w′) = k(w′, w) (see Appendix C). The distance

between two disturbances w, w′ is then given by

d(w,w′) = [k(w,w) + k(w′, w′)− 2k(w,w′)]1/2 = d(w′, w) ≥ 0 .

For each w ∈W \ V , let C(w) denote the subset of V of nearest neighbors to w:

C(w) = {v ∈ V : d(v, w) ≤ d(v′, w) for all v′ ∈ V } .
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(w1, p1)

(w2, p2)

(w3, p3)
(w4, p4)p2/2

p2/2
p4

Fig. 3.1: Illustration of the probability redistribution rule (3.11), for W = {w1, w2, w3, w4},

V = {w1, w3}, C(w2) = {w1, w3}, C(w4) = {w3}. The pairs (wj , pj) can be embedded

in a feature space induced by the choice of the kernel k. The dots represent V (black)

and W \ V (white) in the feature space where the pairwise distances are evaluated.

For each v ∈ V , let C−1(v) denote the subset of elements in W \ V that have v as a

nearest neighbor:

C−1(v) = {w ∈W \ V : w ∈ C(v)} .

The probability mass of a node n to which a disturbance wj ∈ V is associated is then

given by

p̃j = pj +
∑

wk∈C−1(wj)

pk/|C(wk)| . (3.11)

The probability mass redistribution rule is illustrated in Figure 3.1.

3.2.3 Optimization with the Cross-Entropy method

Consider an incomplete scenario tree with N nodes numbered from 1 (root, depth 0)

to N (last leaf, depth T ). We assume that the leaf nodes (depth T ) are numbered

from N − L + 1 to N , where L is the number of leaf nodes or equivalently, the number

of scenarios. Let wn, xn, un, rn, denote respectively the disturbance wt−1, state xt,

decision ut, reward rt−1 assigned to node n, where t corresponds to the depth of the node,

and where xt, ut, rt−1 are conditioned on the disturbance process history [w0, . . . , wt−1]

induced by the path from the root to the node n. The root node has no disturbance and

reward assigned to it. The leaf nodes (N −L+1 ≤ n ≤ N) have no decision un assigned

to them. Let pn be the probability mass assigned to node n (the probabilities pn of the

nodes of depth t sum up to 1). For n > 1, let n− denote the index of the parent node

of node n. Let f−
n and r−n denote the functions ft and rt for t equal to the depth of the

node n−. The problem (3.10) formulated on the incomplete scenario tree becomes

maximize

N
∑

n=2

pnrn

subject to x1 = x0

xn = f−n (xn− ,un− ,wn) 2 ≤ n ≤ N
rn = r−n (xn− ,un− ,wn) 2 ≤ n ≤ N

over variables xn ∈ X, un ∈ U , rn ∈ R. By the implicit treatment of the equality

constraints, the problem can be rewritten as

maximize F (u1, . . . ,uN−L) over u1, . . . ,uN−L ∈ U. (3.12)
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We view F as an arbitrary mapping from U × · · · × U = UN−L to R. In theory, the

maximum could be computed by sorting the values of F for the |U |N−L possible inputs.

For brevity, we will write u for [u1, . . . ,uN−L].

For the estimation of the maximum of F over u ∈ UN−L, we use the Cross-Entropy

method (CE method) (Rubinstein and Kroese, 2004). When it is applied to importance

sampling, the Cross-Entropy method aims at selecting, from a family of parametrized

densities, the density that has the smallest Kullback-Leibler divergence (defined previ-

ously by (3.1)) with respect to an ideal importance sampling density. Rubinstein and

Kroese (2004) note that when the densities come from an exponential family of distri-

butions (defined in Chapter 5), the use of the Kullback-Leibler divergence (CE-distance)

allows analytical calculations, and reduces the complexity of importance sampling algo-

rithms that sequentially update the parameters of the sampling distributions.

When the CE method is applied to an optimization problem, viewed as the search of

a particular rare event, the method is based on two components:

• A random generator parametrized by θ for sampling candidate solutions u accord-

ing to a density g(·; θ):

u ∼ g(·; θ) . (3.13)

The parametrization by θ must be chosen in such a way that the distribution g

can both be uniform over each possible solution in UN−L, or concentrated on any

particular solution in UN−L.

• The procedure that computes the value of F for a candidate solution u, where

F (u) will be interpreted as the score assigned to u by F :

u 7→ F (u) . (3.14)

The method works as follows. Starting with the value of θ that corresponds to the uniform

distribution over the space of solutions, one draws NCE samples u
1, . . . ,uNCE from the

density g(·; θ), scores them using the scoring function F , and tags as elite solutions the

samples with a score greater or equal to the dρNCEe-th best score, written γ̂. The

parameter ρ is set to a small positive value, typically 0.01 (a value for which the elite

solutions correspond to the best percentile of the empirical distribution of the score).

The parameter θ is then updated so as to decrease the CE distance of g(·; θ) with respect

to the empirical density induced by the elite solutions. The update rule proposed by

Rubinstein and Kroese (2004, Equation 4.8) is

θ ← θ̂ where θ̂ ∈ argmaxθ

∑

k: F (uk)≥γ̂

log g(uk; θ) .

Thus in fact θ̂ is just the maximum likelihood estimate of the sampling density g(u; θ)

given the data set of elite samples (the parameter update maximizes the probability of

generating the elite samples).

After the parameter update step, a new set of NCE samples is redrawn from g(·; θ).
The parameter update/resampling procedure is repeated until the density g(·; θ) concen-

trates on a single solution, or until the elite scores have ceased to improve. The best

candidate solution with respect to F (at any iteration) is then returned. The authors of
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the method recommend to choose NCE proportional to the number of parameters in θ

(the dimension of θ depending itself on the size of the search space). They also propose

to smooth the updates of θ as follows: denoting by θj the value of θ at iteration j, they

suggest to set

θj+1 = αθ̂ + (1− α)θj (3.15)

where α ∈ (0, 1] is the smoothing factor.

3.2.4 Aggregation of First-Stage Decisions

Let uν
0 ∈ U denote a near-optimal first-stage decision (root-node decision) relative to an

incomplete tree ν, where the tree and uν
0 have been obtained by the procedures described

in the preceding subsections. Let S0 = {u1
0, . . . , u

m
0 } denote the set of near-optimal first-

stage decisions relative to m such trees.

The analysis of bagging methods (see Section 3.1.6) suggests that forming an ag-

gregate first-stage decision from the set S0 could decrease the influence on uν
0 of the

particular sampled tree ν. However, a difficulty in the present setup, where decisions are

valued in a large discrete set U , consists in defining an admissible and useful aggregation

rule. By admissible, it is meant that the aggregated decision is valued in U ; by useful, it

is meant that the aggregation rule should be able to preserve the structure and properties

of near-optimal solutions.

To this end, we propose to take as the aggregated first-stage decision, written ua
0 ,

the decision in S0 that is nearest to a special point that we call the centroid of the

decisions in S0, and that is defined, as we explain next, using the metric induced on U

by a kernel kU that quantifies the similarity between decisions in U . Formally, we may

assume momentarily (so as to clarify intermediate calculations) that we have access to

the feature map ϕ : U → H relative to the reproducing kernel Hilbert space H induced

by kU : U×U → R. Alternatively, we may assume that we can enumerate a finite number

of features for the decisions, from which we induce a kernel by (see Appendix C.4)

kU (u0, u
′
0) = 〈ϕ(u0), ϕ(u′0)〉 ,

where 〈·, ·〉 stands for a suitably defined inner product.

The centroid of S0, written uc
0, is defined by its coordinate φ(uc

0) in the feature space,

set to

ϕ(uc
0) = m−1

m
∑

ν=1

ϕ(uν
0) .

The squared distance between the centroid and some first-stage decision u0 ∈ U is given

by

||ϕ(u0)− ϕ(uc
0)||2

= 〈ϕ(u0), ϕ(u0)〉 − 2m−1
m
∑

i=1

〈ϕ(u0), ϕ(ui
0)〉+m−2

m
∑

i=1

m
∑

j=1

〈ϕ(ui
0), ϕ(uj

0)〉 .
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The squared distance from some decision uν
0 ∈ S0 to the centroid uc

0 may be expressed

in terms of the elements Kij = 〈ϕ(ui
0), ϕ(uj

0)〉 of the Gram matrix K ∈ Rm×m by

||ϕ(uν
0)− ϕ(uc

0)||2 = Kνν − 2m−1
m
∑

i=1

Kiν +m−2
m
∑

i=1

m
∑

j=1

Kij . (3.16)

The aggregated solution

ua
0 ∈ arg min

uν
0∈S0

||ϕ(uν
0)− ϕ(uc

0)||2 , (3.17)

or equivalently ua
0 = uj

0 with j ∈ arg min
1≤ν≤m

{Kνν − 2m−1
m
∑

i=1

Kiν} ,

with ties broken arbitrarily, may thus also be computed without the need to refer to the

feature map ϕ once the Gram matrix is given. Therefore, the explicit computation of the

centroid in the feature space, which would require the explicit knowledge of the feature

map, is not actually needed for evaluating the aggregated solution.

Note that the empirical variance of the ensemble of decisions in the feature space

induced by the kernel kU , defined by

var{S0} = m−1
m
∑

ν=1

||ϕ(uν
0)− ϕ(uc

0)||22 = m−1
m
∑

i=1

Kii −m−2
m
∑

i=1

m
∑

j=1

Kij ,

could also be evaluated even if the feature map is specified only implicitly by the definition

of the kernel, and could quantify the discrepancy between candidate decisions in S0.

Discussion.

First consider the situation where the decision space U only possesses a handful of el-

ements. Thanks to the small cardinality of U , we may expect that optimal first-stage

decisions are present among the elements of set S0. Therefore, a simple majority vote

among the elements of S0 can be taken as the estimate ua of an optimal first-stage de-

cision. Note that the majority vote can be obtained from the general formulation (3.17)

based on kernels by setting Kij = δ{ui
0 = uj

0}, where δ{·} denotes the 0-1 indicator

function of the event placed in argument. Indeed, as Kνν = 1, the squared distances

||ϕ(uν
0) − ϕ(uc)||2, 1 ≤ ν ≤ m, will only differ by the term −2m−1

∑m
i=1 δ{ui

0 = uν
0},

proportional to the frequency of uν
0 in S0.

Now consider the situation where U is finite but has a cardinality |U | much larger

than |S0| = m. It is then very likely that a clear majority will not be attained in S0,

especially if there are many quasi-equivalent decisions in terms of optimality. However, in

many situations, U is formed from the combination of several elementary decisions. One

could thus combine kernels on the elementary decision spaces, for instance by combining

separate majority votes on the elementary decisions.

The kernelization of the decision space enables one to incorporate prior knowledge on

the structure of the decision space. Therefore, kernels should be consistent with prior

beliefs about the decisions that have similar effects on the problem at hand.
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Fig. 3.2: Example of configuration for the sensor network problem, with eight sensors (
⊗

) and

two targets (•) (figure taken from Dutech et al. (2005)).

3.3 Numerical Experiment

In this section, we illustrate the proposed approach on a test problem problem that has

a large, structured, discrete action space. We explain in detail how the action space is

kernelized, how the incomplete scenario trees are generated, and how the corresponding

optimization problems are solved approximately. We assess the quality of the first-stage

decision estimators û0 = ua
0 obtained with the proposed approach by a direct comparison

with the optimal strategy, which can be computed exactly in this test problem by dynamic

programming (by evaluating recursively the tabular representation of the expected costs-

to-go (Q-functions), where the tabular representation of a Q-function has an entry for

each combination of state-action pairs).

3.3.1 Description of the Test Problem

The test problem is part of a series of standard benchmark problems proposed for compar-

ing Reinforcement Learning solution approaches (Dutech et al., 2005). The test problem

is inspired by a distributed control application from Ali et al. (2005) and named Sensor

Network. Note that among all the problems selected by Dutech et al. (2005), Sensor

Network is the only problem with a relatively large discrete decision space.

The problem can be described as follows. Eight sensors bracket an array of three

cells, as shown on Figure 3.3.1. Each cell is surrounded by 4 sensors. Two targets float

over the cells. Each cell is occupied at most one target.

At time step t, each sensor can be focussed on the cell to its left, on the cell to its

right, or be idle. The decision ut sets the action of the 8 sensors. The decision space

is thus a joint action space U = {0, 1, 2}8 that encodes the 3 possible actions of the

8 sensors (0: idle, 1: focus left, 2: focus right), totalling 38 = 6561 possible actions. A

unit cost is incurred for each focussed sensor; idle sensors have no cost.

The game consists in eliminating the two floating targets from the cells as quickly as

possible. Each target start at energy level 3. After sensors have been set according to ut,

the targets move. The leftmost target randomly moves to the left (L), to the right (R),

or stay idle (I). A priori the 3 possibilities are equiprobable, but a move is cancelled if

the cell where the target intends to go is already occupied or does not exist. After the

move performed by the leftmost target, the rightmost target randomly moves according

to the same rules.

The intended moves of the targets are viewed as the disturbances in the problem.

The disturbance space is W = {L,R, I}×{L,R, I}, with each of the 32 = 9 possible com-

binations having probability 1/9. The effective moves may differ inasmuch as intended
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moves can be blocked as described above.

The sensors are then activated. A target that lies in a cell where 3 sensors or more

are focussed loses one energy point. A target is removed from the board when its energy

falls to 0. The game ends when the two targets have been eliminated from the board.

The state space X = {0, 1, 2, 3} × {0, 1, 2, 3} × {0, 1, 2, 3} encodes the target energy

level (0 to 3) of the 3 cells. When a target moves from one cell to another, these cells

swap their energy level. The initial state x0 is either [3 3 0], [3 0 3], [0 3 3], representing

2 targets with energy level 3. The state [0 0 0], corresponding to a board with no

remaining targets, is a terminal state. When a target is eliminated, a reward +30 is

obtained. Therefore, the instantaneous reward rt is given by

rt = 30

2
∑

i=1

δ{energy level of target i goes from 1 to 0} −
8
∑

i=1

δ{sensor i is not idle}

The total return is the discounted cumulated reward
∑T

t=0 γ
trt with γ = 0.95, and

T = 10. The problem is the maximization of the expected total return, starting from

some given state, over stochastic programming decision rules µt : W t−1 → U with

values µt(w0, . . . , wt−1) = ut. We concentrate on the estimation of an optimal first-stage

decision u0, given x0.

3.3.2 Particular Choices

The general approach described in the preceding subsections is adapted to the problem

at hand as follows.

• The disturbance space is decomposed as W = Wa × Wb with Wa = {L,R, I}
relative to the intended move of the leftmost target, and Wb = {L,R, I} relative to

the intended move of the rightmost target (if there are still two active targets). A

disturbance w is thus decomposed as w = (wa, wb), with wa relative to Wa and wb

relative to Wb.

We assume (heuristically) that two disturbances w, w′ such that wa = w′
a or wb =

w′
b are similar in terms of induced state transitions and rewards. This assumption

is taken into account by defining the kernel on the disturbance space (Section 3.2.2)

as

k(w,w′) = δ{wa = w′
a}+ δ{wb = w′

b} . (3.18)

• The incomplete trees are built by sampling, with replacement, NW disturbances

in W at each node. Those NW disturbances are sampled according to their proba-

bilities. Duplicate samples are then eliminated, and the distinct samples are taken

as the children of the node and assigned a probability according to (3.11), with the

kernel k defined by (3.18). The initial number of samples NW is random, so that

the branching structure of an incomplete scenario tree is random. For a node of

depth d ≥ 0, NW = 3 samples are drawn with probability 1/(1 + d), and NW = 1

sample with probability 1 − 1/(1 + d). Random trees with more than 150 nodes

are rejected. Note that the complete tree on the |W | = 9 disturbances would have
∑10

d=0 9d = 3.9 · 109 nodes.
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• The sampling distribution for candidate solutions u (Section 3.2.3) is first decom-

posed into N − L independent components, each component being relative to one

internal node of the scenario tree (assuming that the tree has N nodes, including

L leaf nodes of depth T ). The N −L components are themselves decomposed into

8 independent parts corresponding to the 8 sensors. Each part defines the distribu-

tion over {0, 1, 2} of the action of a sensor j at a node i, written aij . A distribution

for aij is described by the two scalar parameters pij = P{aij = 0}, qij = P{aij = 1},
with pij , qij ∈ [0, 1] and 0 ≤ 1 − pij − qij = P{aij = 2} ≤ 1. A uniform distri-

bution over all possible strategies on the incomplete tree is obtained by setting

pij = qij = 1/3 for all i, j, whereas any particular deterministic solution u can be

obtained by selecting for each pair (i, j) one of the three configurations {pij = 1,

qij = 0}, {pij = 0, qij = 1}, or {pij = 0, qij = 0}. The distribution for generating

a random solution u associated to the incomplete scenario tree is thus specified by

2 · 8 · (N − L) parameters.

Once the elite samples u
k (Section 3.2.3) have been scored by computing the ex-

pected discounted sum of rewards on the incomplete tree with the nodal decisions

set to u
k, the parameters of the generating distribution for the solutions are up-

dated as follows: given ` elite samples, with ak
ij denoting the action aij from the

elite sample u
k, 1 ≤ k ≤ `, one first computes the empirical frequencies of the

elementary actions in the elite samples,

p̂ij
def
= `−1

∑`
k=1 δ{ak

ij = 0}

q̂ij
def
= `−1

∑`
k=1 δ{ak

ij = 1} ,

and then one updates the parameters pij , qij of the solution generating distribution

by

pij ← α p̂ij + (1− α) pij

qij ← α q̂ij + (1− α) qij ,

where α is the smoothing factor of Equation 3.15. In the numerical experiments

reported in the next section, α = 0.6.

• The Cross-Entropy optimization can be stopped as soon as the sampling distribu-

tions relative to the root node are almost deterministic, since ultimately only the

first-stage decision is extracted from a solution u and used in the aggregation step.

In the numerical experiments reported in the next section, the Cross-Entropy op-

timization is carried out by generating NCE = 32 (N − L) candidate solutions

per iteration, that is, twice the number of parameters that describe the solution-

generating distribution. The optimization is stopped as soon as the 8 actions at the

root have their distribution concentrated on a single action with probability 0.99.

• The aggregation scheme exploits the decomposition of the decision space into sep-

arate sensor actions. Recalling that the root node has the node index i = 1, let

aν
1j denote the first-stage action of sensor j from the ν-th solution in the set S0,

1 ≤ ν ≤ m. The action of sensor j in the centroid decision uc
0 (Section 3.2.4) is

determined by a majority vote over the action of sensor j in the first-stage decisions
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uν
0 = {aν

1j}1≤j≤8 collected in the set S0:

ac
1j = a

ν(j)
1j with ν(j) = min{argmaxk

m
∑

l=1

δ{ak
1j = al

1j}}, 1 ≤ j ≤ 8 ,

and then the aggregated decision ua
0 is set to the element uν

0 ∈ S0 sharing the most

actions with ua
0 , that is,

ν = min{argmaxk

8
∑

j=1

δ{ak
1j = ac

1j}} .

A similar effect can be obtained by defining the kernel kU (Section 3.2.4) between

two elements uν
0 , uσ

0 of S0 as

kU (uν
0 , u

σ
0 ) =

8
∑

j=1

δ{aν
1j = aσ

1j} = Kνσ = Kσν

and setting

ua
0 = uν′

0 with ν′ = min{argmaxν

m
∑

i=1

Kiν} ,

following (3.17) with Kνν constant and ties broken by the lexicographical order

on ν.

3.3.3 Simulation Results

Typical outcomes with an ensemble of m = 5 incomplete trees are reported in Table 3.1.

Three problems corresponding to the 3 initial configurations x0 of the targets with 3 en-

ergy points that float over the 3 cells are considered. Decisions uν
0 are represented

graphically. For instance, the symbol -/\-

/\/\
indicates that 3 sensors are focussed on

the leftmost cell, no sensor is focussed on the middle cell, 3 sensors are focussed on the

rightmost cell, and the remaining 2 sensors are idle (-). If the targets move onto the

leftmost or the rightmost target, they will be hit, so the combined action of the sensors

is effective. It would be suboptimal to have 1, 2 or 4 sensors be focussed on a same cell.

The table shows that the structure of optimal decisions can be destroyed in the centroid

decision uc
0. In fact, there are several configurations of the sensors that can lead to the

same effective targeting of two cells, but these equivalent configurations are made inef-

fective when they are averaged. The aggregated decision ua
0 reaches a consensus while

preserving the structure of effective configurations.

It turns out that for the first and third problem, the aggregated decisions ua
0 are

optimal, in the sense that the targeted cells are optimal, according to an exact dynamic

programming solution where the decision space is reduced a priori to 6 sensible choices

of targeted cells instead of considering the full set of combined actions of the sensors.

For the second problem (x0 = [3 0 3]), the decision ua
0 shown in the table is slightly

suboptimal: if subsequently optimal decisions are selected, then ua
0 brings an expected

return of 27.78 instead of the optimal return 27.88.

We repeated 10 times the experiment of building an ensemble of 5 trees and computing

the aggregated decision. An optimal decision was found: 7 times for x0 = [3 3 0], 9 times
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Tab. 3.1: Typical result with an ensemble of 5 trees.

x0 First-stage decision uν
0 uc

0 ua
0

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

[3 3 0] \//-

//\-

\/--

/---

\\/-

/\\-

-/\/

/\/-

\/\-

/-/\

\//-

/-\-

\//-

//\-

[3 0 3] -/\-

/\/\

\/\/

-\/-

\/\-

-\/\

\-\-

/\/\

\//-

//\-

\/\-

/\/\

\/\-

-\/\

[0 3 3] \/-/

/-/\

-\\/

-/\\

-\\/

-/\\

\-\/

/\-\

-\//

-//\

-\\/

-/\\

-\\/

-/\\

for x0 = [0 3 3], and 5 times for x0 = [3 0 3] (a second-best decision is found in the

5 other cases).

3.4 Conclusions

This chapter has investigated empirically the estimation of an optimal first-stage de-

cision to a finite-horizon optimal control problem by scenario tree techniques. While

we recognize that the solution techniques used in this work might be of limited inter-

est in practice, given that the studied problem class would be more naturally addressed

from a Markov Decision Process perspective, we believe that the statistical framework in

which the proposed tree-bagging solution technique was presented clarifies the connec-

tion between statistical estimation/prediction methods and sequential decision making

by stochastic programming.

It is interesting to realize, in particular, that stochastic programming models take

seldom into account the intrinsic limitation that only finite-sample approximations can

be solved. Usual stochastic programming models are thus close in spirit to maximum

likelihood estimation models used on finite data without regularization. Certainly, the

appropriate ways to apply regularization to sequential decision making are not clear

at this stage, and would call for further research. For instance, we observed — in-

dependently of the material presented in this chapter — that the early stopping of the

progressive hedging algorithm (Rockafellar and Wets, 1991) (see also Remark 2.1), where

decisions are optimized on separate scenarios (with a penalization of the difference with

the decisions at the previous iteration) and then averaged if they are relative to a same

information state, could provide a kind of regularization without even modifying the

formulation of the model. With early stopping however, the objective being optimized

is no longer totally explicit, the solution has a dependence on the initial conditions, and

therefore the solution algorithm would require a careful tuning of its parameters on the

problem at hand.

Unfortunately, we are still lacking at this stage efficient methods for testing the real

value of any solution procedure, be it regularized or not. As the right amount of reg-

ularization (weight of the regularization in the objective, early stopping criterion, . . . )
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is usually selected at the light of the results obtained by simulating the model on an

independent validation sample or by cross-validation methods (Stone, 1974; Efron and

Tibshirani, 1993), it would be vacuous to discuss regularization further if we were ulti-

mately unable to estimate the true quality of the regularized solution. The development

of efficient validation methods is the subject of the next chapter.
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Chapter 4

Validation of Solutions and Scenario Tree

Generation

In this chapter, we propose an approach for solving multistage stochastic programming

problems based on the idea of generating in a lazy fashion a large number of random

tractable scenario-tree based approximations. The approach is lazy in the sense that

instead of recommending a careful analysis of the structure of the problem at hand, and

instead of devoting all computational resources to the construction of a single scenario

tree, we recommend a multiplication of solution attempts through the generation of

several approximations. The method works by extracting, from the solutions of these

approximations, data sets that combine realizations of the random process and decision

sequences, and by processing these data sets by a supervised learning method, so as to

infer policies that can be later on tested efficiently on a large sample of new independent

scenarios. The learned policies can be exploited to infer multistage decision strategies

that achieve good performances in a very generic way. They can also be used to score

and select scenario trees, and thus to guide, in the context of a precise application, the

development and fine-tuning of a scenario tree generation algorithm.

The chapter is organized as follows. Section 4.1 motivates the approach investigated in

the chapter. Section 4.2 describes how feasible decision policies can be learned from a data

set of scenarios and decisions. Section 4.3 builds on the idea of exploiting several scenario-

tree approximations for learning several policies. Section 4.4 implements the proposed

approach on a family of test problems, introduces specific tree generation algorithms,

tunes them in the context of the test problems, and discusses the overall complexity

of the approach. Section 4.6 concludes by discussing the potential of some possible

extensions of the proposed algorithms, at the light of the results and insights obtained

in this chapter.

4.1 Motivation

Our approach is motivated by two complementary and intimately related considerations

induced by our analysis of current approximation methods for multistage stochastic pro-

gramming, and their confrontation to the problems addressed in the field of machine

learning in the last years.

The first motivation is derived from the need for intensive testing of decision-making

policies for multistage programs (Section 2.4.3). This need is primarily a consequence of

the lack of tight theoretical results that would provide broadly-usable prior guarantees
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on scenario tree based methods. Intensive testing is needed, because for obtaining perfor-

mance estimators that are statistically significant, it is important to test a decision policy

on a sufficiently large number of independent scenarios. Testing decisions a posteriori by

the shrinking-horizon approach (Section 2.4.4) is not a viable option, given the internal

use of additional scenario trees by this approach, and given the overall computational

complexity of the procedure. With respect to this motivation, machine learning offers a

multitude of ways of extracting policies that are easy to test in an automatic way on a

large number of independent samples.

The second motivation has to do with the intrinsic nature of the finite scenario-tree

approximation for multistage stochastic programming. The variance in the quality of the

optimal decisions that may be inferred from finite approximations suggests that those

problems are essentially ill-posed in the same sense as the inverse problems addressed

in machine learning are also ill-posed: small perturbations in the values of a finite data

set — finite number of scenarios in stochastic programming; finite number of input-

output pairs in machine learning — lead to perturbations of empirical expectations, and

ultimately lead to large variations (instability) of the quantities of interest — first-stage

decisions in stochastic programming; parameters of classifiers or regressors in machine

learning — that are being optimized on the basis of empirical estimates.

This analogy suggests that regularization techniques and principles from statistical

learning theory (Vapnik, 1998), such as the structural risk minimization principle, could

help to extract solutions from scenario-tree approximations in a sound way from the

theoretical point of view, and in an efficient way from the practical point of view.

The main ideas developed in the following subsections can be summarized as follows:

we propose an approach that (i) allows to test small scenario trees quickly and reliably,

(ii) is likely to offer better ways of exploiting individual scenario-tree approximations,

and (iii) in the end, allows to revisit the initial question (Section 2.4.2) of generating,

solving, ranking and exploiting tractable scenario trees for solving complex multistage

decision making problems.

4.2 Learning and Evaluation of Scenario Tree Based Policies

We start from the following observation: estimators of the quality of a scenario-tree ap-

proximation that are computationally cheap to evaluate can be constructed by resorting

to supervised learning techniques.

The basic principle consists in inferring a suboptimal decision policy by first learning

a sequence of decision predictors π̂1, . . . π̂T from a data set of examples of information

state/decision pairs. The examples of information states are extracted from the nodes of

the scenario tree; they correspond to the partial scenario histories (ξk
1 , . . . , ξ

k
t−1) in the

tree. Later in the chapter (Section 4.4.3), we will see that the information states can also

be represented differently, for instance by features or by states in the sense of dynamic

programming. The examples of decisions are also extracted from the nodes of the tree:

they correspond to the decisions uk
t optimized on the tree.

When a decision predictor π̂t is applied on a new scenario ξ (or more exactly, on

the observed part (ξ1, . . . , ξt−1) of the scenario ξ), it outputs a predicted decision that

cannot be assumed to satisfy the exact feasibility constraints ut ∈ Ut(ξ) relative to the
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new scenario, if we want to define a framework that allows the use of existing standard

supervised learning algorithms for building the decision predictors. Therefore, to obtain

feasible decisions, we assume that the predicted decision can then be corrected in an

ad-hoc fashion using a computationally cheap feasibility-restoration procedure, that we

call repair procedure in the sequel and denote by Mt. The idea of using repair procedures

is also suggested in Küchler and Vigerske (2010) as a means of restoring the feasibility

of decisions extracted from a tree and applied to test scenarios.

We now formalize these ideas to describe how a learned decision policy can be used

to assess (validate), in a certain sense, a given scenario-tree approximation.

4.2.1 Description of the Validation Method

We consider a multistage stochastic program in abstract form (see Section 2.1.5):

P : minimize E {f(ξ, π(ξ))} subject to πt(ξ) ∈ Ut(ξ) ;

π(ξ) non-anticipative,

where ξ = (ξ1, . . . , ξT ) is a random process, and where the optimization is over the

decision policy π = (π1, . . . , πT ). We assume that ξt has its outcomes in some space Ξt,

say Rd for simplicity, and that πt is valued in some space Ut (of which Ut(ξ) is a subset),

say Rm. We recall that π is non-anticipative if π1 is a constant-valued function, π2 is

a function of ξ1, and more generally πt is a function of ξ1, . . . , ξt−1. Therefore, one can

define πt either as a mapping from Ξ1 × · · · × ΞT = RTd to Rm restricted to the class of

non-anticipative mappings, or as a mapping from Ξ1 × · · · × Ξt−1 = R(t−1)d to Rm.

Given an approximation of P on a scenario tree having n scenarios ξk of probability pk,

P ′ : minimize
∑n

k=1 p
k f(ξk, uk) subject to uk

t ∈ Ut(ξ
k) ∀ k ;

uk
1 = uj

1 ∀ k, j ,
uk

t = uj
t whenever (ξk

1 , . . . , ξ
k
t−1) ≡ (ξj

1, . . . , ξ
j
t−1) ,

let {ūk}1≤k≤n denote an optimal solution to P ′, where each ūk = (ūk
1 , . . . , ū

k
T ) corre-

sponds to the sequence of decisions associated to ξk. We define a decision predictor π̂t as

a mapping from inputs Xt
def
= (ξ1, . . . , ξt−1) ∈ R(t−1)d to outputs Yt

def
= ut ∈ Rm, learned

from a data set Dt
def
= {(Xk

t , Y
k
t )}1≤k≤n of input-output pairs, obtained by collecting

from the scenario tree the observed parts of the scenarios and their associated optimized

decisions:

Xk
t

def
= (ξk

1 , . . . , ξ
k
t−1) ,

Y k
t

def
= ūk

t .

Note that the duplicate samples (Xk
t , Y

k
t ) ≡ (Xj

t , Y
j
t ) induced by the non-anticipativity

conditions (the branching structure of the scenario tree) may be removed from the learn-

ing set Dt. In particular, D1 is reduced to a single learning sample Y1 = ū1, leading to

a trivial learning problem and to the decision predictor π̂1 ≡ ū1.

By construction of P ′, and by the fact that U1 is constant-set-valued, the first-stage

decision is feasible: π̂1(ξ) = ū1 ∈ U1(ξ). For the subsequent decisions, the supervised

learning procedure cannot in general guarantee that π̂t(ξ) ∈ Ut(ξ) for all scenarios in the
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learning set and for all new scenarios ξ. Therefore, we repair the predictions to restore the

feasibility of the decisions. The nature of the repair procedure varies with the feasibility

constraints that have to be enforced. The realizations of the random quantities on which

Ut(ξ) depend are passed in arguments of the repair procedure, and the procedure is then

applied online on each new scenario and predicted decisions.

An example of repair procedure is the projection of a predicted decision on the feasibil-

ity set. Later in the thesis, we resort to simple problem-dependent heuristics for restoring

feasibility (Section 5.3.4). Formally, we define as an admissible repair procedure for Ut

any mapping

Mt : (Ξ1 × · · · × Ξt−1)× (U1 × · · · × Ut−1)× Ut → Ut

with values Mt(ξ1, . . . , ξt−1;u1, . . . , ut−1; π̂t(ξ1, . . . , ξt−1))

such that the range of Mt is always contained in the feasible set Ut(ξ), assuming that

u1, . . . , ut−1 are in the corresponding feasibility sets U1(ξ), . . . ,Ut−1(ξ), and that Ut(ξ) is

nonempty.

A learned (feasible) policy is made of the association of the decision predictors and

the repair procedures.

We can exploit a learned policy for computing an estimate of the quality of a scenario

tree, or a bound on the exact value of the original multistage program P. The procedure

can be described as follows.

i. Generate a scenario tree using a tree building algorithm A. Solve the resulting

program P ′, extract from its solution the first-stage decision ū1, and the data

sets Dt of scenario/decisions pairs.

ii. Learn the decision predictors π̂t from the data set Dt for t = 2, . . . , T .

iii. Generate a test sample of n′ mutually independent scenarios {ξj}1≤j≤n′ by sam-

pling realizations of the random process ξ.

iv. For each scenario ξj of the test sample, set uj
1 = ū1 and compute sequentially

the recourse decisions uj
2, . . . , u

j
T . Each decision uj

t is obtained by first evaluating

π̂t(ξ
j
1, . . . , ξ

j
t−1) and then restoring feasibility by the repair procedure Mt.

v. Estimate the performance of the learned decision policy on the test sample by

forming the empirical average VTS(A) = (1/n′)
∑n′

j=1 f(ξj , uj), where the sum runs

over the indices relative to the scenarios in the test sample and their associated

decision sequences uj = (uj
1, . . . , u

j
T ).

The estimator VTS(A) computed in this way reflects the joint quality of the scenario

tree, the learned predictors and the repair procedures.

The estimator VTS(A) is obtained by simulating an explicit policy that generates

feasible decisions, and thus always provides a pessimistic bound (upper bound for min-

imization, lower bound for maximization) on the performance of the best policy that

could be inferred from the considered scenario tree, up to the standard error of the test

sample estimator. The pessimistic bound is also a reliable bound on the achievable per-

formance of a decision policy for the true problem, up to the standard error of the test

sample estimator.
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Note that in theory, a learned policy is not necessarily worse than a shrinking-horizon

policy using the same first-stage decision ū1, since the supervised learning step could

actually improve the quality of the recourse decisions uj
2, . . . , u

j
T .

The pessimistic bound can be made tighter by testing various policies obtained from

the same scenario tree, but with different learning algorithms and/or repair procedures.

The best combination of algorithms and learning parameters could then be retained.

Note, however, that due to the optimistic bias induced by the selection of the best bound

on the test sample of size n′, the value of the best policy should be evaluated again by

simulation on a new independent test sample of size n′′.

It is also possible to exploit estimators relative to policies learned from different

scenario trees but computed on the same test sample of size n′. We may even expect

that scenario tree variants can be ranked reliably based on the value of these estimators,

despite the variance of the estimator due to the randomness in the generation of the test

sample, and despite a new source of bias due to the use of suboptimal recourse decisions

obtained from the learned policies. These ideas will be further developed in Section 4.3.

Note also that the input space of a learned policy is a simple matter of convenience.

As long as the policy remains non-anticipative, the input space can be described differ-

ently, typically by letting appear explicitly past decisions, state variables, and additional

features derived from the information state, that might facilitate the generalization of

the decisions in the data sets, or later on, the online evaluation of the learned decision

predictors. These ideas are illustrated in Section 4.4.3.

To simplify the exposition in the sequel, we will assume that all the considered al-

gorithms for learning policies use the same repair procedures Mt, and differ only by the

choice of the hypothesis space Ht for π̂t (space of functions considered by the supervised

learning algorithm). It is convenient to denote the possible hypothesis spaces by Hλ
t ,

where λ belongs to some index set Λ. For instance, λ could represent the weight of a

regularization term used in the supervised learning algorithm. For simplicity, we assume

that Λ has a finite cardinality |Λ|.

4.2.2 Complexity Analysis

In this section, we consider the complexity of computing an upper bound (a performance

guarantee) on the value of an exact multistage program P by simulating a series of

policies learned from a single scenario-tree approximation P ′.

Recall that we have assumed for simplicity that ut ∈ Rm and ξt ∈ Rd, 1 ≤ t ≤ T .

We denote by ū1 ∈ Rm the constant first-stage decision. For t = 2, . . . , T , the map-

pings π̂t : R(t−1)d → Rm, with values π̂t(ξ1, . . . , ξt−1), represent the learned deci-

sion predictors, and the mappings Mt : R(t−1)d × R(t−1)m × Rm → Rm, with values

Mt(ξ1, . . . , ξt−1, u1, . . . , ut−1, ut), represent the repair procedures.

Then the mappings π̄t : RdT → Rm, with values π̄t(ξ), defined iteratively for t =

1, . . . , T by

π̄1(ξ) = ū1 ,

π̄t(ξ) = Mt(ξ1, . . . , ξt−1;u1, . . . , ut−1; π̂t(ξ1, . . . , ξt−1)) = ut ,

correspond to a non-anticipative feasible decision policy π̄ = (π̄1, . . . , π̄T ) for the original
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Algorithm 4.1 Selection and evaluation of a decision policy

Input: A first-stage decision ū1, learning sets Dt of pairs (Xk
t , Y

k
t ), hy-

pothesis spaces Hλ
t indexed by λ ∈ Λ, repair procedures Mt, and

a test sample of new scenarios (size n′).

Output: A feasible policy π̄.

1. For each λ ∈ Λ,

learn the decision predictors π̂λ
t given the data sets Dt,

using the hypothesis spaces Hλ
t , t = 1, . . . , T .

2. For each λ ∈ Λ,

evaluate the performance of the policy π̄λ obtained by combining π̂λ
t with Mt.

Let vλ be that performance evaluated on the common test sample of size n′.

3. Select ν ∈ arg minλ∈Λ v
λ and return π̄ν .

4. Optional: return the value of vν reevaluated on

an independent test sample of size n′′.

program P.

The computational complexity of exploiting π̄t on new scenarios depends on the com-

plexity of evaluating π̂t and Mt for all t.

The mappings π̂t should ideally be the best mappings from the best hypothesis spaces

one could consider, but in practice they correspond to the mappings identified by a given

supervised learning algorithm on the basis of the data sets Dt. We find it useful to

consider a series of policies in this section, because there is some leeway in the choice

of the supervised learning algorithm and/or its parameters, that can be exploited in the

search for ideal mappings.

In the usual supervised learning framework, one generally selects a model by evalu-

ating its performance on a fraction of the data set kept apart for testing purpose. In

the present setup, it is preferable to evaluate models by directly simulating the learned

policy π̄ on a common test sample of new scenarios (Algorithm 4.1).

If Algorithm 4.1 is merely run to select a best learned policy, a single test sample

of size n′ on which the policies are compared suffices. If in addition an unbiased upper

bound on the exact value of P is sought, an additional independent test sample of size n′′

is required on which the best policy should be simulated again.

In practice, the selection bias may be very small if n′ is large enough with respect to the

considered hypothesis spaces. Therefore, in some numerical experiments, we sometimes

allow ourselves to report directly the estimates obtained on the first test sample of size n′.

To discuss the complexity of Algorithm 4.1, let us introduce the following quantities.

• cA: expected time for forming the approximation P ′ to P using a scenario tree

building algorithm A,

• cS : expected time for obtaining a solution to P ′,
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• cL(t): expected running time of the learning algorithm on data Dt,

• cE(t): expected running time of the combined computation of π̂t and Mt on a new

scenario.

We assume that cL(1) = cE(1) = 0 since the first decision ū1 is fixed and simply

extracted from a solution to P ′. For t ≥ 2, note that cL(t) and cE(t) usually grow with

the dimension of the random variables ξt, the dimension of the decisions ut, and the

cardinality of the data sets Dt. The ratio between cL(t) and cE(t) depends largely on

the type of supervised learning algorithm and the type of repair procedure for Mt. We

neglect the time for computing f(ξ, u) given ξ and u.

The following proposition is a straightforward consequence of the definition of Algo-

rithm 4.1:

4.1 Proposition. Algorithm 4.1 runs in expected time

|Λ| ·
[

T
∑

t=2

cL(t) + n′
T
∑

t=2

cE(t)

]

=

T
∑

t=2

|Λ| · [cL(t) + n′ cE(t)] ,

starting from data sets obtained in expected time cA + cS . The optional step of Algo-

rithm 4.1 adds to the expected time a term n′′
∑T

t=2 cE(t).

If Algorithm 4.1 is run on N parallel processes, one can essentially replace |Λ| in

Proposition 4.1 by |Λ|/N , and n′′ by n′′/N .

The complexity of Algorithm 4.1 can be compared to the complexity of the usual

shrinking-horizon validation approach (Section 2.4.4). To this end, we extend our nota-

tions as follows.

• P(t) denotes the program for the minimization of the objective over the remaining

stages t, t + 1, . . . , T . The program P(1) is the original program P. Given real-

izations for ξ1, . . . , ξt−1 and the corresponding implemented decisions ū1, . . . , ūt−1,

one can obtain P(t) by replacing in P the random variables ξ1, . . . , ξt−1 by their

outcomes, conditioning the distribution of ξt, . . . , ξT accordingly, and introducing

the constraints π1(ξ) = ū1, . . . , πt−1(ξ) = ūt−1.

• P ′(t) denotes a scenario-tree approximation to P(t), built by some algorithm A(t).

• cA(t) denotes the expected time for forming the approximation P ′(t) to P(t) using

algorithm A(t) for building a scenario tree over the shrunk horizon.

• cS(t) denotes the expected time for obtaining a solution to P ′(t).

If the tree building algorithm A(t) is based on a pure Monte Carlo sampling, cA(t) should

be relatively small, and approximately proportional to the size of the scenario tree. If

A(t) is based on a deterministic method and the dimension of the random process is

not say 1 or 2, cA(t) may actually be quite large, even for t near the horizon T . The

time cS(t) can also be quite large, except perhaps for t = T or t close to T .

In Section 2.4.4, we had denoted all the algorithms A(t) simply by A, and written

VTS(A) for the estimate produced by the shrinking-horizon validation approach. In

the following proposition, we assume that the shrinking-horizon approach is run on the
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independent test sample of size n′′ used for reevaluating the best policy selected by

Algorithm 4.1.

4.2 Proposition. The shrinking-horizon approach runs in expected time

T
∑

t=2

n′′ · [cA(t) + cS(t)] ,

using a first-stage decision obtained in expected time cA + cS .

(The use of N parallel processes allows to replace n′′ by n′′/N).

Note that when the scenario tree building algorithms A(t) are not deterministic, each

algorithm A(t) constitutes a new source of variance for the shrinking-horizon estimate.

These new sources of variance can greatly affect the sample size n′′ that would be needed

to obtain a meaningful estimate.

The comparison of the complexity estimates stated in Propositions 4.1 and 4.2 sug-

gests that Algorithm 4.1 should be far more tractable than the shrinking-horizon valida-

tion strategy, provided that |Λ| is kept under control, and cE(t) is small enough.

4.2.3 Other Validation Strategies

In this section, we mention variants of the validation approaches discussed above, mo-

tivated by the complexity estimates of Propositions 4.1 and 4.2. These variants are

interesting to consider, but their implementation has been left as future work.

We begin by observing that it is possible to combine the two preceding validation ap-

proaches (supervised learning of policies and shrinking-horizon optimization) by combin-

ing learned policies at stages 2, . . . , t0 to a shrinking-horizon decision making procedure

for t = t0 + 1, . . . , T . This hybrid approach would run in expected time

∑t0
t=2 |Λ| · [cL(t) + n′ cE(t)] +

∑T
t=t0+1 n

′ · [cA(t) + cS(t)] ,

starting from data obtained in expected time cA+cS . We would also add to the expected

time the term n′′ · [∑t0
t=2 cE(t) +

∑T
t=t0+1[cA(t) + cS(t)]], relative to the reevaluation of

the selected hybrid policy on the test sample of size n′′.

The number of stage t0 could be chosen to minimize the expected running time,

namely (neglecting the reevaluation term)

t0 = sup{t ≤ T : |Λ| · [cL(t) + n′ cE(t)] ≤ n′ · [cA(t) + cS(t)]} ,

but a complication with the optimal choice of t0 is the possible dependence of the standard

error of the estimates on nondeterministic algorithms A(t).

Another possible variant is to carry out the selection of the models for π̂1, . . . , π̂T

sequentially, that is, stage by stage. To describe this variant, we extend our notations as

follows.

• The index λ ∈ Λ is replaced by indices (λ1, . . . , λT ) ∈ Λ1×· · ·×ΛT . This allows to

denote by Hλt

t a hypothesis space for the predictor π̂t, with the choice of λt ∈ Λt

decoupled from the previous choices of λ1, . . . , λt−1.



4.2. Learning and Evaluation of Scenario Tree Based Policies 59

Algorithm 4.2 Stage by stage selection and evaluation of a decision policy

Input: A first-stage decision ū1, a data set Dt of pairs (Xt, Yt) for t = 2

only, hypothesis spaces Hλt

t indexed by λt ∈ Λt, repair proce-

dures Mt, and a test sample of new scenarios (size n′).

Output: A feasible policy π̄.

1. Set π̄1(ξ) = ū1, and then set t = 2.

2. For each λt ∈ Λt,

learn the predictor π̂λt

t given the data set Dt, using the hypothesis space Hλt

t ;

build the policy πλt = (π̄1, . . . , π̄t−1, π
λt

t ), where πλt

t combines π̂λt

t and Mt.

If t = T , go to Step 4.

3. For each λt ∈ Λt,

form and solve the problem P ′
+(t;πλt); let vλt denote its optimal value.

Set νt ∈ argminλt∈Λt
vλt and set π̄t = πνt

t .

Form the data set Dt+1 relative to ut+1 from the solution to P ′
+(t;πνt).

Set t to t+ 1 and go to Step 2.

4. For each λT ∈ ΛT ,

evaluate the performance of πλT on the common test sample of size n′;

let vλT be that performance.

5. Set νT ∈ argminλT ∈ΛT
vλT and set π̄T = πνT

T . Return π̄ = (π̄1, . . . , π̄T ).

6. Optional: return the value of vνT reevaluated on

an independent test sample of size n′′.

• Given t < T and a policy π̄† = (π̄1, . . . , π̄t) specified only from stage 1 to stage t,

the notation P+(t; π̄†) refers to the original program P over a policy π, subject to

the additional constraints π1(ξ) = π̄1(ξ), . . . , πt(ξ) = π̄t(ξ). Thus, the program

P+(t; π̄†) is the original problem P, except that π̄1, . . . , π̄t are already specified.

• P ′
+(t; π̄†) denotes the scenario-tree approximation to P+(t; π̄†) built by some al-

gorithm A(t). The algorithm A(t) must always return the same tree, while the

trees relative to A(1), . . . ,A(T − 1) must all be different. Thus, P ′
+(t; π̄†) is the

approximate program P ′ posed over a new scenario tree proper to t, and subject

to the additional constraints uk
1 = π̄1(ξ

k), . . . , uk
t = π̄t(ξ

k) for all k.

Algorithm 4.2 describes how decision predictors are learned from data sets that in-

corporate the effect of the decision rules already selected for the previous stages, and

left unspecified for the subsequent stages. At each stage t, there is also a selection step

among possible decision predictors indexed by λt ∈ Λt.

Indeed, the advantage of Algorithm 4.2 over Algorithm 4.1 is that the learning problem

for a decision predictor for stage t + 1 takes into account the learned decisions rules

π̄1, . . . , π̄t. As the learned decision rules introduce a loss of optimality and modify the

information states that can be reached at stage t+ 1, other recourse decisions at stages

t+ 1, . . . , T are preferable, and in fact, the ideal recourse decisions are those that would
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be obtained by solving the problem P+(t; π̄†) with π̄† suitably defined (see Step 2 of

Algorithm 4.2, where πλt plays the role of π̄†). We cannot solve P+(t; π̄†), but we

can exploit a scenario-tree approximation P ′
+(t; π̄†) from which a data set Dt+1 for

learning π̂t+1 can constructed (Step 3 of Algorithm 4.2).

From the statistical point of view, the main drawback of Algorithm 4.2 is that it

cannot evaluate on the test sample of size n′ a policy that is not specified on the full

horizon. Instead, Step 3 in Algorithm 4.2 performs a weak form of model selection by

scoring the incomplete policies of Step 2 with the optimal value of the programs P ′
+(t; π̄†).

The programs P ′
+(t; π̄†) use a common scenario tree independent of the trees relative to

π̄1, . . . , π̄t−1, so as to reduce the selection bias. The selection is weak in the sense that

the score of an incomplete specified policy π̄† is not a reliable estimate of the optimal

value of the exact program P+(t; π̄†). An unbiased upper bound on the exact value of P
can be obtained by the optional Step 6 of Algorithm 4.2.

From the complexity point of view, the main drawback of Algorithm 4.2 is that the

programs P ′
+(t; π̄†) must be solved for each λt ∈ Λt, t = 2, . . . , T . Another concern is the

new source of variance of the test sample estimates coming from use of several scenario

trees, that could force us to use larger test samples.

4.3 Monte Carlo Selection of Scenario Trees

We now sketch a workable and generic scheme for obtaining approximate solutions to

a multistage stochastic program with performance guarantees, and for selecting good

scenario-tree approximations to the multistage stochastic program. The scheme builds

on the validation procedure described in Section 4.2.1 (Algorithm 4.1), which infers a

decision policy from examples of scenarios and decisions collected from a scenario-tree

approximation, and also computes an accurate estimate of the value of the learned policy

by Monte Carlo simulation.

A first idea simply consists in perturbing the data sets Dt of scenario/decisions pairs

used by the supervised learning procedure, by obtaining these data sets from different

scenario-tree approximations. This source of variation creates new opportunities for

finding better policies by supervised learning.

A second idea consists in identifying good scenario trees, on the basis of the perfor-

mance of the policies that can be learned from the data sets Dt collected from those

trees. This approach allows to study empirically algorithms that construct the scenario-

tree approximations, and to tune or modify these algorithms so as to improve the solution

procedure in terms of solution accuracy or in terms of computational complexity.

4.3.1 Description of the Selection Scheme

In this section, we describe the scheme that allows to identify good scenario trees. The

scheme consists in generating a possibly large set of randomized scenario-tree approxi-

mations P ′ for a given problem P, ranking them according to the estimated value of the

best policy learned from them, and identifying in this way a presumably best scenario

tree among the considered sample of trees. The best policy of the best scenario tree is

then viewed as the best solution for P found by the method, and its value can be assessed
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Algorithm 4.3 Monte Carlo selection of scenario trees

Input: Algorithms AS for building random tree structures and AV for

building the trees for the process ξ given a branching structure,

and 3 independent test samples of size n′, n′′, n′′′, made of real-

izations of ξ sampled independently.

Output: A scenario tree, a feasible policy π̄, a performance guarantee.

1. Generate a set T of scenario trees, using algorithms AS and AV .

2. For each tree in the set T indexed by 1 ≤ ν ≤M ,

select a best policy πν learned from the data set extracted from the tree,

using Algorithm 4.1 on the first test sample of size n′.

3. For each policy πν ,

reassess the performance of πν on the second test sample of size n′′.

Let vν denote that performance.

4. Set µ ∈ argmin1≤ν≤M vν .

Return the scenario tree indexed by µ and the policy π̄ = πµ.

5. Reevaluate πµ on the third test sample of size n′′′.

Let V µ denote that performance.

Return the bound minπ E{f(ξ, π(ξ))} ≤ E{f(ξ, π̄(ξ))} ' V µ (see text for details).

by Monte Carlo simulation on an independent test sample. Algorithm 4.3 describes each

step of the procedure.

Having enough diversity in the considered scenario-tree approximations multiplies our

chance of obtaining good data sets, from which good policies can be learned. Therefore,

it is interesting to assume that the generated scenario trees have a random branching

structure — a novelty with respect to the usual practice of multistage stochastic program-

ming. In our presentation of Algorithm 4.3, we formally decompose a tree generation

algorithm A into 2 components: AS for generating a random branching structure, and

AV for sampling realizations ξk of the random process ξ according to the fixed branching

structure and for assigning probabilities to the nodes of the tree. Existing tree generation

methods from the stochastic programming literature, briefly discussed in Section 2.4.2,

correspond to a particular choice of AV .

Developing algorithms AS able to generate rich but tractable branching structures,

for low-dimensional processes or for high-dimensional processes, valid for short horizons

and long horizons, is an interesting open problem. We have investigated several variants

for AS in the context of a concrete family of problems (Section 4.4.2), without how-

ever providing general-purpose algorithms for generating random branching structures

adapted to high-dimensional random processes.

Algorithm 4.3 uses in theory 3 independent test samples of size n′, n′′, n′′′: one for

selecting a best hypothesis space for the best learned policy from the data sets relative

to a given tree; one for selecting the best tree; and one for estimating the performance of

the overall best policy. In practice, we do not always reevaluate our estimates on distinct
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independent test samples.

The tree and the policy that Algorithm 4.3 returns can be exploited in several ways.

We have already mentioned the possibility of tuning the scenario tree generation algo-

rithms to the problem at hand. Another possibility is to implement only the first-stage

decision π̄1 of the policy returned by Algorithm 4.3, and therefore to see the whole proce-

dure as a single step of a general shrinking-horizon or receding-horizon decision making

scheme.

It is also possible to use the policy π̄ on the full horizon, with a performance guarantee,

since π̄ should achieve, for the original problem P, an objective value close to the perfor-

mance guarantee estimated on the independent test sample of size n′′′. More precisely,

the variance of the empirical estimate V µ = 1
n′′′

∑n′′′

j=1 f(ξj , π(ξj)) in Step 5 of Algo-

rithm 4.3 should be approximately equal to σ̂2 = 1
n′′′(n′′′−1)

∑n′′′

j=1[f(ξj , π(ξj))−V µ]2, so

that V µ + zασ̂ would yield a conservative estimate of the performance of π̄ with confi-

dence 1−α, where zα is the α-critical value of the standard normal distribution (Shapiro

et al., 2009, Section 5.6).

We could also mention that when the only information on the random process ξ is a

finite set of realizations ξj , the tree selection method could be extended as follows. One

would split the set of realizations into a test set and a learning set from which a generative

model for simulating realizations of the random process would be inferred. The random

scenario trees would then be built by querying new samples from the generative model.

4.3.2 Discussion

The generic procedure presented in this section is based on various open ingredients that

may be exploited for the design of a wide class of algorithms in a flexible way. Namely, the

main ingredients are (i) the scenario tree sampling scheme, (ii) the (possibly regularized)

optimization technique used to obtain data sets from a scenario tree, (iii) the supervised

learning algorithm used to obtain the decision strategies from the data sets, (iv) the

repair procedure used to restore the feasibility of the decisions on new scenarios.

The main ideas of the proposed scheme are evaluated in the case study section on

a family of problems proposed by other authors. We illustrate how one may adjust the

scenario tree generation algorithm and the policy learning algorithm to one’s needs, and

by doing so we also illustrate the flexibility of the proposed approach and the potential

of the combination of scenario-tree based decision making with supervised learning. In

particular, the efficiency of supervised learning strategies makes it possible to rank large

numbers of policies inferred from large numbers of randomly generated scenario trees.

Although we do not illustrate this in the present work, we would like also to stress

that the scenario tree sampling scheme may be coupled in various other ways with the

inference of policies by machine learning. For example, one could seek to use sequential

Monte Carlo techniques inspired from the importance sampling literature, in order to

progressively guide the scenario tree sampling and machine learning methods towards

regions of high interest, given the quality of the policies inferred from scenarios trees

at previous iterations. Also, instead of using the data set obtained from each scenario

tree to extract a policy, one could use data sets collecting data from several scenario-

tree approximations to extract a single policy, in the spirit of the wide range of model
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perturbation and combination schemes reviewed in chapter 3.

4.4 Case Study

We will show the interest of the approximate solution techniques presented in the chapter

by applying them to a family of multistage stochastic programs. Implementation choices

difficult to discuss in general terms, such as choices concerning the supervised learning

of a policy for the recourse decisions, and the choices for the random generation of the

trees, will be illustrated on a concrete case.

The section starts by the formulation of a multistage stochastic program that various

researchers have presented as difficult for scenario tree methods (Hilli and Pennanen,

2008; Koivu and Pennanen, 2010; Küchler and Vigerske, 2010). Several instances of

the problem will be addressed, including instances on horizons considered as almost

unmanageable by scenario tree methods.

4.4.1 Description of the Problem

We consider a multistage problem adapted from Hilli and Pennanen (2008), interpreted in

that paper as the valuation of an electricity swing option. In this chapter, we interpret

the problem rather as the search for risk-aware strategies for distributing the sales of

a commodity over T stages in a flexible way adapted to market prices. A risk-aware

objective is very interesting for our purposes, but it is difficult to justify it in a context

of option valuation. The formulation of the problem is as follows:

minimize ρ−1 log E{exp{−ρ∑T
t=1 ξt−1 · πt(ξ)}}

subject to 0 ≤ πt(ξ) ≤ 1 and
∑T

t=1 πt(ξ) ≤ Q ,

π non-anticipative.

(4.1)

The objective uses the exponential utility function, with risk aversion coefficient ρ.

Such objectives are discussed at the end of the chapter.

In our formulation of the problem, there is no constant first-stage decision to optimize.

We begin directly by the observation of ξ0, followed by a recourse decision u1 = π1(ξ0).

Observations and decisions are intertwined so that in general ut = πt(ξ0, . . . , ξt−1). The

random variable ξt−1 is the unitary profit (ξt−1 > 0) or loss (ξt−1 < 0) that can re-

sult from the sale of the commodity at time t. Potential profits and losses fluctuate

in time, depending on market conditions (we later select a random process model for

market prices to complete the problem specification). The commodity is sold in quantity

ut = πt(ξ0, . . . , ξt−1) at time t, meaning that the quantity ut can depend on past and

current prices. The decision is made under the knowledge of the potential profit or loss

at time t, given by ξt−1 · ut, but under uncertainty of future prices. This is by the way

why scenario tree techniques must be used with great care on this problem when the

planning horizon is long: as soon as the scenarios cease to have branchings, there is no

more residual uncertainty on future prices, and the optimization process wrongly iden-

tifies opportunities anticipatively. Those spurious future opportunities may significantly

degrade the quality of previous decisions.

We seek strategies where the sales per stage are bounded (constraint 0 ≤ πt(ξ) ≤ 1).

The constraint can model a bottleneck in the production process. Notice also that
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bounded sales are consistent with the model assumption of an exogenous random process:

very large sales are more likely to influence the market prices on long planning horizons.

The scalar Q bounds the total sales (we assume Q ≥ 1). It represents the initial stock of

commodity, the sale of which must be distributed optimally over the horizon T .

When the risk aversion coefficient ρ tends to 0, the problem reduces to the search of

a risk-neutral strategy. This case has been studied by Küchler and Vigerske (2010). It

admits a linear programming formulation:

minimize −E{∑T
t=1 ξt−1 · πt(ξ)}

subject to 0 ≤ πt(ξ) ≤ 1 and
∑T

t=1 πt(ξ) ≤ Q ,

π non-anticipative,

(4.2)

and an exact analytical solution (which thus serves as a reference)

πref
t (ξ) =

{

0 if t ≤ T −Q or ξt−1 ≤ 0 ,

1 if t > T −Q and ξt−1 > 0 .
(4.3)

• In a first series of experiments, we will take the numerical parameters and the

process ξ selected in Hilli and Pennanen (2008) (to ease the comparisons): ρ = 1,

T = 4, Q = 2; ξt = (exp{bt} − K) where K = 1 is the fixed cost (or the strike

price, when the problem is interpreted as the valuation of an option) and bt is a

random walk: b0 = σ ε0, bt = bt−1+σ εt, with σ =
√

0.2 and εt following a standard

normal distribution N (0, 1).

Noting that a priori bt = σ
∑t

t′=0 εt′ is normally distributed with mean 0 and

variance (t + 1)σ2, we record, for future reference, that the first process ξ is such

that

1

σ
√
t
log(ξt−1 +K) is a priori distributed as N (0, 1) , (4.4)

where σ =
√

0.2 and K = 1 .

• In a second series of experiments over various values of the parameters (ρ, T,Q)

with T up to 52, we will take for ξ the process selected in Küchler and Vigerske

(2010) (because otherwise on long horizons the price levels of the first process blow

out in an unrealistic way, making the problem rather trivial): ξt = ξ′t − K with

ξ′t = ξ′t−1 exp{σεt − σ2/2} where σ = 0.07, K = 1, and εt following a standard

normal distribution. Equivalently ξt = (exp{bt − (t + 1) σ2/2} − K) with bt a

random walk such that b0 = σ ε0 and bt = bt−1 + σ εt.

We record, for future reference, that the second process ξ is such that

1

σ
√
t
log(ξt−1 +K) +

σ
√
t

2
is a priori distributed as N (0, 1) , (4.5)

where σ =
√

0.07 and K = 1 .

4.4.2 Algorithms for Generating Small Scenario Trees

At the heart of tree selection procedure relies our ability to generate scenario trees reduced

to a very small number of scenarios, with interesting branching structures. As the trees
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are small, they can be solved quickly and then scored using the supervised learning policy

inference procedure. Fast testing procedures make it possible to rank large numbers of

random trees.

The generation of random branching structures has not been explored in the classical

stochastic programming literature; we thus have to propose a first family of algorithms

in this section. The algorithms are developed with our needs in view, with the feedback

provided by the final numerical results of the tests, until results on the whole set of con-

sidered numerical instances suggest that a particular algorithm suffices for the application

at hand. We believe that the main ideas behind the algorithms will be reused in subse-

quent work for addressing the representation of stochastic processes of higher dimensions.

Therefore, in the following explanations we put more emphasis on the methodology we

followed than on the final resulting algorithms.

Method of Investigation.

The branching structure is generated by simulating the evolution of a branching process.

We will soon describe the branching process that we have used, but observe first that

the probability space behind the random generation of the tree structure is not at all

related to the probability space of the random process that the tree approximates. It is

the values and probabilities of the nodes that are later chosen in accordance to the target

probability distribution, either deterministically or randomly, using any new or existing

method.

For selecting the node values, we have tested different deterministic quantizations of

the one-dimensional continuous distributions of random variables ξt, and alternatively

different quantizations of the gaussian innovations εt that serve to define ξt = ξt(εt), as

described by the relations given in the previous section. Namely, we have tested the min-

imization of the quadratic distortion (Pages and Printems, 2003) and the minimization

of the Wasserstein distance (Hochreiter and Pflug, 2007). On the considered problems

we did not notice significant differences in performance attributable to a particular de-

terministic variant.

What happened was that with deterministic methods, performances began to degrade

as the planning horizon was increased, perhaps because trying to preserve statistical

properties of the marginal distributions ξt distorts other statistics of the joint distribution

of (ξ0, . . . , ξT−1), especially in higher dimensions. Therefore, for treating instances on

longer planning horizons, we switched to a crude Monte Carlo sampling for generating

node values.

By examining trees with the best scores in the context of the present family of prob-

lems, we observed that the empirical estimates of several statistics of the random process,

that were computed from the values and probabilities of the nodes of these scenario trees,

could be very far from values consistent with the exact model of the random process. For

instance, even the empirical first moments
∑N

k=1 p
kξk

t could be very far from their the-

oretical values E{ξt}. This observation might suggest that it is very difficult to predict,

without any information on the optimal solutions, which properties should be preserved

in small scenario trees, and thus which objective should be optimized when attempting

to build a small scenario tree. If we had discovered a correlation between some features

of the trees and the scores, we could have filtered out bad trees without actually solving
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the programs associated to these trees, simply by computing the identified features.

Description of the Branching Processes.

We now describe the branching process used in the first series of experiments, made

with deterministic node values. Let r ∈ [0, 1] denote a fixed probability of creating a

branching. We start by creating the root node of the tree (depth 0), to which we assign

the conditional probability 1. With probability r, we create 2 successor nodes to which we

assign the values ±0.6745 and the conditional probabilities 0.5 (see Remark 4.1 below).

With probability (1 − r) we create instead a single successor node to which we assign

the value 0 and the conditional probability 1; this node is a degenerate approximation

of the distribution of εt. Then we take each node of depth 1 as a new root and repeat

the process of creating 1 or 2 successor nodes to these new roots randomly. The process

is further repeated on the nodes of depth 2, . . . , T − 1, yielding a tree of depth T for

representing the original process ε0, . . . , εT−1. The scenario tree for ξ is derived from the

scenario tree for ε.

Remark 4.1 (Wasserstein distance). The discrete distribution that assigns proba-

bilities 0.5 on the values ±0.6745 is the discrete distribution with support of car-

dinality 2 that has the smallest Wasserstein distance l1 to the normal distribution

N (0, 1) followed by εt. The Wasserstein distance l1 may be defined as follows. Let

X,Y be random variables following marginal distributions G and H respectively.

Assume that G and H are such that X and Y have finite first moments. Let P de-

note the collection of coupling measures between X and Y , that is, the collection of

probability measures P such that X follows G, and Y follows H. Then the Wasser-

stein distance l1 between G and H is defined as l1(G,H) = infP∈P{E{|X − Y |}}.
It admits a dual representation l1(G||H) = supf∈F1

{E{f(X)} − E{f(Y )}}, where

F1 = {f : R → R : |f(x) − f(y)| ≤ |x − y|} denotes the class of functions with

Lipschitz constant 1. It can be shown that the distribution with values yk and

probabilities pk, 1 ≤ k ≤ N , closest in the l1 sense to a density g (with respect to

the Lebesgue measure) can be computed as follows: Set y0 = −∞, yN+1 = +∞
and minimize over y1 < y2 < · · · < yN the sum

N
∑

k=1

∫ (yk+yk+1)/2

(yk−1+yk)/2

|x− yk|g(x)dx , and then set pk =

∫ (yk+yk+1)/2

(yk−1+yk)/2

g(x)dx .

For the case N = 2 and g the density of N (0, 1), one can use a symmetry argument

and then evaluate argminy

∫∞

0
|x− y|(2π)−1/2 exp{−x2/2}dx ' 0.6745.

For problems on larger horizons, it is difficult to keep the size of the tree under

control with a single fixed branching parameter r — the number of scenarios would have

a large variance. Therefore, in the second series of experiments (made with random node

values), we used a slightly more complicated branching process, by letting the branching

probability r depend on the number of scenarios currently developed (Algorithm 4.4).

Specifically, let N be a target number of scenarios and T a target depth for the scenario

tree with the realizations of ξt relative to depth t + 1. Let nt be the number of parent
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Algorithm 4.4 Branching structure generation for the second series of experiments

Input: A targeted number of scenarios N ≥ 1, and a tree depth T ≥ 1.

Output: A random branching structure for a scenario tree having n ' N

scenarios.

1. Create a root node (depth 0). Set t = 0.

2. Set nt to the number of nodes at depth t. Set rt =
N − 1

T
(1/nt).

3. For each node j of depth t:

Draw Zj uniformly in the interval [0, 1].

If Zj ≤ rt, append 2 children nodes to node j (binary branching).

If Zj > rt, append 1 child node to node j (no branching).

4. If t < T − 1, increment t and go to Step 2.

Otherwise, return the branching structure.

nodes at depth t. Note that nt is a random variable, except at the root where n0 = 1.

During the construction of the tree, parent nodes at depth t < T are developed and split

in 2 children nodes with a probability rt = n−1
t (N − 1)/T . Parent nodes have a single

child node with a probability 1− rt. If rt > 1, we set rt = 1 and all nodes are split in 2

children nodes. Thus in general rt = min{1, n−1
t (N − 1)/T}. Note that the truncation

of rt to 1 has no effect on Algorithm 4.4 and has thus been omitted.

Algorithm 4.4 produces branching structures having approximately N scenarios in

the following sense. Assume that the number nT−1 of existing nodes at depth T − 1 is

large. By the independence of the random decision of creating 1 or 2 successor nodes,

and by a concentration of measure argument, the number of nodes created at depth T is

approximately equal to

nT = nT−1(2 · rt−1 + 1 · (1− rt−1)) = nT−1(1 + rt−1)

= nT−1(1 + (1/nT−1)(N − 1)/T ) = nT−1 + (N − 1)/T.

Iterating this recursion yields nT = n0+T (N − 1)/T = N . To establish this latter result,

we have neglected the fact that when nt−1 is small, the random value of nt conditionally

to nt−1 should not be approximated by the conditional mean of nt, as done in the

recursive formula. Thus, we have only nT ∼ N . The error affects mostly the first levels

of the tree under development, and seems to have a relatively small effect in practice.

4.4.3 Algorithm for Learning Policies

Solving a program on a scenario tree yields a data set of scenario/decision sequence pairs

(ξ, u). To infer a decision policy that generalizes the decisions of the tree to test scenarios,

we have to learn mappings from (ξ0, . . . , ξt−1) to ut and ensure the compliance of the

decisions with the constraints. To some extent the procedure is thus problem-specific.

Here again we insist on the methodology.
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Dimensionality Reduction.

We first try to represent the information state (ξ0, . . . , ξt−1 by a smaller number of

variables, because the representation (ξ0, . . . , ξt−1 risks to become very cumbersome as

t grows. In particular, we can try to get back to a state-action space representation of

the policy (and postprocess data sets accordingly to recover the states). Note that in

general, the states we need are those that would be used by a hypothetical reformulation

of the optimization problem using dynamic programming. Here the objective is based

on the exponential utility function. By the property that

E{exp{−∑T
t′=1 ξt′−1 · ut′} | ξ0, . . . , ξt−1}

= exp{−∑t−1
t′=1ξt′−1 · ut′} E{exp{−∑T

t′=t ξt′−1 · ut′} | ξ0, . . . , ξt−1} ,

we can see that decisions at t′ = 1, . . . , t − 1 scale by a same factor the contribution

to the return brought by the decisions at t′ = t, . . . , T . Therefore, if the feasibility set

at time t can be expressed from state variables, the decisions at t′ = t, . . . , T can be

optimized independently of the decisions at t′ = 1, . . . , t − 1. This suggests to express

ut as a function of the state ξt−1 of the process ξ, and of an additional state variable ζt

defined by

ζ0 = Q , ζt = Q−∑t−1
t′=1 ut′ ,

that allows to reformulate, at time t, the constraint
∑T

t′=1 ut′ ≤ Q in (4.1) as

∑T
t′=t ut′ ≤ ζt . (4.6)

Feasibility Guarantees Sought Before Repair Procedures.

We try to map the output space in such a way that the predictions learned under the

new geometry and then transformed back using the inverse mapping comply with the

feasibility constraints. Here, we scale the output ut so as to have to learn the fraction

yt = yt(ξt−1, ζt) ∈ [0, 1] of the maximal allowed output min(1, ζt). Indeed, note that

0 ≤ ut ≤ min(1, ζt) summarizes the constraints of the problem at time t, namely the

constraint 0 ≤ πt(ξ) ≤ 1 in (4.1) and the constraint (4.6). Since ζ0 = Q is fixed

(with Q greater than 1 by assumption), we distinguish the cases u1 = y1(ξ0) · 1 and

ut = yt(ξt−1, ζt) ·min(1, ζt). It will be easy to ensure that fractions yt predicted by the

learned models are valued in [0, 1] (thus we actually do not need to define an a posteriori

repair procedure).

Input Normalization.

It is convenient for the sequel to normalize the inputs. From the definition of ξt−1 we can

recover the state of the random walk bt−1, and use as first input xt1
def
= (σ2t)−1/2bt−1,

which follows a standard normal distribution. Thus for the first version of the process ξ,

recalling (4.4), instead of ξt−1 we use xt1 = σ−1 t−1/2 log(ξt−1 + K). For the second

version of the process ξ, recalling (4.5), instead of ξt−1 we use xt1 = σ−1 t−1/2 log(ξt−1 +

K) + σt1/2/2. Instead of the second input ζt (for t > 1) we use xt2
def
= ζt/Q, which is

valued in [0, 1]. We will also rewrite the fraction yt = yt(ξt−1, ζt) as yt = gt(xt1, xt2) to

stress the change of input variables.
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Fig. 4.1: Neural Network model with L = 3 hidden layers for the component gt of the policy (4.7)

to be learned from data. The figure is a graphical representation of (4.8). Training

the neural networks consists in finding, for each t, values for the parameters vtjk, βtj ,

wtj , γt that best explain examples of pairs (xt, yt).

To summarize, the decisions ut = πt(ξ) will be obtained as follows:

xt1 =

{

σ−1 t−1/2 log(ξt−1 +K) for the process ξ of (4.4)

σ−1 t−1/2 log(ξt−1 +K) + σt1/2/2 for the process ξ of (4.5)

xt2 = ζt/Q = 1−Q−1∑t−1
t′=1 ut′ (4.7)

yt = gt(xt1, xt2)

ut = yt ·min{1, ζt} = yt ·min{1, Q−∑t−1
t′=1 ut′} ,

with π non-anticipative and feasible if and only if gt is always valued in [0, 1].

Hypothesis Space.

We have to choose the hypothesis space for the functions gt in (4.7). In the present

situation, we find it convenient to choose the class of feed-forward neural networks with

one hidden layer of L neurons (Figure 4.1):

gt(xt1, xt2) = logsig
(

γt +
∑L

j=1wtj · tansig
(

βtj +
∑2

k=1vtjk xtk

))

, (4.8)

with weights vtjk and wtj , biases βtj and γt, and activation functions

tansig(x) = 2 · (1 + e−2 x)−1 − 1 valued in [−1,+1] ,

logsig(x) = (1 + e−x)−1 valued in [0, 1] ,

a usual choice for imposing the output ranges [−1,+1] and [0, 1] respectively.

Since the training sets are extremely small, we take L = 2 for g1 (which has only one

input x11) and L = 3 for gt (t > 1).

We recall that artificial neural networks have been found to be well-adapted to nonlin-

ear regression. Standard implementations of neural networks (data structure construction

and training algorithms) are widely available (Demuth and Beale, 1993). We report here

the parameters chosen in our experiments for the sake of completeness; the method is

largely off-the-shelf.
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Details on the Implementation.

The weights and biases are determined by training the neural networks. We used the

Neural Network toolbox of Matlab with the default methods for training the networks

by backpropagation — the Nguyen-Widrow method for initializing the weights and bi-

ases of the networks randomly, the mean square error loss function, and the Levenberg-

Marquardt optimization algorithm. We used [−3, 3] for the estimated range of xt1, cor-

responding to 3 standard deviations, and [0, 1] for the estimated range of xt2.

Trained neural networks are dependent on the initial weights and biases before train-

ing, because the loss minimization problem is nonconvex. Therefore, we repeat the

training 5 times from different random initializations. We obtain several candidate poli-

cies (to be ranked on the test sample). In our experiments on the problem with T = 4,

we randomize the initial weights and biases of each network independently. In our exper-

iments on problems with T > 4, we randomize the initial weights and biases of g1(x11)

and g2(x21, x22), but then we use the optimized weights and biases of gt−1 as the initial

weights and biases for the training of gt. Such a warm-start strategy accelerates the

learning tasks. Our intuition was that for optimal control problems, the decision rules

πt would change rather slowly with t, at least for stages far from the terminal horizon.

We do not claim that using neural networks is the only or the best way of building

models gt that generalize well and are fast in exploitation mode. The choice of the Matlab

implementation for the neural networks could also be criticized. It just turns out that

these choices are satisfactory in terms of implementation efforts, reliability of the codes,

solution quality, and overall running time.

4.4.4 Solving Programs Approximately by Linear Programming

An option of the proposed testing framework that we have not discussed, as it is linked

to technical aspects of numerical optimization, is that we can form the data sets of sce-

nario/decisions pairs using inexact solutions to the optimization programs associated to

the trees. Indeed, simulating a policy based on any data set will still give a pessimistic

bound on the optimal solution of the targeted problem. The tree selection procedure will

implicitly take this new source of approximation into account. In fact, every approxima-

tion one can think of for solving the programs could be tested on the problem at hand

and thus ultimately accepted or rejected, on the basis of the performance of the policy

on the test sample, and the time taken by the solver to generate the decisions of the

data set. In the present setting, we judged that solving multiple instances of large-scale

nonlinear programs would be too slow with cvx, and preferred to use a large-scale linear

programming approximation of the initial objective.

Principle of the Approximation.

Here, we present an approximation used for the problems with ρ > 0 on horizons larger

than T = 4, that turned out to perform satisfactorily on that family of problems. We

approximated the function exp{z} in the objective by a convex piecewise linear ap-

proximation, expL{z}
def
= maxj∈{0,1,...,J−1}{cj · z + dj}, with cJ−1 = dJ−1 = 0, and

with cj , dj ∈ R chosen such that expL{zi} = exp{zi} on a sequence of anchor points
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z0 > z1 > · · · > zJ−1:

cj =
exp{zj+1} − exp{zj}

zj+1 − zj
, dj =

zj+1 exp{zj} − zj exp{zj+1}
zj+1 − zj

.

This allows to approximate the nonlinear formulation of the targeted problem by

a linear formulation, at a very light cost in terms of additional optimization variables

(representing a new function v = v(ξ) valued in R) and at a controllable cost in terms of

additional constraints (J new constraints per scenario ξ). Precisely, everything happens

as if the targeted multistage program were formulated as

minimize E{v(ξ)}
subject to v(ξ) ≥ cj · [−ρ

∑T
t=1 ξt−1 · πt(ξ)] + dj

for j = 0, . . . , J − 2 ,

v(ξ) ≥ 0 (case j = J − 1),

0 ≤ πt(ξ) ≤ 1 and
∑T

t=1 πt(ξ) ≤ Q ,

π non-anticipative.

Details on the Implementation.

The anchor points zj may be chosen as follows. It is easy to see that at optimality

we should always have πt(ξ) = 0 if ξt−1 < 0. This means that the arguments z =

−ρ∑T
t=1 ξt−1 ·πt(ξ) of the exponential function will always be nonpositive at optimality.

Thus we may set z0 = 0: the exponential function will be approximated by the linear

function c0(z)+d0 for z > 0 during the optimization process, without loss of precision. On

the other hand, in a finite-dimensional approximation, the support of the approximation

to the distribution of ξt has a maximal value, say ξM. The minimal value of the argument

of the exponential is thus greater or equal to z̄ = −ρ · ξM · Q. Thus if zJ−1 ≤ z̄

the exponential function will approximated by max{0, cJ−2 · z + dJ−2} for z < zJ−1

during the optimization process, without loss of precision. We can then select J and

zJ−1 < zJ−2 < · · · < z0 = 0, with zJ−1 ≤ z̄, such that the approximation of exp{z} by

expL{z} is tight enough on the domain [z̄, 0]. For all z ∈ [z̄, 0], we have exp(z)L ≥ exp(z)

and max(expL{z} − exp{z}) < maxj{| exp{zj+1} − exp{zj}|}.
For solving the linear programs we still use the interior-point solver associated to cvx.

One could also switch to simplex methods — arguments in favor of simplex methods may

be found in Bixby (2002).

4.4.5 Numerical Results

We now describe the numerical experiments we have carried out and comment on the

results.

Experiment on the short-horizon problem instance.

First, we consider the process ξ and parameters (ρ,Q, T ) taken from Hilli and Pennanen

(2008). We generate a sample of n′ = 104 scenarios drawn independently, on which each

learned policy will be tested. We generate 200 random tree structures as described previ-

ously (using r = 0.5 and rejecting structures with less than 2 or more than 10 scenarios).
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Fig. 4.2: First experiment: scores on the test sample associated to the random scenario trees

(lower is better). The linear segments join the best scores of policies inferred from

trees of equivalent complexity.

PSfrag replacements

1/4

1/8

1/8
1/4

1/4

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.453

-0.260

+0.000

+0.352

+0.828

PSfrag replacements

1/4
1/8

1/8

1/8

1/8

1/4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξk
0 ξk

1 ξk
2 ξk

3 pk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.453

-0.260

+0.000

+0.352

+0.828

PSfrag replacements

1/8
1/8

1/4
1/8

1/8

1/8

1/8

ξk
0 ξk

1 ξk
2 ξk

3 pk

-0.595
-0.453

-0.260

+0.000

+0.352

+0.828

+1.472

PSfrag replacements

1/8

1/8
1/4

1/16

1/16

1/8

1/16

1/16

1/8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξk
0 ξk

1 ξk
2 ξk

3 pk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.595
-0.453

-0.260

+0.000

+0.352

+0.828

+1.472

Fig. 4.3: Small trees (5,6,7,9 scenarios) from which good data sets could be obtained. The

scenarios ξk = (ξk
0 , ξk

1 , ξk
2 ) are shifted vertically to distinguish them when they pass

through common values, written on the left. Scenario probabilities pk are indicated on

the right.

Node values are set by the deterministic method, thus the variance in performance that

we will observe among trees of similar complexity will come mainly from the branching

structure. We form and solve the programs on the trees using cvx, and extract the data

sets. We generate 5 policies per tree, by repeatedly training the neural networks from

random initial weights and biases. Each policy is simulated on the test sample and the

best of the 5 policies is retained for each tree.

The result of the experiment is shown on Figure 4.2. Each point is relative to a

particular scenario tree. Points from left to right are relative to trees of increasing size.
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We report the value of (1/n′)
∑n′

j=1 exp{−∑T
t=1 ξ

j
t−1 ·π̂t(ξ

j)} for each learned policy π̂, in

accordance with the objective minimized in Hilli and Pennanen (2008). Lower is better.

Notice the large variance of the test sample scores among trees with the same number of

scenarios but different branching structures.

The tree selection method requires a single lucky outlier to output a good valid upper

bound on the targeted objective — quite an advantage with respect to approaches based

on worst-case reasonings for building a single scenario tree. With a particular tree of 6

scenarios (best result: 0.59) we already reach the guarantee that the optimal value of

our targeted problem is less or equal to log(0.59) ' −0.5276. On Figure 4.3, we have

represented graphically some of the lucky small scenario trees associated to the best

performances. Of course, tree structures that perform well here may not be optimal for

other problem instances.

The full experiment, that allows to draw Figures 4.2 and 4.3, takes 10 minutes to run

on a pc with a single 1.55 GHz processor and 512 Mb RAM. By comparing our bounds

to the results reported in Hilli and Pennanen (2008) (who have undertaken validation

experiments taking up to 30 hours on a pc with a single 3.8 GHz processor, 8 Gb RAM,

using a test sample of 10000 scenarios, and whose Figure 1 seems to indicate that the

best possible value for the bounds should be slightly greater than 0.58), we deduce that

we reached essentially the quality of the optimal solution.

Experiment on long-horizon problem instances.

Second, we consider the process ξ taken from Küchler and Vigerske (2010) (see Equa-

tion (4.5)) and a series of 15 sets of parameters for ρ, Q, T (see the first columns of

Table 4.1). We repeat the following experiment on each (ρ,Q, T ) with 3 different values

for the parameter N that controls the size of the random trees obtained with Algo-

rithm 4.4: Generate 25 random trees (we recall that this time the node values are also

randomized), solve the resulting 25 programs, learn 5 policies per tree (depending on the

random initialization of the neural networks), and report as the best score (best upper

bound) the lowest of the resulting 125 values computed on a common test sample of

n′ = 10000 scenarios. The test sample is proper to the problem instance (in fact, proper

to the time horizon T ).

Table 4.1 reports values corresponding to the average performance

ρ−1 log{(1/n′)

n′

∑

j=1

exp{−ρ
T
∑

t=1

ξj
t−1 · π̂t(ξ

j)}}

obtained for the considered series of problem instances, for the 3 considered nominal tree

sizes N (so as to illustrate the effect of the size of the trees on the performance of the

learned policies). One column is dedicated to the performance of the analytical reference

policy πref on the test sample.

Note that the case that Küchler and Vigerske (2010) have considered is the case

corresponding to (ρ,Q, T ) = (0, 20, 52) in our table. The plots from their Figure 3 seem

to confirm that the optimal value for this case is around −3.6.

For the cases with ρ = 0, the reference value provided by the analytical optimal policy

suggests that the best policies found by our approach are close to optimality. For the
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Tab. 4.1: Second experiment: Best upper bounds for a family of problem instances.

Problem Upper bounds1 on the value of problems (4.1) with the process (4.5)

ρ Q T Reference2 Value of the best policy3, for 3 tree sizes N

N = 1 · T N = 5 · T N = 25 · T

0 2 12 -0.19 -0.18 -0.17 -0.18

2 52 -0.40 -0.34 -0.32 -0.39

6 12 -0.51 -0.50 -0.49 -0.49

6 52 -1.19 -1.07 -1.03 -1.18

20 52 -3.64 -3.59 -3.50 -3.50

0.25 2 12 -0.18 -0.17 -0.17 -0.17

2 52 -0.34 -0.32 -0.31 -0.33

6 12 -0.44 -0.44 -0.44 -0.44

6 52 -0.75 -0.78 -0.78 -0.80

20 52 -1.46 -1.89 -1.93 -1.91

1 2 12 -0.15 -0.15 -0.15 -0.15

2 52 -0.22 -0.25 -0.22 -0.24

6 12 -0.31 -0.34 -0.34 -0.34

6 52 -0.37 -0.53 -0.53 -0.54

20 52 -0.57 -0.96 -0.98 -0.96

1 Estimated on a test sample of n′ = 10000 scenarios.

In a same row, lower is better. The best upper bound is in bold.
2 Defined by πref

t (ξ) (Equation (4.3)) and optimal for the risk-neutral case ρ = 0.
3 Out of 125 policies learned from 25 random scenario trees (considered separately)

of about N scenarios, built with Algorithm 4.4.

cases with ρ = 0.25, the reference policy is now suboptimal. It still slightly dominates

the learned policies when Q = 2, but not anymore when Q = 6 or Q = 20. For the cases

with ρ = 1, the reference policy is dominated by the learned policies, except perhaps for

the cases with Q = 2. We also observe that results obtained with smaller trees (cases

N = 1 ·T ) are sometimes better than results obtained with larger trees (cases N = 25 ·T ,

that is, N = 300 if T = 12 and N = 1300 if T = 52). There is indeed a random

component in our tree generation approach, and it may happen that one small tree

ultimately gives a better data set than the data sets of the large trees, especially given

the relatively small number of trials in this experiment (25 trees per size N) compared

to the number of stages.

Overall, the approach seems promising in terms of the usage of computational re-

sources. Table 4.2 reports the times taken for computing the bounds reported in Ta-

ble 4.1, using a Matlab/cvx implementation on a pc with a single 1.55 GHz processor,

512 Mb RAM. We recall that obtaining one bound involves generating 25 trees, form-

ing and solving the 25 corresponding mathematical programs, learning 125 policies, and

testing the 125 policies on 10000 scenarios. For instance, obtaining one of the 15 bounds

of the column N = 1 ·T of Table 4.1 takes between 2 minutes (for the case ρ = 0, Q = 2,

T = 12) and 9 minutes (for the case ρ = 1, Q = 20, T = 52). Obtaining one of the 15
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Tab. 4.2: Cpu Times for computing the bounds in Table 4.1

Problem Total1 cpu time (in seconds)

ρ Q T N = 1 · T N = 5 · T N = 25 · T

0 2 12 122 156 220

2 52 415 551 1282

6 12 123 150 223

6 52 435 590 1690

20 52 465 666 1783

0.25 2 12 136 169 250

2 52 460 780 2955

6 12 133 161 263

6 52 504 1002 4702

20 52 524 1084 5144

1 2 12 136 168 268

2 52 485 986 4425

6 12 139 187 313

6 52 524 1095 5312

20 52 543 1234 6613

1 Time for generating 25 trees of about N scenarios,

forming and solving the corresponding 25 programs,

learning 125 policies, testing each policy on 104 scenarios.

bounds of the column N = 25 ·T of Table 4.1 takes from less than 4 minutes (for the case

ρ = 0, Q = 2, T = 12, N = 300) to 110 minutes (for the case ρ = 1, Q = 20, T = 52,

N = 1300).

The experiment shows that even if the proposed scenario tree selection method re-

quires generating and solving several trees, rather than one single tree, it can work very

well. In fact, the experiment illustrates that with a random tree generation process that

can generate an “interesting” set of small trees, there is a good likelihood (on the studied

family of problems) that at least one of those trees will lead to excellent performances.

4.5 Time Inconsistency and Bounded Rationality Limitations

This section briefly discusses the notion of dynamically consistent decision process, which

is relevant to sequential decision making with risk-sensitivity — by opposition to the

optimization of the expectation of a total return over the planning horizon, which can

be described as risk-indifferent, or risk-neutral.

4.5.1 Time-Consistent Decision Processes

We will say that an objective induces a dynamically consistent policy, or time-consistent

policy, if the decisions selected by a policy optimal for that objective coincide with the

decisions selected by a policy recomputed at any subsequent time step t and optimal for

the same objective with decisions and observations prior to t set to their realized value
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(and decisions prior to t chosen according to the initial optimal policy).

Time-consistent policies are not necessarily time-invariant: we simply require that the

optimal mappings πt from information states it to decisions ut at time t, evaluated from

some initial information state at t = 0, do not change if we take some decisions following

these mappings, and then decide to recompute them from the current information state.

We recall that in the Markov Decision Process framework, the information state it is

the current state xt, and in the multistage stochastic programming framework, it is the

current history (ξ1, . . . , ξt−1) of the random process, with t indexing decision stages. We

say that a decision process is time-consistent if it is generated by a time-consistent policy.

A close notion of time-consistency can also be defined by saying that the preferences

of the decision maker among possible distributions for the total return over the planning

horizon can never be affected by future information states that the agent recognizes, at

some point in the decision process, as impossible to reach (Shapiro, 2009; Defourny et al.,

2008).

In the absence of time-consistency, the following situation may arise (the discussion

is made in the multistage stochastic programming framework). At time t = 1, an agent

determines that for each possible outcome of a random variable ξ2 at time t = 2, the

decision u2 = a at time t = 2 is optimal (with respect to the stated objective and

constraints of the problem, given the distribution of ξ2, ξ3, . . . , and taking account of

optimized recourse decisions u3, u4, . . . over the planning horizon). Then at time t = 2,

having observed the outcome of the random variable ξ1 and conditioned the probability

distributions of ξ2, ξ3, . . . over this observation, and in particular, having ruled out all

scenarios where ξ1 differs from the observed outcome, the agent finds that for some

possible realizations of ξ2, u2 = a is not optimal.

The notion of time-consistency already appears in Samuelson (1937), who states: “as

the individual moves along in time there is a sort of perspective phenomenon in that

his view of the future in relation to his instantaneous time position remains invariant,

rather than his evaluation of any particular year” (page 160). Several economists have

rediscovered and refined the notion (Strotz, 1955; Kydland and Prescott, 1977), especially

when trying to apply expected utility theory (von Neumann and Morgenstern, 1947),

valid for comparisons of return distributions viewed from a single initial information

state, to sequential decision making settings, where the information state evolves.

In fact, if an objective function subject to constraints can be optimized by dynamic

programming, in the sense that a recursive formulation of the optimization is possible

using value functions (on an augmented state space if necessary, and irrespectively of

complexity issues), then an optimal policy will satisfy the time-consistency property. This

connection between Bellman’s principle (1957) and time-consistency is well-established

(Epstein and Schneider, 2003; Riedel, 2004; Ruszczyński and Shapiro, 2006; Boda and

Filar, 2006; Artzner et al., 2007). By definition and by recursion, a value function is

not affected by states that have a zero probability to be reached in the future; when the

value function is exploited, a decision ut depends only on the current information state

it. Objectives that can be optimized recursively include the expected sum of rewards,

and the expected exponential utility of a sum of rewards (Howard and Matheson, 1972),

with discount permitted, although the recursion gets more involved (Chung and Sobel,

1987). A typical example of objective that cannot be rewritten recursively in general is

the variance of the total return over several decision steps. This holds true even if the
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state fully describes the distribution of total returns conditionally to the current state.

Note, however, that a nice way of handling a mean-variance objective on the total return

is to relate it to the expected exponential utility: if R denotes a random total return,

Φρ{R} = E{R} − (ρ/2)var{R} ' −ρ−1 log E{exp(−ρR)}. The approximation holds for

small ρ > 0. It is exact for all ρ > 0 if R follows a Gaussian distribution.

4.5.2 Limitations of Validations Based on Learned Policies

In our presentation of multistage stochastic programming, we did not discuss several

extensions that can be used to incorporate risk awareness in the decision making pro-

cess. In particular, a whole branch of stochastic programming is concerned with the

incorporation of chance constraints in models (Prékopa, 1970; Prékopa, 1995), that is,

constraints to be satisfied with a probability less than 1. Another line of research in-

volves the incorporation of modern risk measures such as the conditional value-at-risk at

level α (expectation of the returns relative to the worst α-quantile of the distribution of

returns) (Rockafellar and Uryasev, 2000). An issue raised by many of these extensions,

when applied to sequential decision making, is that they may induce time-inconsistent

decision making processes (Boda and Filar, 2006).

The validation techniques based on supervised learning that we have proposed are not

adapted to time-inconsistent processes. Indeed, these techniques rely on the assumption

that the optimal solution of a multistage stochastic program is a sequence of optimal

mappings πt from reachable information states (ξ1, . . . , ξt−1) to feasible decisions ut,

uniquely determined by some initial information state at which the optimization of the

mappings takes place. We believe, however, that the inability to address the full range

of possible multistage programming models should have minor practical consequences.

On the one hand, we hardly see the point of formulating a sophisticated multistage

model with optimal recourse decisions unrelated to those that would be implemented

if the corresponding information states are actually reached. On the other hand, it is

always possible to simulate any learned policy, whatever the multistage model generating

the learning data might be, and score an empirical return distribution obtained with the

simulated policy according to any risk measure important for the application. Computing

a policy and sticking to it, even if preferences are changing over time, is a form of

precommitment (Hammond, 1976).

Finally, let us observe that a shrinking-horizon policy can be time-inconsistent for

two reasons: (i) the policy is based on an objective that cannot induce a time-consistent

decision process; (ii) the policy is based on an objective that could be reformulated using

value functions, but anyway the implicit evaluation of these value functions changes over

time, due to numerical approximations local to the current information state. Similarly,

if an agent uses a supervised-learning based policy to take decisions at some stage and is

then allowed to reemploy the learning procedure at later stages, the overall decision se-

quence may appear as dynamically inconsistent. The source (ii) of inconsistency appears

rather unavoidable in a context of bounded computational resources; more generally, it

seems that bounded rationality (Simon, 1956) would necessarily entail dynamical incon-

sistency.
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4.6 Conclusions

This chapter has presented a generic procedure for estimating the value of approximate

solutions to multistage stochastic programs. A direct application of this procedure is

the evaluation of the quality of the discretization of the original program. The proposed

selection of a best scenario tree among an ensemble of trees generated randomly, with the

branching structure also randomized, contributes to bring partial answers to the general

problem of building good scenario trees efficiently.

Our simple description of the proposed tree selection scheme (Algorithm 4.3), based on

an ensemble of random scenario trees generated independently, is less naive than it might

appear at first view, with in mind more advanced Monte Carlo sampling techniques for

generating the trees sequentially. Indeed, there is a terrible dimensionality challenge in

the search for a proper approximate representation of a random process ξ = (ξ1, . . . , ξT )

by a scenario tree, already on short horizons, say T equal to 4 or 5, and especially if

the dimension of the random vectors ξt is larger than say 1 or 2. In that context, it is

not clear whether more advanced importance sampling schemes would be tractable for

problems of practical interest.

On the other hand, given a scenario tree and optimal decisions associated to its nodes,

there is still much liberty in the way a policy can be learned, and in the way the feasibility

of the output of a learned decision predictor can be efficiently restored. The next chapter

will explore some of these possibilities.

We leave as future work the investigations concerning policies learned from the data

obtained from several scenario trees. Based on the numerical results collected in this

chapter, our first intuition is that the trees would have first to be sorted out. Indeed,

many trees, as we currently generate them, give very poor decisions. Adding the decisions

of such trees to a common data set is likely to hurt policies learned from the common

data set. The issue, however, is that we can sort out trees only if we can score them.

Currently, we score the trees by testing a policy learned from them. Our conclusion is that

learning a policy from several scenario trees would imply a computationally intensive,

boosting-like approach: the best policies learned from say the largest trees one could

solve would serve to identify the scenario/decisions pairs to be collected in a large data

set, that would then be used by a next generation of policies. Such ideas are difficult

to test and refine on the problems we have considered in this chapter, because the best

policies learned from single trees already yield near-optimal results.



Chapter 5

Inferring Decisions from Predictive Densities

In this chapter, we investigate alternative methods for learning feasible policies given

a data set of scenario/decisions pairs. We seek to infer conditional probability models

(predictive densities) for the decisions ut given the information state (ξ1, . . . , ξt−1), and

then to obtain feasible decisions on new scenarios ξ by maximizing online the probability

of the decision ut subject to the current feasibility constraints ut ∈ Ut(ξ).

The chapter is organized in a backward fashion: Section 5.1 assumes that a predictive

density is available and seeks to exploit it so as to select a feasible decision; Section 5.2

concentrates on the inference of conditional predictive densities, given the current in-

formation state. In Section 5.3, a certain number of the proposed ideas are illustrated,

evaluated, and sometimes modified, in the context of a particular problem.

Notations.

In this chapter, we use the following notations.

• AT ∈ Rn×m is the transpose of A ∈ Rm×n.

• 〈a, b〉 = aT b is the inner product between 2 vectors a, b of the same dimension.

• ||a|| = 〈a, a〉1/2 is the Euclidian norm of the vector a.

• For x = [x1 . . . xn]T and y = [y1 . . . yn]T ∈ Rn, x � y means xi ≤ yi, 1 ≤ i ≤ n,

and x ≺ y means xi < yi, 1 ≤ i ≤ n.

• Given column vectors z1, . . . , zn, we freely write z = (z1, . . . , zn) to define a column

vector z = [zT
1 . . . z

T
n ]T , especially when the vectors zi are replaced by vectors with

superscripts.

5.1 Constrained MAP Repair Procedure

We consider the following setup: Given a predictive density p̂t for the decision ut ∈ Rn,

infer (select) a decision ūt such that ūt satisfies the feasibility constraints ūt ∈ Ut(ξ).

The given density p̂t is in fact an estimated density, obtained for instance as described in

Section 5.2. For the selection of a decision from the density, we maximize (the logarithm

of) the predictive density subject to constraints, which leads to the following estimate:

ūt ∈ argmaxut∈Ut(ξ) log p̂t(ut) . (5.1)
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If p̂t is unimodal with its mode in Ut(ξ), then ūt is given by the mode of p̂t. The nontrivial

case is when the mode is not in Ut(ξ).

To make the approach computationally viable, we have to introduce restrictions on the

density p̂t and the feasible sets Ut. Moreover, one may want to ensure that the solution

set in (5.1) is a singleton. Indeed, we are interested in the situation where ūt is viewed

as the decision of a deterministic policy πt(ξ1, . . . , ξt−1); by selecting ūt arbitrarily from

the solution set, an undesirable source of randomness would be added to the decision

process.

5.1.1 Assumptions

An interesting restriction on the models for p̂t is to assume that p̂t is taken from an

exponential family of distributions.

The following description of exponential families will suffice for our purposes. Given

an index set I of finite cardinality |I| = d, and a finite collection {φ`}`∈I of functions

φ` : Rn → R, let φ(ut) ∈ Rd denote the d-dimensional column vector with elements

φ`(ut), ` ∈ I, and define the (natural) exponential family associated to the collection

{φ`}`∈I as

p(ut; θ) = exp{〈θ, φ(ut)〉 −A(θ)} , (5.2)

where θ is allowed to take values from a set Θ ⊂ Rd described below, and where A(θ) is

the so-called cumulant generating function (log-partition function) defined by

A(θ) = log

∫

Rn

exp{〈θ, φ(ut)〉}dut . (5.3)

Choosing a value for θ amounts to select a distribution among the members of the

exponential family.

The domain of the parameter θ is the set Θ = {θ ∈ Rd : A(θ) < ∞}. In the

terminology of Appendix A, the set Θ is the effective domain of the cumulant generating

function A(θ) viewed as an extended-real-valued function. The (natural) exponential

family is said to be regular if Θ is open. In the sequel, we assume that the family is

regular. It is well-known (Brown, 1986; Robert, 2007; Wainwright and Jordan, 2008) that

A(θ) is a convex function of θ (and thus in particular that Θ is convex). Moreover, A(θ)

is strictly convex for the so-called minimal exponential families. Minimal exponential

families are (natural) exponential families such that the functions φ`, ` ∈ I, and the

constant-valued function φ0(x) = 1, form a set of linearly independent functions — that

is, for any θ 6= 0, 〈θ, φ(ut)〉 is not a constant-valued function of ut.

For minimal exponential families, there is a one-to-one correspondence between a

value θ ∈ Θ and a distribution from the family.

Using p(ut; θ) from (5.2) for p̂t(ut), the problem (5.1) becomes

ūt ∈ argmaxut∈Ut(ξ)〈θ, φ(ut)〉 , (5.4)

which is independent of the constant term A(θ), and corresponds formally to a maximum

a posteriori (MAP) estimation problem subject to additional constraints.

To ensure that (5.4) has a solution, we assume that the set Ut(ξ) is nonempty, closed,

and convex. Moreover, we assume that the support of p(ut; θ) meets the interior of Ut(ξ),
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in order to guarantee that (5.4) has a nonempty solution set and does not lead to a

pathological optimization problem. It is well-known that the support of exponential

families does not depend on the value of their parameter θ. Therefore, given a subset C

of Rn such that Ut(ξ) is always in C for all ξ (it is possible to choose C = Rn), one can

choose the exponential family so that its support covers C.

5.1.2 Particularizations

In multistage stochastic programming models, a frequent form for a set Ut(ξ) is

Ut(ξ) = {ut ∈ Rn : Atut−1 +Btut = ht, ut � 0} , (5.5)

where ut−1 is the decision relative to the previous stage (with ut−1 actually depending

only on ξ1, . . . , ξt−2), Bt is very often a fixed matrix (recourse matrix), and At, ht are

a matrix (technology matrix) and a vector that may both depend on ξ1, . . . , ξt−1 (often

only affinely). The form (5.5) is in part justified by results for two-stage stochastic

programming problems (Appendix D). When one uses (5.4) for computing ūt online on

a new scenario, the realizations of ut−1, At and ht are known, and (5.4) becomes the

problem of solving over ut ∈ Rn the program

maximize 〈θt, φ(ut)〉 subject to Btut = ht −Atut−1, ut � 0 . (5.6)

In the sequel, we seek to identify some exponential families that lead to a concave

objective in (5.6).

Multivariate normal distributions.

We consider for p̂t in (5.1) the multivariate normal distribution N (λ,Λ) with mean

λ ∈ Rn and covariance matrix Λ ∈ Rn×n (we do not stress in the notation λ, Λ a possible

dependence of these parameters on ξ1, . . . , ξt−1 and on t). We assume that Λ is positive

definite, so that the normal distribution has a density, namely,

p̂t(ut) = ((2π)n det Λ)−1/2 exp{− 1
2 (ut − λ)T Λ−1(ut − λ)}

= exp{− 1
2 (tr{Λ−1utu

T
t } − 2〈Λ−1λ, ut〉+ λT Λ−1λ− log{(2π)n det Λ−1})} .

In that case, using the precision matrix S = Λ−1, the program (5.6) becomes the strictly

convex quadratic program

minimize (ut − λ)TS(ut − λ) (5.7)

subject to Btut = ht −Atut−1, ut � 0 .

The program (5.7) has a simple geometrical interpretation (Figure 5.1) in terms of the

Mahalanobis distance dM (ut, vt) = ||S1/2(ut − vt)||2 between two vectors ut, vt ∈ Rn

(Mahalanobis, 1936). For conditions ensuring that the feasibility set is nonempty, see

Definitions D.3, D.4, D.5 in Appendix D.

A zero-valued element Sij of the precision matrix has the interpretation that the com-

ponents i, j of ut are conditionally independent given the other components (Dempster,

1972).
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λ

ūt

�

�

Ut(ξ)

(ut − λ)TS(ut − λ) = f∗

Fig. 5.1: Geometrical interpretation for (5.7). The matrix S defines a Mahalanobis distance

in Rn. The program (5.7) consists in computing the projection of λ on the set Ut(ξ)

according to this metric, by minimizing the distance between λ and ut ∈ Ut(ξ). On this

figure, ut ∈ R2, and λ 6∈ Ut(ξ). The level set corresponding to the optimal objective

value f∗ has been drawn (dashed line).

For stochastic programming problems where the components of the decisions ut can be

put in correspondence with spatial locations, for instance problems defined on networks,

it could make sense to use a Gaussian Markov random field model (Speed and Kiiveri,

1986) for the density p̂t(ut).

Product of log-concave univariate densities.

We consider exponential families obtained as the product of log-concave univariate densi-

ties p̂i
t (densities such that log p̂i

t(·) is a concave function) relative to the i-th component

of ut = [ut 1 . . . ut n]T . Here, p̂i
t is taken from an exponential family relative to a collec-

tion of functions {φi
`}`∈Ii , through the choice of a parameter vector θi ∈ Θi. We write

φi(ut i) for the vector collecting the elements φi
`(ut i), ` ∈ Ii. With these choices, the

program (5.6) becomes

maximize

n
∑

i=1

〈θi, φi(ut i)〉 subject to Btut = ht −Atut−1, ut � 0 . (5.8)

The form (5.8) is well suited to situations where probabilistic models for the scalar

components ut i have been learned separately, so as to obtain more tractable learning

problems. There is probably some structure among the components ut i once ut is op-

timized, and we may hope that by enforcing the condition ut ∈ Ut(ξ), we recover, to a

certain extent, a part of that structure — while the part of the structure that is induced

by the objective function of the original multistage decision making problem is unlikely

to be restored by this myopic feasibility restoration procedure.

As an example of log-concave density, we can cite the univariate normal distribution

N (µ, σ2) with σ2 > 0. Another potentially useful example is the gamma distribution

Γ(α, β) with α ≥ 1 (condition ensuring the log-concavity) and β > 0, supported on

(0,∞). If we choose for p̂i
t the gamma distribution Γ(αi, βi), then the density of p̂i

t is

given by

p̂i
t(ut i) = (βi)

αi [Γ(αi)]
−1(ut i)

αi−1 exp{−βiut i}
= exp{−βiut i + (αi − 1) log ut i − log{[Γ(αi)]/(βi)

αi}} ,
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mp

ūt Ut(ξ)

�
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∑2
i=1 βiut i −

∑2
i=1(αi − 1) log ut i = f∗

Fig. 5.2: Geometrical interpretation for (5.10). The parameters αi of the marginal distributions

Γ(αi, βi) for 1 ≤ i ≤ n define a weighted Itakura-Saito distance in Rn (see Remark 5.1).

The program (5.10) consists in computing the projection of the mode mp of the dis-

tribution of ut on the set Ut(ξ) according to this (pseudo) metric, by minimizing the

distance between mp and ut ∈ Ut(ξ), where mp = [mp 1 . . . mp n]T , mp i = (αi −1)/βi.

On the present figure, ut = [ut 1 ut 2]
T ∈ R2, and mp 6∈ Ut(ξ). The level set corre-

sponding to the optimal objective value f∗ has been drawn (dashed line).

where Γ(αi) =
∫∞

0
tαi−1 exp{−t}dt is the gamma function evaluated at αi. One then

obtains the objective component

〈θi, φi(ut i)〉 = −βiut i + (αi − 1) log ut i , (5.9)

which is strictly concave if αi > 1. Note that its unconstrained maximization would then

yield the mode of the distribution Γ(αi, βi), namely mp i
def
= (αi − 1)/βi.

Now, if for instance each component ut i follows a distribution Γ(αi, βi) with αi > 1

and βi > 0, the program (5.8) becomes the strictly convex program

minimize
∑n

i=1 βiut i −
∑n

i=1(αi − 1) log ut i (5.10)

subject to Btut = ht −Atut−1, ut � 0

over the decision vector ut = [ut 1, . . . , ut n]T .

A geometrical interpretation of (5.10) is presented on Figure 5.2. In the context of

stochastic programming, it could make sense to choose a Gamma density for a decision ut i

(or some invertible transform of ut i) that is naturally valued on the positive reals.

Remark 5.1 (Justification of the geometrical interpretation for (5.10)). The strictly

convex function F (ut) = −∑n
i=1〈θi, φi(ut i)〉, obtained by summing the compo-

nents (5.9) and changing the sign, induces a Bregman divergence (Bregman, 1967;

Banerjee et al., 2005) between ut, vt ∈ Rn given by

B(ut||vt) = F (ut)− F (vt)−∇F (vt)
T (ut − vt)

=

n
∑

i=1

[

βi(ut i − vt i)− (αi − 1) log
ut i

vt i

]

−
n
∑

i=1

(

βi −
αi − 1

vt i

)

(ut i − vt i)

=

n
∑

i=1

(αi − 1)

(

ut i

vt i
− log

ut i

vt i
+ 1

)

. (5.11)
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The divergence (5.11) is a weighted version of the Itakura-Saito distance (Itakura

and Saito, 1968) , defined by dIS(ut||vt) =
∑n

i=1[(ut i/vt i)−log(ut i/vt i)+1], which

can be obtained as the Bregman divergence induced by FIS(ut) = −∑n
i=1 log(ut i).

(Originally, the Itakura-Saito distance is defined between power spectrum functions,

so that the sum over components i is in fact an integral over phases between −π
and π.)

Now, setting vt to the modemp of the joint distribution of ut defined componentwise

by mp i = (αi − 1)/βi, the divergence (5.11) becomes

B(ut||mp) =

n
∑

i=1

βiut i −
n
∑

i=1

(αi − 1) log ut i +

n
∑

i=1

(αi − 1)

(

log
αi − 1

βi
+ 1

)

,

that is, the objective of (5.10) up to a constant term. The omission of the constant

term shifts the value of the objective but does not alter the geometry of the level

sets.

5.2 Gaussian Predictive Densities

In this section, we consider joint probability models over (ξ1, . . . , ξT , u1, . . . , uT ), from

which conditional densities p̂t for ut can be obtained by conditioning over the observation

of ξ1, . . . , ξt−1. An interesting case is when the conditional densities for ut are Gaussian,

since this allows us to use (5.7) and find a decision ut ∈ Ut(ξ).

Note that the Gaussian case is in fact rather general inasmuch as one can also ap-

proximate a density by a multivariate normal density (Laplace’s approximation): Given

a density p̂t(x) with mode mp ∈ Rn, twice differentiable in a neighborhood of mp, com-

pute the Hessian matrix H ∈ Rn×n of p̂t at mp (elements Hij = ∂2p̂t(mp)/∂xi∂xj), and

then replace p̂t by the density of a normal N (λ,Λ) with λ = mp and Λ−1 = −H.

5.2.1 Joint Gaussian Model

We consider the following joint Gaussian model as a base case for learning probabilistic

models.

Description.

It is well known that if a random vector z = (x, y) follows a multivariate normal distri-

bution N (z̄,Σ) with

z̄ =

[

x̄

ȳ

]

, Σ =

[

Σx Σxy

ΣT
xy Σy

]

,

with Σ positive definite, then y conditionally to x follows a multivariate normal distri-

bution N (λ(x),Λ), where

λ(x) = ȳ + ΣT
xyΣ−1

x (x− x̄) , Λ = Σy − ΣT
xyΣ−1

x Σxy . (5.12)

A simple model of the predictive density for ut given ξ1, . . . , ξt−1 can be obtained by

setting x = (ξ1, . . . , ξt−1), y = ut, and then using the conditioning formulae (5.12) on
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a multivariate normal model N (z̄,Σ) for z = (x, y), with z̄ and Σ learned (estimated)

from a data set of scenario/decisions pairs (see below).

The evaluation of (5.12) for u2, . . . , uT requires T − 1 matrix inversions, but as Σ−1
x

is independent of the observations x, the inversions and matrix products need not be

recomputed online on new scenarios.

By (5.12), the conditional mean of ut is an affine function of the observed history

(ξ1, . . . , ξt−1). In fact, λ(x) would be called a linear decision rule in the context of

stochastic programming (Garstka and Wets, 1974).

Estimation.

There is a large literature on the estimation of the mean and the covariance matrix (or

its inverse) of a Gaussian random vector (Stein, 1956; Haff, 1980; Banerjee et al., 2008).

In the present context, given a data set of samples {zk}1≤k≤N , where zk = (xk, yk),

xk = (ξk
1 , . . . , ξ

k
t−1), y

k = uk
t , we can estimate the mean z̄ by ẑ = (1/N)

∑N
k=1 z

k, and

estimate the covariance matrix Σ by a simple shrinkage estimator of the form

Σ̂ = (1− ε)ΣML + ε I , with ΣML = (1/N)
N
∑

i=1

(zk − ẑ)(zk − ẑ)T . (5.13)

The identity matrix I is added with weight ε ∈ (0, 1) in order to ensure that the estimated

covariance is positive definite and well-conditioned.

If Σ̂ in (5.13) is scaled by some positive factor, the conditional covariance Λ in (5.12)

is scaled by the same factor, whereas the conditional mean λ(x) is left unchanged. As

the minimizer of (5.7) is invariant with respect to a rescaling of the objective, one can

thus rescale (5.13) by a factor (1− ε)−1, set ε′ = ε/(1− ε) > 0 and simply use

Σ̂ = ΣML + ε′ I . (5.14)

By the same token, there is no potential advantage in replacing the maximum likelihood

estimator ΣML by an unbiased empirical estimator

Σemp = (N − 1)−1
N
∑

i=1

(zk − ẑ)(zk − ẑ)T .

Discussion and Extension.

The program (5.7) that restores the feasibility of ut uses larger corrections for compo-

nents ut i of ut with larger conditional variances Λii. Under the joint Gaussian model,

the components ut i of the decision vector ut that have a larger estimated variance (rela-

tively to the other components) are those that are not well explained by the linear model

(compared to the other components).

Due to the corrections made by (5.7), the actual decision ūt will not in general de-

pend affinely on (ξ1, . . . , ξt−1). Therefore, it might be beneficial to consider the actual

decisions (u2, . . . , ut−1) as new observations, and extend the conditional model for ut by

computing (5.12) with y = ut and x = (ξ1, . . . , ξt−1, u2, . . . , ut−1).
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5.2.2 Gaussian Process Model

Gaussian processes allow to define nonparametric models (by opposition to models with

an a priori fixed number of parameters for summarizing the data, whatever the size of

the data). Following O’Hagan (1978), it is often said that Gaussian processes allow

to define prior distributions over spaces of functions, that are then updated to posterior

distributions, given a data set of observations of the relation between inputs and outputs.

Note that since Gaussian process models often incorporate the effect of a noise process

on observations, the relation between inputs and noisy observed outputs is actually not

of a purely functional nature (Neal, 1997, page 4).

Description.

Let J denote an index set (typically infinite), and let {Xα}α∈J denote a collection of

vectors Xα ∈ Rn such that Xα 6= Xβ if α 6= β. The vectors Xα are interpreted as query

points uniquely identified by labels α ∈ J (the labels can indicate an ordering between

distinct query points). For each α ∈ J , let Y α be a real-valued random variable with

finite variance. For any finite subset S of indices from J , let |S| denote the cardinality

of S, and let Y (S) denote the |S|-dimensional random vector with elements Y α, α ∈ S.

We assume that for any such subset S, the random vector Y (S) follows a multivariate nor-

mal distribution N (µ(S),K(S)), with its mean vector µ(S) ∈ R|S| and covariance matrix

K(S) ∈ R|S|×|S| defined below. This defines a so-called Gaussian process {Y α}α∈J .

The mean vector µ(S) = E{Y (S)} collects (stacks into a column vector) the elements

µα = g(Xα) , α ∈ S ,

defined using some fixed real-valued function g : Rn → R called the mean function.

The covariance matrix K(S) = E{[Y (S)− µ(S)][Y (S)− µ(S)]T } collects (stacks into

a symmetric |S| × |S| matrix) the elements

Kαβ = k(Xα, Xβ) , α, β ∈ S ,

defined using some fixed positive definite kernel k : Rn×Rn → R (see Definition C.11 in

Appendix C — the name “positive definite kernel” is standard whereas the corresponding

matrixK(S) is only positive semi-definite). The kernel k (also called covariance function)

is parametrized by a vector η of hyperparameters that has not been written explicitly to

lighten the notation. For example, a kernel k : Rn × Rn → R with values

k(Xα, Xβ) = v0 exp{− 1
2

∑n
i=1(X

α
i −Xβ

i )2/σ2
i }

(radial basis kernel) is parametrized by η = (v0, σ
−2
1 , . . . , σ−2

n ), with v0 > 0 and where

each σi > 0 is a bandwidth parameter associated to the i-th coordinate of the inputs Xα

and Xβ .

Now, let (S1, S2) denote a partition of S, that is, S1 ∪ S2 = S and S1 ∩ S2 = ∅. Let

K(S1, S2) = E{[Y (S1) − µ(S1)][Y (S2) − µ(S2)]
T } be the matrix with elements Kαβ for

α ∈ S1, β ∈ S2, and let

µ =

[

µ(S1)

µ(S2)

]

, K =

[

K(S1) K(S1, S2)

K(S1, S2)
T K(S2)

]

.
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Let Z(S1) denote a |S1|-dimensional random vector representing a noisy observation of

Y (S1), collecting elements defined by

Zα = Y α + σWα , α ∈ S1 ,

where σ2 > 0 represents the variance of the observation noise, assumed to be i.i.d.

Gaussian, and where each Wα is assumed to be drawn independently from the stan-

dard normal distribution N (0, 1). Then, the random vector (Z(S1), Y (S2)) follows a

multivariate normal N (µ′,K ′) with

µ′ = µ , K ′ =

[

K(S1) + σ2I K(S1, S2)

K(S1, S2)
T K(S2)

]

,

where I stands for the |S1|×|S1| identity matrix. In particular, the random vector Y (S2)

conditionally to Z follows a multivariate normal N (λY (Z(S1)),ΛY ) with the conditional

mean and conditional covariance matrix given respectively by

λY (Z(S1)) = µ(S2) +K(S1, S2)
T (K(S1) + σ2I)−1(Z(S1)− µ(S1)) , (5.15)

ΛY = K(S2)−K(S1, S2)
T (K(S1) + σ2I)−1K(S1, S2) . (5.16)

When one actually observes a realization z(S1) ∈ R|S1| of the random vector Z(S1),

the conditional mean of Y (S2) given z(S1) is a real vector λ̂ = λY (z(S1)) ∈ R|S2| that

represents the best prediction for the realization of Y (S2) in the mean-square error sense,

while the covariance matrix of the prediction error λ̂− Y (S2) is given by Λ̂ = ΛY .

The contribution σ2I from the noise vector W can be viewed as a jitter term that

stabilizes the matrix inversion without perturbing too much the model (Neal, 1997). It

also allows to consider in Equations (5.15), (5.16), several independent noisy observations

at a same query point Xα, by reinterpreting S1 as a multiset (collection) of indices of J .

We now apply the described Gaussian Process model to the inference of the distri-

bution of a decision vector ut conditionally to a new scenario ξ (of which we can only

observe ξ1, . . . , ξt−1), given a data set of scenario/decisions pairs (ξk, uk) extracted from

a scenario tree. We describe the calculations for the i-th component of ut, written ut i.

We define S1 as an index set relative to the distinct values of (ξk
1 , . . . , ξ

k
t−1) found in

the data set, and we set

Xα = (ξα
1 , . . . , ξ

α
t−1) , zα = uα

t i , α ∈ S1 . (5.17)

This allows to compute the term (K(S1) + σ2I)−1(z(S1) − µ(S1)) in (5.15) as soon as

we obtain the data set (the realization z(S1) of Z(S1)). Then, we view S2 as a singleton

relative to a new scenario ξ∗, and we set

Xβ = (ξ∗1 , . . . , ξ
∗
t−1) , Y β = ut i , β ∈ S2 . (5.18)

This allows to compute K(S1, S2) as soon as we actually observe (ξ∗1 , . . . , ξ
∗
t−1), with

K(S1, S2) interpreted as a vector of weights describing the similarity of the new sce-

nario ξ∗ with respect to each example ξk stored in the data set.

At this stage, we can infer that the real-valued random variable ut i follows a univariate

normal distribution N (λi,Λii) with λi = λY (z(S1)) given by (5.15), and Λii = ΛY given

by (5.16). As for the predictive density for the full decision ut, we assume that each
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component is independent conditionally to (ξ1, . . . , ξt−1), so that ut follows a multivariate

normal N (λ,Λ) with λ formed from the components λi, and Λ defined as a diagonal

matrix with diagonal entries Λii.

Remark 5.2. It is also conceivable to infer a noisy predictive density (Rasmussen

and Williams, 2006, page 18), that is, build a model for Z(S2) given Z(S1). In

that case, K(S2) is replaced by K(S2) + σ2 in the expression of K ′ (assuming

that S2 is a singleton), so that ut i follows a normal distribution N (λY (z(S1)),ΛY +

σ2). Note also that if we use the same kernel k (with the same hyperparameter

values) for each component of ut and model these components as being conditionally

independent given (ξ1, . . . , ξt−1), the joint Gaussian model for the components of ut

has a covariance matrix equal to a multiple of the identity matrix. Under that

choice, whatever the chosen noise variance σ2 and the value of ΛY common to

all components i, the program (5.7) is always equivalent to the minimization of

||ut − λ||2 subject to the feasibility constraints, with the conditional mean λ of ut

unaffected by the jitter term σ2 added to K(S2).

It can be seen from (5.15) that the mean and thus the mode of the predicted Gaussian

density for ut i combine the decisions uα
t i of the data set, in a way that depends on the

similarity (determined by the kernel k) between the observed part (ξ∗1 , . . . , ξ
∗
t−1) of the

new scenario ξ∗, and the scenarios ξα, α ∈ S1, stored in the data set.

The factor (K(S1)+σ
2I)−1(Z(S1)−µ(S1)) in (5.15) has to be evaluated once, whereas

µ(S2) and the vector K(S1, S2) ∈ R|S1| must be evaluated online for each new scenario.

Therefore, training requires a time cubic in the cardinality |S1| of the training set due to

the matrix inversion, whereas the computation of the conditional mean λ can be done in

linear time. The online computation of the variance ΛY would require a time quadratic

in the cardinality of the training set, but following Remark 5.2, it is possible to bypass

the estimation of the variance by keeping the same kernel for each component of ut.

The storage of the Gram matrix K(S1) takes a space quadratic in the cardinality of the

training set.

Estimation.

In Gaussian Process regression, the mean function g with values g(Xα) is often set to the

constant zero-valued function, so that the terms µ(S1), µ(S2) do not appear in (5.15).

Sometimes, the mean function is set to a linear function of the inputs Xα. In the present

context, the values of g could also be set to constant reference decisions, for instance, to

the decisions from a nominal plan (Section 2.1.1).

Selecting a kernel type automatically is not easy. In support vector machines, the

problem is partially addressed by working over a set of kernels (Lanckriet et al., 2004;

Micchelli and Pontil, 2005; Sonnenburg et al., 2006). Once the kernel type is chosen, the

selection of the hyperparameters η can be formulated as the maximization over η of the

loglikelihood of the observed data z(S1) (Mardia and Marshall, 1984), that is,

`(η ; z(S1)) =− (N1/2) log{2π} − 1
2 log{det(K(S1) + σ2I)}

− 1
2 (z(S1)− µ(S1))

T (K(S1) + σ2I)−1(z(S1)− µ(S1))
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where the value of Kαβ = k(Xα, Xβ) for α, β ∈ S1 depends on η. A local maximum can

be found by gradient-ascent based optimization techniques. Another, Bayesian, approach

consists in putting prior distributions over the hyperparameters, and make predictions

by integrating out the hyperparameters.

For more details, we refer to the recent review by Nickisch and Rasmussen (2008). We

do not deem it essential to discuss these techniques further inasmuch as our ultimate goal

is not to find the best explanation to a training set of scenario/decisions pairs: the deci-

sions of the training set are not the optimal decisions for the original multistage stochastic

programming problem in the first place. In this chapter, our procedure for selecting a

model is limited to the simulation of repaired predicted decisions using candidate kernels

with fixed hyperparameter values.

5.3 Case Study

In this section, we consider a particular multistage stochastic program (described in detail

in Section 5.3.1) of the form

minimize E{∑T
t=1〈ct, ut〉}

subject to B1u1 = h1 , u1 � 0 ,

Atut−1 +Btut = ht , ut � 0 for t = 2, . . . , T ,

where At, Bt for t ≥ 1 denote fixed matrices of proper dimension, and where the cost

coefficients ct, the constraint right-hand sides ht, and decision vectors ut may depend, for

t ≥ 2, on the realization (ξ1, . . . , ξt−1) of a random process ξ = (ξ1, . . . , ξT ). As usual, the

expectation is taken over ξ and can be decomposed in nested conditional expectations.

Recall that a scenario tree for ξ is a set of realizations {ξk}1≤k≤N of ξ, along with

probabilities pk > 0 assigned to scenarios ξk and summing to 1. Recall that the branching

structure of the tree causes histories (ξk
1 , . . . , ξ

k
t−1) to be identical among some scenarios k.

Let us denote by ckt and hk
t the values of ct and ht associated to ξk, noting in particular

that c1 and h1 are necessarily constant-valued.

Now, observe that if a deterministic scenario-tree generation algorithm is chosen, and

if the parameters for building a scenario tree for ξ, a scenario tree for ξ given ξ1 (meaning

that ξk
1 = ξ1 for each scenario k), a scenario tree for ξ given (ξ1, ξ2), . . . , a scenario

tree for ξ given (ξ1, . . . , ξT−1), are also fixed, then these choices uniquely determine a

shrinking-horizon policy πSH = (πSH
1 , . . . , πSH

T ).

A shrinking-horizon policy πSH = (πSH
1 , . . . , πSH

T ) is defined as follows. The map-

ping πSH
1 is a constant-valued function with value ū1, where ū1 corresponds to an opti-

mal solution for u1, relative to the following program over u1 and uk
t for 1 ≤ k ≤ N and

1 ≤ t ≤ T ,

minimize N−1 ∑N
k=1

∑T
t=1 p

k〈ckt , uk
t 〉

subject to B1u1 = h1 , u1 � 0 ,

uk
1 = u1 for each k ,

Atu
k
t−1 +Btu

k
t = hk

t , uk
t � 0 for each k and for t ≥ 2 ,

uj
t = uk

t for each t ≥ 2 and j, k such that (ξk
1 , . . . ξ

k
t−1) ≡ (ξj

1, . . . ξ
j
t−1) .
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The mapping πSH
t for t ≥ 2 is a function of (ξ1, . . . , ξt−1), with value ūt, where ūt

corresponds to an optimal solution for uk
t (any k), relative to the following program over

uk
t′ for 1 ≤ k ≤ N and t ≤ t′ ≤ T ,

minimize N−1 ∑N
k=1

∑T
t′=t p

k〈ckt′ , uk
t′〉

subject to At′u
k
t′−1 +Bt′u

k
t′ = hk

t′ , uk
t′ � 0 for each k and for t′ ≥ t ,

where we set, for t′ = t, uk
t−1

def
= ūt−1 for each k ,

uj
t′ = uk

t′ for each t′ ≥ t and j, k such that (ξk
1 , . . . ξ

k
t′−1) ≡ (ξj

1, . . . ξ
j
t′−1)

(thus in particular for t′ = t, we have uj
t = uk

t for each j, k) ,

where N and all scenario-dependent quantities pk, ξk
t , c

k
t , h

k
t should here be understood as

relative to the scenario tree for ξ given (ξ1, . . . , ξt−1), which is built once the realization of

(ξ1, . . . , ξt−1) becomes available, and which instantiates, along with ūt−1, the parameters

of the program.

Our intention in this section is to take shrinking-horizon policies as the golden stan-

dard for sequential decision making, and compare them to other policies built with the

techniques proposed in the chapter on a common test sample of M = 104 scenarios.

For the simplicity of the parametrization of the scenario tree building algorithm, we

consider scenario trees with a uniform branching factor, and use the same branching

factor for rebuilding scenario trees on the shrinking horizon. Therefore, once the dis-

cretization method for ξt is fixed (choices are explained in length in Section 5.3.2), a

shrinking-horizon policy is uniquely determined by the branching factor. Moreover, us-

ing the same branching factor at each stage results in the following property: If the

realization of (ξ1, . . . , ξt−1) is identical to (ξk
1 , . . . , ξ

k
t−1) for some scenario k in the initial

scenario tree for ξ, then the subtree rooted at the node relative to (ξk
1 , . . . , ξ

k
t−1) is exactly

the subtree built at stage t for the scenario tree of ξ given (ξ1, . . . , ξt−1). Hence, if one

simulates the shrinking horizon policy with uniform branching factor on the scenario ξk,

one will recover the decisions uk = (uk
1 , . . . , u

k
T ) that were found to be optimal on the

initial scenario tree for computing ū1.

To a single shrinking-horizon policy πSH will correspond several learned policies, ob-

tained by different learning algorithm applied to the same training data {(ξk, uk)}1≤k≤N ,

relative to the scenario tree used to optimize πSH
1 = ū1. Obviously, all these learned poli-

cies start with the same first-stage decision ū1.

5.3.1 Description of the Test Problem

The test problem is a multi-product assembly problem under demand uncertainty. The

multistage structure of the problem is summarized in Table 5.1: the decisions to take

at each stage is put in correspondence with the available information at those stage,

represented by the realization of certain random variables. The mathematical formu-

lation of the problem is presented in Table 5.2 in nested form. The nested form is a

generalization to several stages of the formulation for two-stage programs presented in

Appendix D; it enables a reader to distinguish easily the constraints specific a decision

stage t, that is, the actual definition of the sets Ut(ξ). We have put at the end of the

chapter (page 104) a table that specifies the numerical value of all the parameters for the

test problem (Table 5.10).
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Tab. 5.1: Multi-product Assembly Problem: Multistage structure.

Stage Available information Decision to take

Description Variables Description Variables

1 No information Components to buy q1 ∈ R12

2 Factor 1 ε1 ∈ R Subparts to make v2 ∈ R12×8, q2 ∈ R8

3 Factors 1,2 ε1, ε2 ∈ R Products to assemble v3 ∈ R8×5, q3 ∈ R5

4 Factors 1,2,3 ε1, ε2, ε3 ∈ R Sales q4 ∈ R5

Tab. 5.2: Multi-product Assembly Problem: Nested formulation.

minimize 〈c1, q1〉+ Eε1{Q1(q1, ε1)}
subject to q1 � 0 ,

Q1(q1, ε1) = min 〈c2, q2〉+ Eε2{Q2(q2, ε1, ε2)}
subject to w2ij(q2)j ≤ (v2)ij ,

∑

j(v2)ij ≤ (q1)i ,

q2, v2 � 0 , (1 ≤ i ≤ 12, 1 ≤ j ≤ 8)

Q2(q2, ε1, ε2) = min 〈c3, q3〉+ Eε3{Q3(q3, ε1, ε2, ε3)}
subject to w3jk(q3)k ≤ (v3)jk ,

∑

k(v3)jk ≤ (q2)j ,

q3, v3 � 0 , (1 ≤ j ≤ 8, 1 ≤ k ≤ 5)

Q3(q3, ε1, ε2, ε3) = min 〈c4, q4〉
subject to q4 � [b0 + b1ε1 + b2ε2 + b3ε3]+

def
= d ,

0 � q4 � q3 .

The test problem can be described as follows. A manufacturer can assemble 5 products

Pi, for which the demand di ∈ R is unknown, but influenced by three random factors

εt ∈ R, t = 1, 2, 3, observed at distinct decision stages (see Table 5.1). We let d ∈ R5 be

the random vector representing the demand. The products are made of subparts, some of

which are common among several products. There is a total of 8 distinct subparts. The

subpart are themselves made of components, some of which are common among several

subparts. There is a total of 12 distinct components that the manufacturer can buy.

The random demand d is assumed to be distributed according to the following model:

d = [b0 + b1ε1 + b2ε2 + b3ε3]+ (5.19)

ε1 ∼ N (0, 1) , ε2 ∼ N (0, 1) , ε3 ∼ N (0, 1) , (5.20)

where b0, b1, b2, b3 ∈ R5 are fixed parameters, the random variables εi are mutually

independent, and [·]+ denotes the componentwise positive part. To relate this model

with the usual notation ξ for the gradually observed random process, one has to set

ξ = (ξ1, ξ2, ξ3) with ξ1 = ε1, ξ2 = ε2, ξ3 = (ε3, d).

The decision vector u is decomposed into two groups of variables. A first group of

so-called strategic decisions q1 ∈ R12, q2 ∈ R8, q3 ∈ R5 corresponds to the quantities of
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components, subparts and products that are bought or assembled. A second group of

so-called ancillary decisions v2 ∈ R12×8, v3 ∈ R8×5 determines each quantity of compo-

nent/subpart allocated to a given subpart/product in the next stage of the production

process. A decision q4 ∈ R5, corresponding to the quantity of product actually sold, and

defined by q4 = min{q3, d} (elementwise minimum), is added to the group of ancillary

decisions, for the convenience of the problem formulation (convexity). To summarize,

u = (q1, v2, q2, v3, q3, q4) ∈ R166 , (5.21)

with a slight abuse of notation (since v2 and v3 were defined as matrices).

The time horizon T = 4 and the total dimension of a scenario (ε1, ε2, ε3, d) ∈ R8,

where d is actually a function of (ε1, ε2, ε3) ∈ R3, are small enough to let us test shrinking-

horizon policies of various complexity on a test sample of significant size.

The objective to be minimized is the expected cost E{〈c, u〉}, where the vector

c = (c1, 0, c2, 0, c3, c4) ∈ R166 (5.22)

collects the unit cost of each decision in u, in the order determined by the decomposition

(5.21). The subvectors c1, c2, c3 associated to q1, q2, q3 correspond to fixed production

costs and are nonnegative. Zero costs are associated to the decisions v2, v3. The sub-

vector c4 associated to q4 has negative entries that correspond to the fixed prices of the

5 products with a sign change.

The decision vector u is structured by various constraints. Besides a nonnegativity

constraint u � 0, these constraints are of two types:

wtjk(qt)k ≤ (vt)jk , (5.23)
∑

k(vt)jk ≤ (qt−1)j . (5.24)

Constraints (5.23) express that wtjk units of j are necessary for obtaining one unit of k,

where αtjk ≥ 0 is a fixed parameter, j refers to a component (if t = 1) or a subpart (if

t = 2), and k refers to a subpart (if t = 1) or a product (if t = 2). Note that if j does not

enter in the composition of k, one has wtjk = 0, so that (5.23) reduces to a redundant

nonnegativity constraint that can be removed. Constraints (5.24) express that the total

quantity of j employed in the various k cannot exceed the available quantity of j.

The relation q4 = min{q3, d} can be expressed by the constraints

q4 � q3 , (5.25)

q4 � d (5.26)

since the components of c associated to q4 in the objective are negative.

The constraints at each stage can thus be expressed in the format (5.5), converting the

inequality constraints to equality constraints by introducing nonnegative slack variables.

It is easy to see that the right-hand side ht of (5.5) is fixed at t = 1, 2, 3 and depends

affinely on d at t = 4, due to (5.26). The dependence of the feasibility sets on the demand

factors εt is implicit. For instance q3 depends on q2 through (5.23) and (5.24), while q2
itself depends on ε1. Such dependences give a rich structure to the feasibility sets.



5.3. Case Study 93

5.3.2 Discretization of the Random Process

This section details how the scenario trees with uniform branching factors are built. We

focus on the problem of approximating N (0, 1) by a discrete distribution on S points,

specified by a support (ε̂1, . . . , ε̂S) and associated positive probability masses (p̂1
ε , . . . , p̂

S
ε ).

Indeed, once the support (ε̂1, . . . , ε̂S) and the probabilities (p̂1
ε , . . . , p̂

S
ε ) of the discrete

distribution are determined, the scenario tree is made of the S3 distinct realizations of

ξ = (ε1, ε2, ε3, d) of the form

ξk = (ε̂i1 , ε̂i2 , ε̂i3 , [b0 + b1ε̂
i1 + b2ε̂

i2 + b3ε̂
i3 ]+)

where the indices i1, i2, i3 are valued in {1, . . . , S}, and the probability of the scenario ξk

is given by pk = p̂i1
ε p̂

i2
ε p̂

i3
ε .

Let ε̂ = (ε̂1, . . . , ε̂S) denote the support of the discrete distribution, treated as an

optimization variable in RS . We will use the quadratic distortion D2 between the discrete

distribution and the target distribution N (0, 1), defined for any ε̂ ∈ RS as

D2(ε̂) = E
{

min1≤i≤S ||ε̂i − ε||2
}

, (5.27)

where ε is a random variable following the target distribution N (0, 1). By defining the

cells Ci(ε̂) = {ε ∈ R : ||ε̂i − ε|| ≤ ||ε̂j − ε||, 1 ≤ j ≤ S}, whose boundaries have a

null measure under the target probability measure, (5.27) can be written as D2(ε̂) =
∑S

i=1

∫

Ci(ε̂)
||ε̂i − ε||2φ(ε)dε, with φ the probability density function of N (0, 1).

If ∇D2(ε̂) = 0, that is,

∫

Ci(ε̂)
(ε̂i − ε)φ(ε)dε = 0 , 1 ≤ i ≤ S , (5.28)

then ε̂ is called a stationary quantizer. When the distortion is minimized over ε̂ without

constraint, as here where the support of the target distribution is unbounded, a local

minimum of the distortion is a stationary quantizer.

On the real line, the attention can be restricted to the points ε̂ such that −∞ < ε̂1 <

· · · < ε̂S < ∞, since the distortion decreases when a new point distinct from others is

added to the support of the discrete distribution. Under the convention that ε̂0 = −∞
and ε̂S+1 =∞, the cell Ci(ε̂) is the closure of the interval ([ε̂i−1 + ε̂i]/2, [ε̂i + ε̂i+1]/2).

With the univariate normal distribution, which has a strictly log-concave density, a

local minimum of D2 can be found by Newton’s method (Pages and Printems, 2003),

and this minimum is also a global minimum (this does not hold in the multivariate case).

Optimal solutions ε̂ for values of S used in the sequel are represented on Figure 5.3. The

probabilities reported on the figure are obtained by integrating the normal density over

the cells Ci:

p̂i
ε =

∫

Ci(ε̂)
φ(ε)dε = Φ(ε̂i+1/2 + ε̂i/2)− Φ(ε̂i/2 + ε̂i−1/2) ,

where Φ is the cumulative distribution function (cdf) of N (0, 1). The probabilities have

a closed-form expression thanks to the simple domain of integration.



94 Chapter 5. Inferring Decisions from Predictive Densities

1 2

3 4 5 6

7 8 9 10

10.0

0.5 J

0.5 J

probabilities

I +0.798

I -0.798

values

0.270

0.459

-1.224

0.0

0.163

0.337

-1.510

+0.453

0.107

0.244

0.298

-1.724

0.0

+0.765

0.0740

0.181

0.245

-1.894

-0.318

+1.000

0.0536

0.137

0.199

0.221

-2.033

-0.561

0.0

+1.188

0.0402

0.107

0.161

0.192

-2.152

-0.756

+0.245

+1.344

0.0311

0.0845

0.132
0.164
0.176

-2.255

-0.919

0.0
+0.444

+1.477

0.0245

0.0681

0.110
0.141
0.157

-2.345

-1.058

-0.200

+0.610

+1.591

Fig. 5.3: Discretizations of N (0, 1) for branching factors from 1 to 10, obtained by minimizing

the quadratic distortion. Values that can be guessed by symmetry are not indicated.

Remark 5.3. A property of stationary quadratic quantizers is noteworthy in the

context of stochastic programming. It is well known (Pages and Printems, 2003)

that for any function f0 convex in ε, one has, by (5.28),

S
∑

i=1

p̂i
εf0(ε̂

i) =
S
∑

i=1

p̂i
εf0

(∫

Ci(ε̂)
εφ(ε)dε

∫

Ci(ε̂)
φ(ε)dε

)

≤
S
∑

i=1

p̂i
ε

∫

Ci(ε̂)

f0(ε)
φ(ε)

p̂i
ε

dε = E{f0(ε)} ,

where the inequality holds by Jensen’s inequality with the conditional density

φ(ε)/p̂i
ε. This implies that for a function f with values f(ε, x) convex in ε, one

has, for any fixed x,
∑S

i=1 p̂
i
εf(ε̂i, x) ≤ E{f(ε, x)}. Let x̄ ∈ argminx E{f(x, ε)}.

Then it holds that

minx

∑S
i=1 p̂

i
εf(ε̂i, x) ≤∑S

i=1 p̂
i
εf(ε̂i, x̄) ≤ E{f(ε, x̄)} = minx E{f(ε, x)} . (5.29)

Now, as a particular function convex in ε, consider

f(ε, x) = 〈c, x〉+ min{y: Ax+By=Cε, y�0} g(y) (5.30)

where g is convex in y. The function f is convex in ε as the sum of a fixed

term 〈c, x〉 and a function obtained as the composition of the affine transform

δ = Cε−Ax with the function f̃(δ) = min{y: By=δ, y�0} g(y), which can be shown to

be convex in δ (Rockafellar, 1970, Theorem 5.7). Then (5.29) becomes, restricting

the minimization over x to some set X,

minx∈X{〈c, x〉+
∑S

i=1 p̂
i
ε min{yi: Ax+Byi=Cε̂i, yi�0} g(y

i)}
≤ minx∈X{〈c, x〉+ E{min{y(ε): Ax+By(ε)=Cε, y(ε)�0} g(y(ε))}} . (5.31)
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The argument can be extended by taking g(y) = E{f2(ε2, y)}, with ε2 a new random

variable independent of ε, and f2(ε2, y) defined by

f2(ε2, y) = 〈c2, y〉+ min{z: A2y+B2z=C2ε2, z�0} g2(z)

where g2 is convex in z. Given a stationary quantizer for ε2, with values ε̂j2 and

probabilities p̂j
2, j = 1, . . . , S2, it holds by (5.29) and the convexity of f2 in ε2 that

minyi∈Y i(x)

∑S2

j=1 p̂
j
2f2(ε̂

j
2, y

i) ≤ minyi∈Y i(x) E{f2(ε2, yi)} , (5.32)

where Y i(x) = {yi : Ax + Byi = Cε̂i, yi � 0}. Let x̄ be an optimal solution to

the minimization over x ∈ X of the left-hand side of (5.31). One then obtains the

chain of inequalities

minx∈X{〈c, x〉+
∑S

i=1 p̂
i
ε min{yi: Ax+Byi=Cε̂i, yi�0}{〈c2, yi〉

+
∑S2

j=1 p̂
j
2 min{zij : {A2yi+B2zij=C2ε̂j

2, zij�0} g2(z
ij)}}

≤ 〈c, x̄〉+∑S
i=1 p̂

i
ε min{yi: Ax̄+Byi=Cε̂i, yi�0}{〈c2, yi〉

+
∑S2

j=1 p̂
j
2 min{zij : {A2yi+B2zij=C2ε̂j

2, zij�0} g2(z
ij)}

= 〈c, x̄〉+∑S
i=1 p̂

i
ε minyi∈Y i(x̄)

∑S2

j=1 p̂
j
2f2(ε̂

j
2, y

i)

≤ 〈c, x̄〉+∑S
i=1 p̂

i
ε minyi∈Y i(x̄) E{f2(ε2, yi)}

= minx∈X{〈c, x〉+
∑S

i=1 p̂
i
ε minyi∈Y i(x) g(y

i)}
≤ minx∈X{〈c, x〉+ Eε{min{y(ε): Ax+By(ε)=Cε̂, y(ε)�0} Eε2{f2(ε2, y(ε))}}}
= minx∈X{〈c, x〉+ Eε{min{y(ε): Ax+By(ε)=Cε̂, y(ε)�0}{〈c2, y(ε)〉

+Eε2{min{z(ε,ε2): A2y(ε)+B2z(ε,ε2)=C2ε2, z(ε,ε2)�0} g2(z)}}} ,

where the last inequality follows from (5.31).

By induction, the result can further be extended to several decision stages.

In Remark 5.3, a class of multistage programs has been identified, for which a single

scenario-tree approximation based on quadratic quantization yields a lower bound on the

exact optimal value of the program.

For this result to hold, the stagewise independence assumption between the random

variables ε, ε2, . . . , is essential. The function f(x, ε) in (5.30) has to be convex in ε,

preventing us to consider, instead of g(y), a general function g(y, ε), as would be the case

if the expectation in the definition of g were conditioned on ε. The only dependence of

g on ε is through the value of its argument y, which depends on the realization of ε.

Now, there exists a formulation trick that allows to pass the value of ε to functions at

subsequent stages. It suffices to extend the decision vector y to the vector y+ = (y, yε),

where yε is a dummy decision variable subject to the constraint yε = ε. The value of ε

can then be passed to the function g through y+ itself, and by the same mechanism to

any subsequent function inside the nested expectations.

In fact, the multi-product assembly problem described in Section 5.3.1 could be put

under that form if (5.20) were replaced by d = b0 + b1ε1 + b2ε2 + b3ε3. Indeed, in the

reasoning of Remark 5.3, the transform δ = Cε−Ax can be extended to δ = Cε+D−Ax,
which is also an affine transform of ε but allows fixed right-hand sides when C = 0. With
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Tab. 5.3: Minimum of the approximate programs.

Branching Optimal Cpu time

factor value (seconds)

1 -805.73 1.8

2 -450.89 1.8

3 -397.80 5.0

4 -388.57 8.0

5 -383.36 17.2

6 -379.85 40.7

7 -378.09 79.8

8 -377.23 177.5

9 -376.91 353.5

10 -376.56 670.6

the extension trick, it is possible to pass the value of ε1, ε2, ε3 to the last stage, and to

express d through the linear equality constraint d = b0 + b1ε1 + b2ε2 + b3ε3.

Unfortunately, the lower bound certificate cannot be extended to the case where

d is defined by (5.20): the value of the last stage is convex in d but not in ε3. We

expect, however, that when the conditional probability of having all components of d not

truncated is large enough (we refer to the probability P{d � 0} = P{∩5
j=1(b3)jε3 > −λj}

when λ = (b0 +b1ε1 +b2ε2) � 0), one is close to the case where d is affine in ε1, ε2, ε3, and

thus close to being able to certify that the quadratic quantization yields a lower bound.

When one or several components of λj are close to 0 or below, then it is likely that the

optimal choice of q3 will attempt to redirect the assembly to products with the largest

expected profit E{|(c4)j |(q4)j − (c3)j(q3)j}, and thus to favor products with a larger

conditional expected demand, which happens to be the products that follow the affine

demand model more closely — potentially diminishing the impact of a discretization bias

in the wrong direction. By bias in the wrong direction, we mean this: If we were able

to dynamically adjust a quantizer for the distribution of the components dj to make it

stationary given the values of ε1 and ε2, so as to take the expectation over d rather than

ε3, then the values of the adjusted quantizer would be greater than the values of the fixed

quantizer induced by the fixed quantization of ε1, ε2, ε3, that neglects the truncation of d

at 0.

Empirically, on our problem data, the optimal value of the scenario-tree approxima-

tions with uniform branching factor S = 1, 2, . . . increases with S and stabilizes at a

certain level for higher values of S. This strongly suggests that on our problem data, the

quadratic quantization approach consistently provides lower bounds on the value of the

exact multistage program (Table 5.3). The time taken by the numerical optimization

algorithm for solving the successive approximations has also been indicated on Table 5.3,

so as to provide an indication of the increasing difficulty of solving programs posed on

larger scenario trees.
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5.3.3 Shrinking-Horizon Policies on the Test Sample

As already mentioned, the present problem is simple enough to let us simulate shrinking-

horizon policies on mutually independent test scenarios. We considered one cpu day as

the time limit beyond which the simulation time of one policy on 104 scenarios is not

acceptable. Simulation results for 4 shrinking-horizon policies on a fixed test sample

of 104 scenarios are reported on Table 5.4 (page 100). The average cpu time for the

evaluation of the sequence of decisions on one new scenario is also indicated on Table 5.4,

clearly illustrating the growing complexity of simulating shrinking-horizon policies. The

policy with branching factor 7 takes 6.5 seconds per scenario, that is, 6.5·104/(3600·24) '
0.75 days to be evaluated on the test sample.

The reported empirical averages on the test sample are our estimate for the expected

cost of the policies. The standard error, defined as the standard deviation of the costs

on the test sample divided by the square root of the test sample size, indicates the order

of magnitude of our uncertainty about the true value of the policies as solutions to the

multistage program.

The apparent plateau of performance beyond a branching factor of 5 suggests that

the shrinking-horizon policy with branching factor 5 already attains performances that

are almost optimal, and this is confirmed by comparing the empirical average on the test

sample to the lower bounds of Table 5.3, in particular the best bound obtained on the

single program with the largest scenario tree (branching factor 10).

Remark 5.4. As the same test sample is used for each policy, the difference of

costs between pairs of policies should be significant enough to allow us to rank

the various policies reliably. On Table 5.9 (page 101), the reported standard error

is the standard deviation, on the test sample, of the difference of costs between

each pair of policies considered in the section, divided by the square root of the

test sample size. Thus, for instance, a confidence interval for the difference of

average cost between shrinking-horizon policies with branching factors 3 and 5

could be built by considering that the estimator for the difference is approximately

normally distributed with a standard deviation of 0.70. For some pairs of policies,

the standard errors reported in Table 5.9 are larger, but then they correspond to

policies with a larger difference in their empirical performance.

In general, the uncertainty about the true value of the difference of expected costs

among policies appears to be considerably smaller than the uncertainty about the

level of the expected cost itself, and actually small enough to justify with hindsight

the choice of the test sample size for ranking the policies. With a test sample 4

times larger, we would be able to improve our statistical estimates by a factor of

2, but then 4 cpus would be needed to simulate the shrinking-horizon policies on

the test sample in less than one day.

Remark 5.5. The shrinking-horizon policy with branching factor 1 (that uses a

single scenario to represent the future, corresponding to the mean scenario condi-

tionally to the information state, and thus implements a Model Predictive Control
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approach) is already far better than a two-stage approximation strategy, that would

consist in

• relaxing the multistage program to a two-stage program, with first-stage deci-

sion (q1, v2, q2, v3, q3) and second-stage decision q4 adjusted to the observation

of (ε1, ε2, ε3), and then

• implementing the resulting optimal first-stage decision (q1, v2, q2, v3, q3) in

open-loop (that is, neglecting the observations of ε1 and ε2), followed by the

optimal second-stage decision q4 = min{d, q3} given the observation of d.

When simulating such a policy on the test sample, using a first-stage decision

computed on the scenario tree with branching factor 10 (and simply imposing that

the decisions q1, v2, q2, v3, q3 are common to every scenario), we obtain an empirical

cost equal to −261.39 (standard deviation of the estimate: 6.15), far worse than the

value −305.48 of the simplest shrinking-horizon policy. Such a test confirms the

interest of taking into account the available information on the demand and adjust

the production process online. It also allows to compute quickly a lower bound on

the value of multistage stochastic programming (VMS): the VMS can be estimated

as at least the difference of performance between the simplest shrinking-horizon

policy and the policy based on the two-stage approximation.

5.3.4 Performances of Learned Policies

In the following experiments, we test policies that are built with the data extracted

from a given single scenario-tree approximation solved to optimality (the optimal value

of which being already reported in Table 5.3). We consider 3 such data sets, namely,

the ones obtained with branching factors 3, 5, and 7 respectively. Larger data sets are

advantageous from the statistical learning point of view, and at the same time they

provide better recourse decision examples, due to the finer discretization of the random

process used in the approximate stochastic programs.

The first-stage decision of the learned policies are exactly that of the corresponding

shrinking-horizon policy. The policy for the last stage decision is always set to the optimal

policy with decisions q4 = min{q3, d} ∈ R5. It remains to learn a mapping π1 from ε1 ∈ R

to q2 ∈ R8, and a mapping π2 from (ε1, ε2) ∈ R2 to q3 ∈ R5. Indeed, once qt−1 and qt are

determined, the value of vt can be deduced by solving a simple optimization program,

that had to be solved anyway to ensure that a predicted decision q̂t is feasible, and to

repair it if necessary.

Policies based on the Joint Gaussian Model.

First, we test the simple approach described in Section 5.2. We estimate the mean and the

covariance matrix of a joint Gaussian model for (ε1, ε2, ε3, q1, q2, q3) from the considered

data set. The value of the parameter ε′ in (5.14) is set to 0.01 in all the experiments.

The predicted conditional densities of q2 given (ε1, q1), and of q3 given (ε1, ε2, q2), are

computed with the conditioning formulae (5.12). The decisions are then inferred by

solving programs of the form (5.7), as described in Section 5.1.2. The optimized variables

are qt and vt, structured by the constraints (5.23), (5.24).
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The performances of those policies are reported on Table 5.5. The branching factor

identifies the data set from which policies are learned.

The performance of the learned policies are worse than that of the corresponding

shrinking-horizon policies reported in Table 5.4, but already much better than the score

of the policy with a fixed optimized production plan described in Remark 5.5.

Policies based on the Gaussian Process Model.

Next, we test the nonparametric approach described in Section 5.2.2. Experiments were

limited to the case of a radial basis kernel with a common bandwidth parameter r > 0

set beforehand for each component of the decision vectors. For the components of the

predictive conditional mean of q2, we used the kernel with values

k(εi1, ε
j
1) = exp{−(εi1 − εj1)2/(2r2)} ,

and for the components of the predictive conditional mean of q3, we used the kernel with

values

k′(εi1, ε
i
2, ε

j
1, ε

j
2) = exp{−∑2

t′=1(ε
i
t′ − εjt′)2/2r2} = k(εi1, ε

i
1) · k(εi2, εj2) .

We did not try to determine the best value of the bandwidth parameter r from

the data set, but rather tested the resulting policies on the test sample. The jitter

parameter σ2 that enters the expression of the predictive conditional means (5.15) was

always set to 0.01.

The performance of the policies with the best found value of r — which depends on

the size of the data set from which the policy is learned — are reported in Table 5.6.

If we compare the results of Table 5.6 to the results of Table 5.5, we observe that on a

same training set (identified by the branching factor), the selected policy based on the

Gaussian Process model is better, in the case of branching factors 3 and 7, than the

corresponding policy based on the joint Gaussian model, and in fact a lot better with the

branching factor 3, corresponding to the smallest studied training set. On the training

set with the branching factor 5, however, the policy based on the joint Gaussian model is

better. In fact, that latter policy seems to dominate the 3 policies of Table 5.6, suggesting

that the simple approach based on the joint Gaussian model was worth investigating.

Finally, we tested the idea of emulating input-dependent bandwidth choices by using

kernels with values

k(εi1, ε
j
1) = exp{−[Φ(εi1)− Φ(εj1)]

2/(2r2)} ,
k′(εi1, ε

i
2, ε

j
1, ε

j
2) = k(εi1, ε

i
1) · k(εi2, εj2) ,

where Φ is the cumulative distribution function of N (0, 1). In fact, since each εt follows

N (0, 1), it holds that Φ(εt) is uniformly distributed on the interval [0, 1]. It seems then

wise to use a constant bandwidth r on this transformed input space, rather than on the

original input space.

The performance of the policies with the best found value of r — which happened to

be independent of the size of the data set from which the policy is learned — are reported

in Table 5.7. If we compare the results of Table 5.7 to the results of Table 5.6, we observe



100 Chapter 5. Inferring Decisions from Predictive Densities

Tab. 5.4: Simulation results for shrinking-horizon policies.

Branching Empirical results on the test sample Cpu time (sec.)

factor Average Standard error per scenario

1 -305.48 4.88 0.9

3 -369.52 5.91 1.7

5 -374.34 6.37 3.1

7 -374.56 6.17 6.5

Tab. 5.5: Results for policies based on the joint Gaussian model.

Branching Empirical results on the test sample Cpu time (sec.)

factor Average Standard error per scenario

3 -307.57 5.27 1.3

5 -360.81 6.13 1.3

7 -356.07 5.88 1.3

Tab. 5.6: Results for policies based on the Gaussian Process model.

Branching Empirical results on the test sample Cpu time (sec.)

factor Average Standard error per scenario

3 -347.49 5.58 1.1

5 -348.94 6.12 1.1

7 -357.63 6.02 1.2

Tab. 5.7: Gaussian Process model with a transformed input space.

Branching Empirical results on the test sample Cpu time (sec.)

factor Average Standard error per scenario

3 -359.50 5.73 1.2

5 -368.76 6.31 1.2

7 -363.26 6.05 1.2
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Tab. 5.8: Gaussian Process with a transformed input space and a fast repair procedure.

Branching Empirical results on the test sample Cpu time (sec.)

factor Average Standard error per scenario

3 -359.87 5.74 0.001

5 -371.10 6.33 0.001

7 -370.28 6.12 0.001

Tab. 5.9: Standard error of pairwise differences on the test sample.

Tab. 5.4 Tab. 5.5 Tab. 5.6 Tab. 5.7 Tab. 5.8
3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

1 1.94 2.39 2.17 2.03 2.22 2.02 1.74 2.13 2.06 1.88 2.33 2.06 1.88 2.35 2.13

3 0.70 0.43 1.81 0.97 0.96 0.72 0.81 0.59 0.42 0.66 0.43 0.42 0.68 0.43

T
a
b
.
5
.4

5 0.33 2.21 0.93 1.13 1.23 0.80 0.76 0.97 0.27 0.56 0.96 0.26 0.46

7 2.00 0.88 1.00 0.98 0.69 0.57 0.71 0.32 0.32 0.71 0.35 0.24

3 1.98 1.72 1.33 1.72 1.83 1.68 2.15 1.95 1.68 2.16 1.95

T
a
b
.
5
.5

5 0.37 1.12 0.72 1.07 1.12 0.88 0.92 1.12 0.88 0.88

7 0.94 0.77 1.09 1.05 1.07 0.98 1.05 1.08 0.97

3 0.88 0.79 0.63 1.17 0.93 0.63 1.19 0.95

T
a
b
.
5
.6

5 0.68 0.99 0.76 0.75 0.99 0.76 0.69

7 0.73 0.68 0.51 0.73 0.70 0.53

3 0.87 0.62 0.01 0.89 0.63

T
a
b
.
5
.7

5 0.42 0.87 0.07 0.30

7 0.62 0.46 0.19

3 0.89 0.63

T
a
b
.
5
.8

5 0.33

7

that on a same training set, the policies using the kernel on the transformed space are

significantly better than the policies using the kernel on the original input space.

Therefore, these experiments illustrate that the performances of the policies based on

the Gaussian Process model are sensitive to the choice of the kernel. Depending on the

efforts that one is ready to make to test different choices of kernels, one can thus expect

to obtain good policies with the Gaussian Process model, perhaps even with small data

sets, as it was the case here with the training set relative to branching factor 3.

Discussion.

In terms of optimality, the results obtained here suggest that the learned policies are

able to attain performances that are quite decent with respect to the shrinking-horizon

policies. With trees of branching factor 3, for instance, the policy based on Gaussian

Process regression (with a good choice for the kernel) attains an average cost of about
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-360 on the test sample, while the corresponding shrinking-horizon policy attains -370.

In terms of simulation times, with our Matlab implementation that calls cvx for

formulating and solving all programs, the learned policies are penalized by the need

to repair the predictions by solving a quadratic program, and the simulation times are

thus similar to the time taken by simulating the shrinking-horizon policy with branching

factor 1.

These results led us to try to replace the generic MAP repair procedure of Section 5.1

by a problem-specific, faster heuristic. In the present context, a possible heuristic consists

in fixing an ordering of the components of qt a priori, and then using the stocks qt−1 as

needed to reach the nominal level (q̂t)j predicted by the learned policy, or to a lower level

if one needed component of qt−1 gets depleted. The priority order is a hyper-parameter

of the repair procedure, that can be tested; our prior belief is that products with higher

profit per unit should be given a higher priority to the available stocks of components.

On the test sample, this new repair procedure combined with the Gaussian model

turns out to degrade the performance of the policy considerably. But combined with the

Gaussian process model, the performance is maintained (with the best found ordering for

the repair procedure), suggesting that the predictions of the Gaussian Process model are

precise enough to mitigate the potential inaccuracies of the repair procedure (Table 5.8).

Remark 5.6. It is a recurrent observation on our tables that the policies learned

from the data set with branching factor 5 slightly dominate those learned with

branching factor 7. One possible explanation is that despite its smaller cardinality,

the first data set contains better examples of decisions. In particular, the first-stage

decision may be better, or at least more robust to inaccuracies in the subsequent

recourse decisions. In fact, we have often observed that in two-stage programs,

the exact value of the first-stage decision optimal with respect to an approximate

program built with a deterministic method can actually be degraded by using more

discretization points, by a simple effect of luck in the selection of the values.

We can now claim that the best learned policy for our problem is the middle policy of

Table 5.8. Thanks to the high efficiency in the evaluation of this learned policy with the

fast repair procedure, we are able to test the policy on a new, independent test sample

of 106 scenarios.

The empirical average of the cost of the policy on this new test sample is -371.87, esti-

mated with standard error 0.63. The simulation of the policy on the new independent test

sample takes about 15 minutes in cpu time. With a confidence of approximately 95 %, the

exact value of the selected policy lies in the 2-standard error interval [−370.61,−373.14].

5.4 Conclusions

In this chapter, alternative methods for learning policies from data sets of scenario-

decisions pairs were explored, especially methods based on Gaussian Process regression.

The framework of Gaussian Processes was found attractive for several reasons: the pre-

dictions are relatively easy to compute (with small data sets, or in fact with kernels that



5.4. Conclusions 103

induce sparse Gram matrices), and are not based on probabilistic assumptions concerning

the way the scenarios of a data set were generated, in particular independence assump-

tions. This last observation is important, because the scenarios of a data set usually

come from a scenario tree built by conditional sampling or by deterministic methods,

and as such, are not independent. It is also true that the sequence of decisions associated

to a scenario actually depends, through the optimization of the decisions, on the other

scenario/decisions pairs present in the tree, so that we may be far from a situation where

each scenario/decisions pair in the data set could be viewed as generated independently

from some unknown probability distribution. Our case study suggests that Gaussian pro-

cesses can be combined gracefully with scenario-tree generation methods, with choices

guided by the knowledge on the way inputs were distributed or generated.

The MAP repair procedure expounded in the beginning of the chapter is a repair

procedure which is generic, but complicates the online evaluation of a learned policy. In

the next chapter, we review in detail the theory on Euclidian projections, and investigate

to which extent it is possible to accelerate the algorithm that computes that kind of

projection mapping by exploiting a data set of examples of projections already computed.

Nevertheless, our experiment in the present chapter seems to show that when the

feasibility sets are described by many constraints, it is better, from the point of view of

the computational complexity, to try to tailor a simple heuristic to restore the feasibility

of the decisions and obtain policies that are simple to evaluate, than to resort to a generic

procedure based on online optimization.
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Tab. 5.10: Multi-product assembly problem: Values of the parameters in Table 5.2.

c1 =
[

0.25 1.363 0.8093 0.7284 0.25 0.535 0.25 0.25 0.25 0.4484 0.25 0.25
]T

c2 =
[

2.5 2.5 2.5 2.5 13.22 2.5 3.904 2.5
]T

[w2] =













































0.4572 0 4.048 0 0 0 0.8243 11.37

0 0 0.7674 0.5473 0.3776 0 0 0

0.4794 0 0.4861 1.223 0 1.475 0 0

0 0 0 0 0.5114 0.3139 0 0

0 12.29 1.378 0 0.3748 0.4554 0 0

0.7878 0 0.293 1.721 0 0 0 0

1.504 0.4696 0.248 0 0.1852 0 0.3486 0

0 1.204 0 0.7598 0.452 0 0 0

0 0 0.2515 0.3753 0.6249 0 1.248 0

1.545 0 0 0 0 0 0.2732 0

0 0 0 0.6597 0 2.525 0 0

0 0 1.595 0 0 1.51 1.041 0.9847













































c3 =
[

3.255 2.5 2.5 8.418 2.5
]T

[w3] =



























0 1.223 0.6367 0 0

0 0 0 1.111 0

0 0 0.4579 0 0

0 0.1693 0.6589 0 0

0.5085 2.643 0 0 0

0.4017 0 0 0 0

0 0.7852 85.48 0 0

0 0 0 0.806 0.5825



























c4 =
[

−21.87 −98.16 −31.99 −10 −10
]T

b0 =
[

13.9 12.86 18.21 10.14 17.21
]T

b1 =
[

9.708 9.901 7.889 4.387 4.983
]T

b2 =
[

2.14 6.435 3.2 9.601 7.266
]T

b3 =
[

4.12 7.446 2.679 4.399 9.334
]T



Chapter 6

Learning Projections on Random Polyhedra

Recent advances in numerical optimization algorithms (Nesterov, 2007; Nemirovski et al.,

2009) seem to suggest that two very different categories of convex feasibility sets can

be distinguished: the sets on which the Euclidian projection (or its generalization via

Bregman divergences) can be computed in closed-form, and the sets for which evaluating

projections requires the use of standard iterative methods.

In many applications, the feasibility set of interest is a convex polyhedron, that is, a

set described by a finite number of linear equality and linear inequality constraints, for

which Euclidian projectors in closed-form are typically not available. In this chapter, we

consider the fundamental operation of evaluating the Euclidian projection of the origin

(zero vector) on a random convex polyhedral set. We study a subclass of that problem

in depth, namely, a subclass related to the MAP repair procedure evaluated in the case

study of chapter 5. The analysis suggests an algorithm able to predict exact projections

by generalizing information from a data set of examples of projections. We say that

the algorithm is able to learn projections, even if strictly speaking, the algorithm knows

exactly to which extent it can generalize the examples already encountered, so that when

it is unable to return an exact result for the projection, it can simply call a standard

optimization procedure.

The overall goal of the chapter is less to build an efficient implementation of the

studied approach, than to identify its limitations, inasmuch as this latter perspective

may also shed light on limitations of learning applied to data sets of minimizers.

The chapter is organized as follows. Section 6.1 motivates the studied problem. Sec-

tion 6.2 presents geometrical insights, and Section 6.3 builds on these insights to study

the properties of the projections. Section 6.4 presents algorithms derived from those re-

sults. Section 6.5 evaluates empirically on a series of random problems the circumstances

for the success of the approach, and Section 6.6 concludes with references to related work.

We have written proofs for a series of propositions collected in Sections 6.1, 6.2, 6.3,

as this is by this mechanism that we have come to the ideas of Sections 6.4 and 6.5. The

proofs have been established independently of the existing literature. With hindsight,

we believe that the results of Sections 6.1, 6.2, 6.3 are natural and rather standard (see,

for instance, Facchinei and Pang (2003); Dontchev and Rockafellar (2009)), while being

sometimes rediscovered in some communities (see Section 6.6).
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Notations.

In the sequel, we use the following notations.

• AT ∈ Rn×m is the transpose of A ∈ Rm×n.

• ||z|| = (zT z)1/2 = 〈z, z〉1/2 is the Euclidian norm of z ∈ Rn.

• B = {z : ||z|| ≤ 1} is the closed unit ball in Rn with n understood from the context.

• For a scalar ρ and a set B, ρB stands for the set {ρv : v ∈ B}.

• For v1 ∈ Rn and a set B2 ⊂ Rn, v1 +B2 stands for the set {v1 + v2 : v2 ∈ B2}.

• For sets B1, B2 ⊂ Rn, B1 + B2 stands for the set {v1 + v2 : v1 ∈ B1, v2 ∈ B2}. If

B1 is a singleton B1 = {v1}, we write v1 +B2 rather than {v1}+B2.

• For x = [x1 . . . xn]T and y = [y1 . . . yn]T ∈ Rn, x � y means xi ≤ yi, 1 ≤ i ≤ n,

and x ≺ y means xi < yi, 1 ≤ i ≤ n.

• Given x = [x1 . . . xn]T ∈ Rn, x+ (or [x]+) denotes the vector in Rn with components

max{0, xi}, 1 ≤ i ≤ n.

• Given x = [x1 . . . xn]T ∈ Rn and a subset I of {1, . . . , n} of cardinality |I|, the

vector xI ∈ R|I| is the subvector of x that stacks the components xi such that

i ∈ I. For a matrix A ∈ Rn×m with rows aT
1 ,. . . ,aT

n , the matrix AI ∈ R|I|×m is the

submatrix of A that stacks the rows aT
i of A such that i ∈ I.

6.1 Problem Statement

We consider the following parametric optimization program over y ∈ Rm,

P(x(ω)) : minimize f(y) = 1
2 ||y||2 subject to Ay � x(ω) , (6.1)

assuming that the parameter is the realization x(ω) ∈ Rs of a random variable x drawn

from some unknown but fixed probability distribution, and that A ∈ Rs×m is a fixed

matrix.

We are interested in the prediction of the optimal solution y∗(ω) to P(x(ω)), given

x(ω), assuming that we know P (we do not have to estimate A, for instance). This

problem could be addressed from a machine learning point of view by trying to learn

a hypothesis h in some hypothesis space H that approximates well the optimal solu-

tion y∗(ω), in the sense that the distance between h(x(ω)) and the feasibility set

C(x(ω))
def
= {y ∈ Rm : Ay � x(ω)} (6.2)

is small, and the regret ||h(x(ω))||2/2− ||y∗(ω)||2/2 is small.

However, the interest of a prediction y∗(ω) which is only “nearly feasible” remains

hard to define in the absence of a precise interpretation of the constraints in the context

of an application. Without renouncing totally to that possible avenue (results that could

be useful in that perspective are also given in this chapter), we find it more adequate

to look first for approaches that could accelerate the repeated evaluation of the optimal
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solution of P(x(ω)) for a sequence of realizations of x, that is, in some sense, build a

self-improving algorithm (Ailon et al., 2006).

In the sequel, we assume that x(ω) is valued in the set

dom C def
= {x ∈ Rs : C(x) 6= ∅} , (6.3)

called the domain of C, with C interpreted as a set-valued mapping C : Rs
⇒ Rm with

values C(x) (Dontchev and Rockafellar, 2009) (see Appendix B, Definition B.8). In

probabilistic terms, we assume that the support of the distribution of x is in dom C.
We do not assume that the support of the distribution of x is bounded, although some

specific results can be established in that case.

The setting covers a large class of parametric, strictly convex quadratic programs, as

shown by the following proposition and its corollary.

6.1 Proposition. Let S ∈ Rm×m be a positive definite matrix, let F ∈ Rs×m be a

matrix, and let u ∈ Rm, v ∈ Rs be vectors. The quadratic program over z ∈ Rm,

minimize 1
2z

TSz + uT z subject to Fz � v , (6.4)

becomes, with a suitable change of variables, the problem of projecting (with respect to

the Euclidian metric) the origin 0 on some polyhedral set.

Proof. Let S = RTR be the Cholesky factorization of S (where R is upper triangular).

Let z = R−1y − S−1u. By substitution, we obtain a program over y ∈ Rm,

minimize 1
2y

T y − 1
2u

TS−1u subject to FR−1y � v + FS−1u ,

where the constant term −uTS−1u/2 can be dropped. Hence the program on z is equiv-

alent to the evaluation of the Euclidian projection of 0 ∈ Rm on the set C(x) = {y ∈
Rm : Ay � x} with A = FR−1 and x = v + FS−1u. Assuming that (6.4) is feasible and

thus C(x) is nonempty, the optimal solution z∗ to (6.4) is recovered from the optimal

solution y∗ using z∗ = R−1y∗ − S−1u.

6.2 Corollary. The parametric optimization program over y ∈ Rm with parameters

u(ω) ∈ Rm, v(ω) ∈ Rs,

Q(u(ω), v(ω)) : minimize 1
2z

TSz + u(ω)T z subject to Fz � v(ω) , (6.5)

can be recast as the parametric program P(x(ω)) by setting x(ω) = v(ω) + FS−1u(ω)

and A = FR−1 in (6.1), where S = RTR is the Cholesky factorization of S.

6.2 Geometry of Euclidian Projections

Let us start by recalling some useful geometrical facts about Euclidian projections on

convex polyhedral sets (Rockafellar and Wets, 1998, Example 6.16, Theorems 6.9 and

6.46, Proposition 6.17). Figure 6.1 provides a visual support to the following definitions.

6.3 Definition. Let C ⊂ Rm be a closed set. The Euclidian projection mapping on C

is the set-valued mapping PC : Rm
⇒ Rm with values

PC(y) = {ȳ ∈ C : ||ȳ − y|| ≤ ||y′ − y|| for every y′ ∈ C} .
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y

ȳ

C

NC(ȳ)

Fig. 6.1: ȳ is the projection of y on C if y − ȳ is in the normal cone to C at ȳ.

When C is a nonempty closed convex set, PC is single-valued, in the sense that PC(y) is

a singleton.

6.4 Definition. Let C ⊂ Rm be a closed set. The proximal normals to C at ȳ ∈ Rm

are the vectors d ∈ Rm such that ȳ ∈ PC(ȳ + τd) for some τ > 0.

6.5 Definition. Let C ⊂ Rm be a closed convex set and ȳ ∈ C. A vector d is normal

to C at ȳ if 〈d, y′ − ȳ〉 ≤ 0 for every y′ ∈ C. The normal cone to C at ȳ is the set

NC(ȳ) = {d ∈ Rm : 〈d, y′ − ȳ〉 ≤ 0 for every y′ ∈ C} if ȳ ∈ C, or NC(ȳ) = ∅ if ȳ /∈ C.

The normal cone to a closed convex set C at ȳ ∈ C always contains 0. If ȳ is in the

interior of C, the normal cone is reduced to {0}. A more general definition for the normal

cone, valid for an abstract set C, is also available, but it is not needed in the sequel.

The normal cone to a convex polyhedral set has a particular expression, given by the

following proposition.

6.6 Proposition. Let C = {y ∈ Rm : Ay � b}, where A is a matrix with rows aT
i . For

ȳ ∈ C, let I(ȳ) = {i : aT
i ȳ = bi} denote the set of active constraints at ȳ. Then the

normal cone to C at ȳ is given by

NC(ȳ) = {d = ATλ : λi ≥ 0 for i ∈ I(ȳ), λi = 0 for i /∈ I(ȳ)} .

The relation between the normal cone and the Euclidian projection mapping is given

in the following proposition, only valid for closed convex sets.

6.7 Proposition. For a closed convex set C ⊂ Rm, every normal vector is a proximal

normal vector: d ∈ NC(ȳ) iff ȳ ∈ PC(ȳ + d), where in fact ȳ = PC(ȳ + d).

From Proposition 6.7, one deduces that every point ȳ of C = {y ∈ Rm : Ay � b}
defines an equivalence class of points

[ȳ] = {y ∈ Rm : PC(y) = ȳ}
= {ȳ +ATλ : λi ≥ 0 for i ∈ I(ȳ), λi = 0 for i /∈ I(ȳ)}

with [ȳ] reduced to the singleton {ȳ} when ȳ is in the relative interior of C — the relative

interior of a nonempty convex set C corresponds to the interior of C when C is viewed

as a subset of the smallest linear space containing C (the affine hull of C).
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Remark 6.1. Let C = {y ∈ Rm : Ay � b}, let y be some point in Rm, and let

ȳ = PC(y) be the projection of y on C. Let I(ȳ) = {i : aT
i ȳ = bi} denote the index

set of active constraints at ȳ. If I(ȳ) were known in advance for any y, then one

could compute PC(y) as the projection of y on the linear space CI defined with the

set of active constraints I = I(PC(y)) by

CI = {y ∈ Rm : aT
i y = bi, i ∈ I} = {y ∈ Rm : AIy = bI} .

In that hypothetical situation, a closed-form formula is available for the projection.

For instance, assuming for simplicity that the rows of AI are linearly independent

(Dontchev and Rockafellar, 2009, Exercise 2D.10), one has

PCI
(y) = y −AT

I (AIA
T
I )−1(AIy − bI) . (6.6)

For some particular sets C (for example, hyperrectangles), it holds that I =

I(PC(y)) is equal to the index set of active or violated constraints at y. But for an

arbitrary polyhedral set C and point y, I(PC(y)) is difficult to guess, and does not

usually coincide with the index set of active or violated constraints at y.

Hoffman’s lemma (Hoffman, 1952), stated next, shows that the Euclidian distance

d(y, C) = ||y − PC(y)|| from any point y to a polyhedral set C can be related to a

measure that does not depend on PC(y).

6.8 Lemma (Hoffman’s Lemma). Let C = {y ∈ Rm : Ay � b} be nonempty with

A ∈ Rs×m a nonzero matrix. For any y ∈ Rm, there exists a scalar κ(A) > 0 depending

on A such that d(y, C) ≤ κ(A) || [Ay − b]+ ||.

Estimating κ(A) and its sensitivity with respect to perturbations of A is an important

subject of study — useful references are collected in Facchinei and Pang (2003, Notes to

Chapter 3, page 332).

A well-known corollary of Hoffman’s lemma is stated in the next proposition (Propo-

sition 6.10). Let us first define the Hausdorff “distance” between two sets (Dontchev and

Rockafellar, 2009, page 138).

6.9 Definition. The excess of C0 ⊂ Rm beyond C1 ⊂ Rm is the quantity

e(C0, C1) = supy∈C0
d(y, C1) ,

with e(∅, C1) = 0 if C1 6= ∅ and e(∅,∅) =∞. Equivalently,

e(C0, C1) = inf{ρ ≥ 0 : C0 ⊂ C1 + ρB} .

The Pompeiu-Hausdorff “distance” between C0 and C1 can then be defined as the

quantity

dh(C0, C1) = max{e(C0, C1), e(C1, C0)} .

6.10 Proposition. Let C(b) = {y ∈ Rm : Ay � b}. Let b0 and b1 be two vectors such

that C(b0) and C(b1) are nonempty. Then dh(C(b0), C(b1)) ≤ κ(A)||b0 − b1||.

Proof. For y ∈ C(b0), we have Ay � b0 and thus Ay − b1 � b0 − b1; in particular [Ay −
b1]+ � [b0 − b1]+. Hence ||[Ay− b1]+|| ≤ ||[b0 − b1]+|| ≤ ||b0 − b1||. By Hoffman’s lemma
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applied to C(b1), we have d(y, C(b1)) ≤ κ(A)||[Ay− b1]+|| ≤ κ(A)||b0− b1||. As y ∈ C(b0)
is arbitrary, supy∈C(b0) d(y, C(b1)) ≤ κ(A)||b0 − b1||. Similarly, supy∈C(b1) d(y, C(b0)) ≤
κ(A)||b1 − b0||, and the result follows.

Remark 6.2. Observe that having A constant is essential in Proposition 6.10. For

instance, consider the set-valued mapping C ′ : R ⇒ R2 with values

C′(ε) = {(x, t) ∈ R2 : t ≥ (1− ε)|x|} = {y ∈ R2 : A(ε)y � 0}

with A(ε) =
[

(1 − ε) −1

−(1 − ε) −1

]

. For each η ≥ 0, the point (η, η(1 − ε)) ∈ C ′(ε) is at

distance εη/
√

2 from the set C′(0), so that by definition of the Pompeiu-Hausdorff

distance, dh(C′(0), C′(ε)) = ∞ for any ε > 0, whereas the matrices A(0) and A(ε)

could be made arbitrary “close” by choosing ε > 0 small enough.

Now, coming back to the parametric program (6.1), we observe that Hoffman’s lemma

allows to prove that if x in (6.1) follows a distribution having a compact support, then

the projection of the origin 0 ∈ Rm on the random polyhedral set C(x) defined by (6.2)

lies in a bounded set.

6.11 Proposition. Let C : Rs
⇒ Rm be the set-valued mapping with values C(x) defined

by (6.2). If x follows a probability distribution with compact support, then there exists

a finite κ̄ > 0 such that the projection y∗(ω) of the origin on the polyhedral set C(x(ω))

satisfies ||y∗(ω)|| ≤ κ̄ for all possible realizations x(ω) of x.

Proof. We assume that x(ω) ∈ X ∩ dom C, where X is a bounded subset of Rs. We

must show that the minimizer y∗(ω) of P(x(ω)) lies in a bounded subset Y of Rm. But

actually, if x(ω) ∈ ρB for some constant ρ > 0, and if x(ω) ∈ dom C, where C(x(ω)) =

{y ∈ Rm : Ay � x(ω)}, then by Hoffman’s lemma it holds that ||y∗(ω)|| = d(0, C(x(ω))) ≤
κ(A)|| [−x(ω)]+ || ≤ κ(A)||x(ω)|| ≤ κ(A)ρ, where κ(A) is a constant depending on A, so

that y∗(ω) lies in the ball Y = κ(A)ρB. We set κ̄ = κ(A)ρ.

Proposition 6.11 shows that if one wants to try to predict from x(ω) a “nearly feasible”

optimal solution y∗(ω), with x drawn from a distribution with compact support, then

one could legitimately select a hypothesis space H of bounded functions.

6.3 Properties of Optimal Solutions

In this section, we establish a list of properties of optimal solutions to the parametric

program (6.1). The results that are not directly used in the subsequent sections are

marked by a star (?). The results converted to an algorithm in the sequel are Propositions

6.19 and 6.22.

We will first note the following simple characterization of the domain of the set-valued

mapping C defined by (6.2):

6.12 Proposition. The domain of the set-valued mapping C : Rs
⇒ Rm with values

C(x) = {y ∈ Rm : Ay � x} is the closed convex cone dom C = range(A) + Rs
+.
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Proof. The set dom C is the projection of the set {(x, y) ∈ Rs × Rm : Ay � x} on Rs

(first s components) and is thus closed as the projection of a closed set (the inequality

constraints defining the set in Rs+m are non-strict). The set dom C is convex since

x0, x1 ∈ dom C means that Ay0 � x0, Ay1 � x1 for some y0, y1 ∈ Rm, implying the

existence of yt = (1−t)y0+ty1 satisfying Ayt � (1−t)x0+tx1 for 0 ≤ t ≤ 1. Furthermore,

dom C is a cone since Ay � x entails A(ty) � tx for t ≥ 0, so that x ∈ dom C entails

tx ∈ dom C for t ≥ 0. Now, the constraints defining the set C(x) are equivalent to

x = Ay + ξ, ξ � 0, where {v ∈ Rs : v = Ay, y ∈ Rm} is by definition the range of

A ∈ Rs×m.

A possible way to draw random points x(ω) ∈ dom C is thus to draw a linear com-

bination of vectors forming an orthonormal basis for A, and then add to the resulting

vector a random vector with nonnegative components.

Although we do not directly invoke it in the sequel, for completeness we also recall

the following structural property:

6.13 Proposition(?). The function g(x) = infy∈C(x)
1
2 ||y||2 is convex in x.

For the notion of extended-real-valued function used in the following proof, see Ap-

pendix A.1.

Proof. The program P(x) amounts to the minimization of the extended-real-valued func-

tion f̄ defined by f̄(x, y) = ||y||2/2 if Ay � x, and f̄(x, y) = ∞ otherwise. We

check that f̄(x, y) is jointly convex in x, y. Let us write xt = (1 − t)x0 + tx1 and

yt = (1 − t)y0 + ty1 for 0 < t < 1. If f̄(x0, y0) and f̄(x1, y1) are finite, implying

Ay0 � x0, Ay1 � x1, then f̄(xt, yt) is also finite, since Ayt � xt and f̄(xt, yt) = ||yt||2/2 ≤
(1−t)||y0||2/2+t||y1||2/2 = (1−t)f̄(x0, y0)+tf̄(x1, y1). If f̄(x0, y0) =∞ or f̄(x1, y1) =∞
, the convexity inequality f̄(xt, yt) ≤ (1−t)f̄(x0, y0)+tf̄(x1, y1) =∞ for 0 < t < 1 is triv-

ially verified. Hence f̄(x, y) is convex in (x, y) (Rockafellar, 1970, Theorem 4.1). As a con-

vex set, the epigraph of f̄ defined by epi f̄ = {(x, y, α) ∈ (Rs×Rm)×R : α ≥ f̄(x, y)} has

its projection on its component Rs × R convex as well. The function g(x) = infy f̄(x, y)

whose epigraph is epi g = {(x, α) ∈ Rs × R : (x, y, α) ∈ epi f̄ for some y} is thus con-

vex.

Now, for x(ω) ∈ dom C, the program P(x(ω)) has a single minimizer y∗(ω) correspond-

ing to the projection of 0 ∈ Rm on the convex polyhedral set C(x(ω)). By Proposition 6.7,

setting C = C(x(ω)), a point y ∈ Rm is thus optimal if the vector 0− y = −y lies in the

normal cone to C at y, that is, −y ∈ NC(y), or equivalently y +NC(y) 3 0.

Given the optimal solution y∗(ω) to P(x(ω)), it is easy to describe sets of nearly

optimal solutions, called ε-optimal solutions (see Appendix A, Section A.4). To this end,

let us recall the notion of tangent cone to an arbitrary set C (Rockafellar and Wets, 1998,

Definition 6.1, Theorem 6.9).

6.14 Definition(?). A vector d is tangent to C at ȳ ∈ C if for some sequence {yν}ν∈N

of points yν ∈ C converging to ȳ, and some sequence {τ ν}ν∈N of scalars τν converging

to 0 with 0 < τν+1 < τν , one has

(yν − ȳ)/τν → d .



112 Chapter 6. Learning Projections on Random Polyhedra

The set of all such vectors d is a closed cone, possibly reduced to the singleton {0}, called

the tangent cone to C at ȳ, and written TC(ȳ). In the particular case where C is a

convex subset of Rm, the tangent cone to C at ȳ is a convex set given by

TC(ȳ) = cl{d ∈ Rm : ȳ + λd ∈ C for some λ > 0} .

For a polyhedral set C = {y ∈ Rm : Ay � x}, the tangent cone to C at ȳ is given by

TC(ȳ) = {d ∈ Rm : aT
i d ≤ 0 for all i ∈ I(ȳ)}

(Rockafellar and Wets, 1998, Theorem 6.46).

The next proposition describes properties of the sets of ε-optimal solutions, denoted

by Sε(ω) for a given ε and a given realization of ω.

6.15 Proposition(?). The sets of ε-optimal solutions Sε(ω) to P(x(ω)) satisfy two prop-

erties, expressed with respect to the exact optimal solution y∗(ω) and the set C(x(ω)):

i. Sε(ω) ∩ ||y∗(ω)||B = {y∗(ω)} for all ε > 0;

ii. There exists an ε0 > 0 such that for every ε ∈ [0, ε0],

Sε(ω) = ρB ∩ [y∗(ω) + TC(x(ω))(y
∗(ω))] ,

where ρ =
√

||y∗(ω)||2 + 2ε and TC(x(ω))(y
∗(ω)) = {d ∈ Rm : aT

i d ≤ 0, i ∈ I(y∗(ω))}.

The following proof relies on standard arguments — see for instance Dontchev and

Rockafellar (2009, Theorem 2E.3).

Proof. To lighten the notation, we write Sε for Sε(ω), C for C(x(ω)), and y∗ for y∗(ω).

The set Sε = ε- argminy∈C f(y) is given by

Sε = {y ∈ C : f(y) ≤ f(y∗) + ε} = {y ∈ C : ||y||2 ≤ ||y∗||2 + 2ε}
= C ∩ (

√

||y∗||2 + 2ε)B.

There is no feasible vector y with ||y|| < ||y∗||, whereas ||y|| = ||y∗|| entails y = y∗

by the strict convexity of f(y), hence the first part of the proposition. On the other

hand, the feasibility set C is described by a finite number of constraints, so that in a

sufficiently small neighborhood of y∗, say R0, there is no new constraint that becomes

active: I(y) ⊂ I(y∗) for y ∈ R0∩C. As the constraints are linear, C can be approximated

locally by the set Cy∗ = {y ∈ Rm : aT
i y ≤ bi, i ∈ I(y∗)}. Since aT

i y
∗
i = bi for i ∈ I(y∗),

we have Cy∗ = {y∗ + d : aT
i d ≤ 0, i ∈ I(y∗)} = y∗ + TC(y∗).

Remark 6.3. Having the set C polyhedral is important in the proof of Proposi-

tion 6.15. If the set C were not polyhedral (it can still be convex), there would not

necessarily exist a neighborhood R0 of y∗ in which a proper inclusion of C ∩ R0

in [y∗ + TC(y∗)] ∩ R0 can be precluded. The local approximation at y∗ of the set

C by the set y∗ + TC(y∗) could thus include infeasible points. For example, for

C = {(x, t) ∈ R2 : t ≥ |x| + x2}, one has TC(0) = {(x, t) ∈ R2 : t ≥ |x|}, and

consequently (C \ TC(0)) ∩ εB 6= ∅ for any ε > 0.
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The following proposition relies on duality theory (Rockafellar and Wets, 1998, Chap-

ter 11).

6.16 Proposition(?). The dual of P(x(ω)) corresponds, after a sign change, to the

program

D(x(ω)) : minimize − g(λ) = 1
2λ

T (AAT )λ+ x(ω)Tλ

subject to λ � 0 .

Proof. The Lagrangian for P(x(ω)) is L(y, λ) = 1
2 ||y||2 + λT (Ay − x(ω)), with λ � 0.

The infimum of L(y, λ) over y is attained at ȳ = −ATλ. Hence the dual function

g(·) = infy L(y, ·) has values g(λ) = − 1
2λ

TAATλ − x(ω)Tλ. The dual formulation is

obtained by maximizing g(λ) subject to λ � 0.

Given y∗(ω), it is often possible to obtain a solution to the dual problem, as shown

by the following proposition. Note that from now on, when ω or x(ω) is clear from the

context, we freely write C for C(x(ω)), and y∗ for the optimal solution y∗(ω) to P(x(ω)).

We will also freely write x for its realization x(ω).

6.17 Proposition(?). If y∗ is optimal for P(x), any optimal solution λ∗ ∈ Rs for

the dual D(x) is determined by a subvector λI ∈ Rp of possibly nonzero elements λ∗i ,

i ∈ I(y∗), p = |I(y∗)|, such that λI is a nonnegative solution to AT
I λI = −y∗.

Proof. Having y∗ ∈ C optimal means −y∗ ∈ NC(y∗), that is, there exists at least one

vector λ ∈ Rs such that

y∗ +
∑s

i=1λiai = 0, λ � 0, λi = 0 if i 6∈ I(y∗) ,

where I(y∗) = {i : aT
i y

∗ = xi} is the index set of active constraints at y∗ ∈ C. These

conditions are nothing else but the usual Karush-Kuhn-Tucker optimality conditions

∇f(y∗) +ATλ = 0, Ay∗ � x, λ � 0, λi(a
T
i y

∗ − xi) ≥ 0

with multipliers λi optimal for the dual problem. Let AI ∈ Rp×m be the submatrix of

A with rows aT
i , i ∈ I(y∗), p = |I(y∗)|, so that the subvector λI ∈ Rp of λ stacking the

possibly nonzero elements λi, i ∈ I(y∗), has to satisfy y∗ + AT
I λI = 0. If the rows of

AI are linearly independent (a constraint qualification which always holds for p = 1 and

never holds for p > m), then

λI = −(AIA
T
I )−1AIy

∗ = −(AIA
T
I )−1xI

where xI ∈ Rp is the subvector of x stacking the elements xi, i ∈ I(y∗). We can

assume that the solution λI is nonnegative inasmuch as y∗ is optimal. Now if p >

m and the columns of AI are linearly independent, the equation y∗ + AT
I λI = 0 is

underdetermined and admits the particular solution v0 = −AI(A
T
I AI)

−1y∗ (least-norm

solution). If ker(AT
I ) = {v : AT

I v = 0} denotes the null space of AT
I , then

λI ∈ {v0 + v : v ∈ ker(AT
I )} ∩ R

p
+ .

Recall that the null space ofAT
I can be described as the span of the eigenvectors associated

to the zero eigenvalues of (AT
I AI).
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Uniquely determined multipliers do not always exist: this is consistent with the ob-

servation that the dual problem can have a continuum of optimal solutions if the matrix

(AAT ) in Proposition 6.16 is only positive semi-definite.

Remark 6.4. A property of the objective function f that facilitated the develop-

ments in Proposition 6.17 is the expression of its gradient ∇f(y) = y. The solution

to the inversion of the generalized equation u ∈ ∂f(y), where ∂f(y) is the subgra-

dient of f evaluated at y, is then simply y = u. We recall that in general, when f is

a proper lower-semicontinuous convex function, u ∈ ∂f(y) if and only if y ∈ ∂f ∗(u)

with f∗(u) = supy{uT y−f(y)} (Rockafellar and Wets, 1998, Proposition 11.3).

It is possible to extract information from the index set of active constraints at an

optimal solution y∗, as shown by the following proposition.

6.18 Proposition(?). Let S(x) = {y∗ ∈ Rm : Ay∗ � x, ||y∗|| ≤ ||y|| whenever Ay � x}
denote the set of optimal solutions for P(x) (the set is a singleton, assuming x ∈ dom C).
Let S−1(y∗) = {x ∈ Rs : y∗ ∈ S(x)} denote the set of parameter vectors x such that y∗

is optimal for P(x). Then, it holds that

S−1(y∗) ⊃{x ∈ Rs : xi = aT
i y

∗ for i ∈ I(y∗), xi ∈ [aT
i y

∗,∞) for i /∈ I(y∗)}
= Ay∗ +N1(I(y

∗))× · · · ×Ns(I(y
∗))

where I(y∗) = {i : aT
i y

∗ = xi} is the set of active constraints at y∗, and where we define

Ni(I) = {0} if i ∈ I and Ni(I) = [0,∞) if i 6∈ I. The inclusion can be refined by

considering, instead of I, the index set I+ = {i : λi > 0} ⊂ I(y∗) of the positive KKT

multipliers associated to the active constraints at y∗.

Proof. Let bi = aT
i y

∗, 1 ≤ i ≤ s. By definition of I(y∗), we have bi = xi if i ∈ I(y∗)
and bi < xi if i is in the complement of I(y∗), that is, i ∈ J(y∗) = {i : aT

i y
∗ < xi} = J .

A constraint indexed by i ∈ J remains inactive if xi is in the open interval (bi,∞), and

becomes active but does not alter the optimal solution y∗ if xi = bi, whence the first part

of the proposition. Now, relaxing the constraints to which are associated zero-valued

KKT multipliers does not alter the optimal solution y∗, so that in fact

S−1(y∗) = {x ∈ Rs : xi = aT
i y

∗ if i ∈ I+, xi ∈ [aT
i y

∗,∞) if i 6∈ I+}

where I+ = {i : λi > 0} is the index set of active constraints with positive multipliers.

Example 6.1. Propositions 6.17 and 6.18 can be illustrated on a numerical example

(Figure 6.2). Let A have 4 rows aT
1 = [ 0 −1 ], aT

2 = [ −1 1 ], aT
3 = [ −1 0 ],

aT
4 = [ −1 −2 ]. Let x have the value x(ω1) = [ −4 2 −2 0 ]T . The opti-

mal solution to P(x(ω1)) is y∗(ω1) = [ 2 4 ]T . The set of active constraints is

I(y∗(ω1) = {1, 2, 3}, meaning that 3 hyperplanes meet at y∗(ω1). The matrix AI

has the 3 rows aT
1 , a

T
2 , a

T
3 . The optimality condition is y∗(ω1) = −AT

I λI . The set
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(0, 0)

y∗

a1
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a4

C1

(0, 0)
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C2

Fig. 6.2: Left: Pathological case x(ω1) for which the dual D(x(ω1)) has several optimal solu-

tions described in the example (see text). Right: Case x(ω2) where the dual problem

D(x(ω2)) has a single optimal solution. The primal problems P(x(ω1)), P(x(ω2)) have

the same unique optimal solution y∗ = (2, 4) ∈ R2. The dashed line indicates the

minimal distance between the origin and the set Ci = {y ∈ R2 : Ay � x(ωi)}.

of solutions for λI is

ΛI =(−AI(A
T
I AI)

−1y∗(ω1) + ker{AT
I }) ∩ R3

+

= ([ 10
3

−2
3

8
3

]T + µ[ 1 1 −1 ]T : µ ∈ R) ∩ R3
+

= {[ 4 0 2 ]T + µ[ 1 1 −1 ]T : µ ∈ [0, 2]} .

Note that a numerical solution algorithm applied to the dual problem could return

any particular solution λ ∈ ΛI × {0}. The solutions corresponding to µ = 0 and

µ = 2 are λ = [ 4 0 2 0 ]T and λ = [ 6 2 0 0 ]T respectively. The zero

elements of the solutions indicate that y∗(ω1) is still optimal when

x ∈ Ay∗(ω1) + {0} × [0,∞)× {0} × [0,∞) ∪ {0} × {0} × [0,∞)× [0,∞)

with Ay∗(ω1) = [ −4 2 −2 −10 ]T .

Now if x has the value x(ω2) = x(ω1) + [ 1 1 1 −10 ]T , the optimal solution

to P(x(ω2)) is y∗(ω2) = [ 2 4 ]T = y∗(ω1), showing that the inclusion concerning

S−1(y∗) in Proposition 6.18 may be proper.

Given that I(y∗(ω2)) = {4}, and thus AI = aT
4 , the solution to the optimality condi-

tion y∗(ω2)+A
T
I λI = 0 is uniquely determined by λI = −(AIA

T
I )−1AIy

∗ = 2 = λ4.

Therefore, the dual D(x(ω2)) admits the unique solution λ = [ 0 0 0 2 ]T . The

zero elements of the solution indicate that y∗(ω2) = y∗(ω1) is still optimal when

x ∈ Ay∗(ω1) + [0,∞)× [0,∞)× [0,∞)× {0}.

Remark 6.5. Proposition 6.18 has formalized an invariance property with respect to

a subset of translations of the input x, where the subset depends on the output y∗.

In the perspective of using supervised learning to predict nearly feasible optimal

solutions, invariance properties could be used as a means to obtain virtual samples

(xν , yν) with xν ∈ S−1(yν), or can be embedded in learning algorithms to improve

generalization abilities from prior knowledge (Decoste and Schölkopf, 2002).

The next proposition shows that from a single pair (x̄, ȳ∗) with ȳ∗ optimal for P(x̄),

it is sometimes possible to predict the optimal solution y∗(ω) for parameters x(ω) in a
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neighborhood of x̄. The size of the neighborhood is estimated in the proof, and is related

to the smallest singular value of the matrix AI defined in Proposition 6.19.

6.19 Proposition. Let ȳ be the optimal solution to the program P(x̄). Let AI ∈ Rp×m,

p = |I(ȳ)|, be the submatrix of A stacking the rows aT
i of active constraints i ∈ I(ȳ), and

for a vector x ∈ Rs, let xI ∈ Rp be the subvector of x stacking the elements xi, i ∈ I(ȳ).
If the rows of AI are linearly independent and if (AIA

T
I )−1x̄I ≺ 0, then there exists a

neighborhood Q of x̄ such that for all x(ω) ∈ Q∩dom C, the optimal solution to P(x(ω))

is given by y∗(ω) = AT
I (AIA

T
I )−1xI(ω).

Proof. First, we show that there exist a neighborhood Q0 of x̄ and a neighborhood R0

of ȳ such that I(y) ⊂ I(ȳ) whenever x(ω) ∈ Q0 ∩ dom C and y ∈ R0 ∩ C(x(ω)). Let

J denote the set of inactive constraints at ȳ. For all j ∈ J , let dj be the distance

of ȳ to the hyperplane {y : aT
j y = x̄j}, namely, dj = ||aj ||−1(x̄j − aT

j ȳ) > 0. Let

d0 = min{dj : j ∈ J} and let us define

η0 = min{||aj ||(dj − d0/2) : j ∈ J} > 0 .

We choose Q0 = {x̄ + η0u : ||u|| < 1} and R0 = {ȳ + (d0/2) v : ||v|| < 1}. Then,

the distance of ȳ to any hyperplane {y : aT
j y = xj(ω)}, j ∈ J , is greater than d0/2

whenever x(ω) ∈ Q0 ∩ dom C, and y ∈ R0 ∩ C(x(ω)) is separated from the hyperplanes

{y : aT
j y = xj(ω)} for j ∈ J . Hence j 6∈ I(y) and thus I(y) ⊂ I(ȳ) (no new active

constraints).

Next, we claim that if the rows aT
i for i ∈ I(ȳ) are linearly independent, and if

(AIA
T
I )−1x̄I ≺ 0, then there exists a neighborhood Q ⊂ Q0 of x̄ such that I(y∗(ω)) =

I(ȳ) whenever x(ω) ∈ Q ∩ dom C, where y∗(ω) denotes the optimal solution to P(x(ω)).

It is sufficient to show that whenever x(ω) ∈ Q∩dom C, y∗(ω) lies in R0, and any optimal

λ∗i (ω), i ∈ I(ȳ), associated to y∗(ω) is positive, as λ∗i > 0 entails i ∈ I(y∗(ω)). Since the

rows of AI are linearly independent, the vector

λ̄I = −(AIA
T
I )−1AI ȳ = −(AIA

T
I )−1x̄I � 0 (I = I(ȳ))

is the only vector of possibly nonzero multipliers associated to ȳ (the reference optimal

solution). Let us replace the dual problem D(x(ω)) by a problem on the reduced set of

variables δI ∈ Rp with λI(ω) = λ̄I + δI , I = I(ȳ), namely,

minimize − gI(δI) = 1
2 (λ̄I + δI)

T (AIA
T
I )(λ̄I + δI) + xI(ω)T (λ̄I + δI)

subject to λ̄I + δI � 0 .

If we relax the constraint δI � −λ̄I , and if we set x(ω) = x̄(ω) + ∆x(ω), the optimality

condition for the resulting problem is ∇gI(δ
∗
I ) = 0, and its optimal solution is

δ∗I = −(AIA
T
I )−1(AIA

T
I λ̄I + xI(ω)) = −(AIA

T
I )−1∆xI(ω) ,

where we have used the fact that λ̄I = −(AIA
T
I )−1x̄I . Let us define

ε = min{λ̄i : i ∈ I} > 0 .

Since δ∗i > −λ̄i for each i ∈ I whenever ||δ∗I || < ε, we can guarantee, using the inequality

||δ∗I || ≤ ||(AIA
T
I )−1|| · ||∆xI(ω)|| ≤ ||(AIA

T
I )−1|| · ||∆x(ω)||
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that whenever ||x(ω) − x̄|| = ||∆x(ω)|| < η1 with η1 = min{η0, ||(AIA
T
I )−1||−1ε}, the

solution δ∗I satisfies the constraint of the initial reduced problem, and x(ω) ∈ Q0. Thus

δ∗I is also optimal for the reduced problem. We note that ||(AIA
T
I )−1||−1 = (σp(AI))

2,

where σp(AI) > 0 is the smallest singular value of AI (AI has rank p = |I(ȳ)|). Reverting

now to the full dual problem over λ ∈ Rm, we see that the vector λ∗ with λ∗i = λ̄i+δ
∗
i > 0

if i ∈ I(ȳ), λ∗i = 0 if i 6∈ I(ȳ), induces a vector

y = −∑i∈I λ
∗
i ai = ȳ −∑i∈I δ

∗
i ai = ȳ +AT

I (AIA
T
I )−1∆xI(ω).

Using ||y − ȳ|| ≤ ||AT
I (AIA

T
I )−1|| · ||∆x(ω)||, we have ||y − ȳ|| < d0/2 if ||∆x(ω)|| <

||AT
I (AIA

T
I )−1||−1d0/2. In fact ||AT

I (AIA
T
I )−1||−1 = σp(AI). By setting

η = min{η0, σp(AI) d0/2, (σp(AI))
2 ε}

and choosing for Q the open ball of radius η centered at ȳ, we can ensure that y ∈ R0,

so that I(ȳ) is the set of constraints active at y. This means that the vector y is optimal

for the primal problem, and that λ∗ is optimal for the dual problem.

Now, given the existence of a neighborhood Q of x̄ for which I(y∗(ω)) = I(ȳ) when

x(ω) ∈ Q ∩ dom C, y∗(ω) can be obtained as the projection of the origin on the linear

subspace {y ∈ Rm : aT
i y = xi(ω), i ∈ I(ȳ)} whenever x(ω) ∈ Q ∩ dom C. With the rows

of AI linearly independent, the projection is given by y∗(ω) = AT
I (AIA

T
I )−1xI(ω).

In the context of the supervised learning of nearly feasible optimal solutions, where

one looks for a hypothesis h in a hypothesis space H of mappings from x(ω) to y∗(ω),

the knowledge of a local model for y∗(ω) in a neighborhood of x̄, for instance a first-

order approximation y∗(ω) ' ȳ + D(x(ω) − x̄), means that one could learn h not only

by penalizing the discrepancies between the sampled targets y(ω) and the predictions

h(x(ω)), but also by penalizing the discrepancy between the gradient of h at x̄ and

the gradient D of the local model known a priori. Such ideas have been developed by

Simard et al. (1998). We also note that it is technically possible to incorporate derivative

information in Gaussian Process regression (Solak et al., 2003).

Another possibility would be to learn classifiers for the events i ∈ I(ȳ), 1 ≤ i ≤ s, since

we know that the information on active constraints can be generalized locally around x̄,

and followed by a straightforward computation of y∗(ω).

Remark 6.6. A typical situation where the assumptions of Proposition 6.19 fail is

the case where two inequality constraints form an equality constraint: aT
1 y ≤ x1,

aT
2 y ≤ x2 with a2 = −a1 and x2 = −x1. In that case, a solution ȳ has to satisfy

aT
1 ȳ = x1, and AI is always rank-deficient. In the event where the two parallel

hyperplanes are separated, it is not easy to predict which side of the so-induced

slab region the optimal solution will follow. If q pairs of hyperplanes are merged,

there might exist 2q distinct configurations of active constraints in the neighborhood

of x̄, provided that the assumptions of Proposition 6.19 hold with one element of

each pair of equality-forming hyperplanes removed from the index set I of active

constraints at ȳ.

Now, an important question is whether a local model shared by a finite collection of

points can be generalized to the convex hull of the points.
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6.20 Lemma. Given x(0), x(1) ∈ dom C, let x(t) = (1 − t)x(0) + tx(1) for 0 ≤ t ≤ 1.

Let y∗(t) denote the optimal solution to P(x(t)). If I = I(y∗(0)) = I(y∗(1)), then

y∗(t) = (1− t)y∗(0) + ty∗(1). If in addition the rows aT
i , i ∈ I, are linearly independent,

then y∗(t) = AT
I (AIA

T
I )−1xI(t).

Proof. We consider the points y(t) = (1− t)y∗(0) + ty∗(1), 0 ≤ t ≤ 1, in correspondence

with x(t) = (1− t)x(0) + tx(1). Let j(t) represent the constraint aT
j y ≤ x(t), 1 ≤ j ≤ s,

0 ≤ t ≤ 1. We have aT
j y(0) − xj(0) < 0 for each j(0) 6∈ I, and aT

j y(1) − xj(1) <

0 for each j(1) 6∈ I, by definition of I for y(0) = y∗(0) and y(1) = y∗(1). Hence

(1− t)(aT
j y(0)−xj(0))+ t(aT

j y(1)−xj(1)) = aT
j y(t)−xj(t) < 0 whenever j 6∈ I, meaning

that y(t) is feasible with respect to j(t) with j(t) 6∈ I(y(t)). Similarly, for each i ∈ I, it

holds that aT
i y(0) = xi(0) and aT

i y(1) = xi(1). Hence, aT
i y(t) = xi(t), meaning that y(t)

is feasible with respect to i(t) with i(t) ∈ I(y(t)). We have thus shown that y(t) is feasible

and that I(y(t)) = I(y∗0) = I. Now, let λ(t) = (1−t)λ(0)+tλ(1), where λj(0) = λj(1) = 0

for j 6∈ I, and where λI(0) � 0 is a solution to y∗(0) + AT
I λI(0) = 0, and λI(1) � 0 is a

solution to y∗(1)+AT
I λ(1) = 0. The equality (1−t)(y∗(0)+AT

I λ(0))+t(y∗(0)+AT
I λ(1)) =

y(t)+AT
I λt = 0 with λt � 0 shows that y(t) satisfies the optimality conditions for P(x(t)).

Therefore, y(t) is the projection of 0 on the active constraints, and if the rows of AI are

linearly independent, y(t) = AT
I (AIA

T
I )−1x(t) for 0 ≤ t ≤ 1.

As the convex hull of a collection of points {xν}, written conv({xν}), contains the

line segments between any two of its points, we have:

6.21 Proposition (Inner generalization). Let {xν} be a collection of points in dom C
with a common set I of active constraints at the optimal solution to P(xν). If the

rows of AI are linearly independent, then y∗(ω) = AT
I (AIA

T
I )−1xI(ω) whenever x(ω) ∈

conv({xν}).

Another interesting question is whether we can, from a single point (x̄, ȳ) equipped

with a local model, infer the domain of validity of the model.

6.22 Proposition (Outer generalization). Let ȳ be the optimal solution to the pro-

gram P(x̄). Let I(ȳ), written I for short, be the index set of active constraints at ȳ,

and let J be its complement. Let AI be the submatrix of active rows of A. If the rows

of AI are linearly independent, then the subset of dom C (values for the parameter x)

where the index set of active constraints at the optimal solution y∗ of the program P(x)

coincides with I = I(ȳ) can be described as the polyhedral cone

X(I) = {x ∈ Rs : BIxI � 0, DIxI − xJ � 0}

where BI = (AIA
T
I )−1 ∈ Rp×p and DI = AJA

T
I BI ∈ R(s−p)×p.

Proof. Having ȳ as an optimal solution shows that there exists some λ̄I ∈ Rp, p = |I(ȳ)|,
such that ȳ + AT

I λ̄I = 0, λ̄I � 0, AI ȳ = x̄I , and AJ ȳ ≺ x̄J . If the rows of AI are

linearly independent, λ̄I = −(AIA
T
I )−1x̄I , which implies ȳ = AT

I (AIA
T
I )−1x̄I . Now, we

can replace x̄I by any xI and obtain a corresponding optimal solution y determined by

y = AT
I (AIA

T
I )−1xI , (6.7)
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as long as we keep

λI = −(AIA
T
I )−1xI � 0 , (6.8)

AIy = xI , (6.9)

AJy ≺ xJ . (6.10)

To satisfy (6.8) we must enforce (AIA
T
I )−1xI � 0. Equation (6.9) is a consequence of

(6.7) multiplied by AI . To satisfy (6.10), we must enforce AJA
T
I (AIA

T
I )−1xI − xJ ≺ 0.

Actually, y will still be optimal if (6.10) is replaced by AJy � xJ (non-strict inequality).

In that case, we use the convention that if some new constraints enter the set of active

constraints at y, the index set I is still understood as the set of active constraints at ȳ.

To easily see that the resulting set X(I) as defined in the proposition with BI and

DI is a cone, assume without loss of generality that x =

[

xI

xJ

]

, allowing us to rewrite

X(I) = {x ∈ Rs : GIx � 0} with GI =

[

BI 0

DI −I

]

∈ Rs×s ,

where 0 is the zero matrix of dimension |I| and I the identity matrix of dimension |J |.

Remark 6.7. The subset of dom C for which there is no active constraint at the

optimal solution is X(∅) = Rs
+: it is easy to check that 0 ∈ argminP(x) if and

only if x � 0. That the point x = 0 is included in every set X(I) corresponds

to the existence of pathological cases (recall Figure 6.2) where several hyperplanes

meet at zero.

We close the section by a particularization of the results.

6.23 Proposition(?). Consider the parametric program over z ∈ Rm,

Q(µ(ω), v(ω)) : minimize (z − µ(ω))T Σ−1(z − µ(ω)) subject to Fz � v(ω) .

Let F be the set-valued mapping with values F(v) = {z ∈ Rm : Fz � v}, and let

domF = {v : F(v) 6= ∅}. For some fixed µ̄ and v̄ ∈ domF , let z̄ be the optimal

solution to Q(µ̄, v̄). With fT
i denoting the i-th row of F , let I = {i : fT

i z̄ = v̄i} be the

index set of active constraints at z̄. Then, there exist a neighborhood Qµ of µ̄ and a

neighborhood Qv of v̄ such that for all µ(ω) ∈ Qµ and v(ω) ∈ Qv ∩ domF , the optimal

solution of Q(µ(ω), v(ω)) is

z∗(ω) = µ(ω) + ΣF T
I (FIΣF

T
I )−1(vI(ω)− FIµ(ω)) , (6.11)

if the rows of FI are linearly independent and (FIΣF
T
I )−1(vI −FIµ(ω)) ≺ 0. In fact, the

expression (6.11) is valid if one has v(ω) ∈ domF , the rows of FI linearly independent,

and µ(ω), v(ω) satisfying

(FIΣF
T
I )−1(vI(ω)− FIµ(ω)) � 0 , (6.12)

(vJ(ω)− FJµ(ω))− FJΣFT
I (FIΣF

T
I )−1(vI(ω)− FIµ(ω)) � 0 , (6.13)

where J = {j : fT
j z̄ < v̄j} is the complement of I.



120 Chapter 6. Learning Projections on Random Polyhedra

Remark 6.8. There is a nice interpretation of z∗(ω) in (6.11) as the conditional mean

of a random variable Z with realizations Z(η), such that Z follows a priori a normal

N (µ(ω),Σ), and then is conditioned on the observation FIZ(η) = vI(ω).

Proof of Proposition 6.23. All the developments in the section have been done for the

parametric program (6.1), but can be applied easily to the parametric program (6.5),

Q(u(ω), v(ω)) : minimize 1
2z

TSz + u(ω)T z subject to Fz � v(ω) ,

with S positive definite. To adapt Proposition 6.19, for instance, let z̄ be the optimal

solution to Q(ū, v̄), and let I = {i : fT
i z̄ = v̄i}. Let S = RTR be the Cholesky factoriza-

tion of S. The change of variables z = R−1y − S−1u(ω) applied to the system of active

constraints FIz = vI(ω) yields FIR
−1y = vI(ω)+FIS

−1u(ω), that is, AIy = xI(ω) if we

set A = FR−1 and x(ω) = v(ω)+FS−1u(ω). Applying Proposition 6.19 and substituting

back, we deduce that there exist some neighborhoods Qu of ū and Qv of v̄ such that for

all u(ω) ∈ Qu and v(ω) ∈ Qv ∩ domF , the optimal solution z∗(ω) to (6.5) is given by

z∗(ω) = S−1
[

FT
I (FIS

−1FT
I )−1(vI(ω) + FIS

−1u(ω))− u(ω)
]

,

if the rows of FI are linearly independent and (FIS
−1FT

I )−1(vI(ω)+FIS
−1u(ω)) ≺ 0. It

remains to set S = Σ−1 and u(ω) = −Σ−1µ(ω) to get (6.11). The rest of the proposition

follows similarly from Proposition 6.22.

6.4 Classifiers for Sets of Active Constraints

Our study of the optimal solution y∗(ω) to the program P(x(ω)) defined by (6.1) suggests

that the exact prediction problem, mapping an input x(ω) to the output y∗(ω), can be

reduced to the prediction of the index set of active constraints, mapping x(ω) to I(y∗(ω)).

The index sets of active constraints I partition the input space into subregions X(I),

found to be polyhedral cones. (The subregions are also called cells in the sequel.) Once

x(ω) is known to belong to some cell X(I), it is straightforward to find y∗(ω).

A cell X(I) requires s linear inequalities to be described as a polyhedron, where s is

the number of constraints of the parametric program P. In a problem with s constraints,

there could be an astronomically large number of index sets of active constraints I to

consider. Enumerating them individually without prior knowledge would be a daunting

task. But at least, Proposition 6.22 allows us to build instantly the cell X(I) associated

to a sample (x̄, ȳ), where ȳ is the optimal solution to P(x̄), and create a classifier asso-

ciated to X(I) for indicating whether a new input x is in X(I). A classifier is simply

a 0-1 indicator function of the set X(I), that could be represented by a decision tree

(Algorithm 6.1). By creating and exploiting existing classifiers, it would then be possible

to “learn” minimizers in an online fashion (Algorithm 6.2).

6.4.1 Description of the Algorithms.

The proposed learning strategy is essentially memory-based: it consists in building a

growing collection of local linear models. It does not attempt to generalize results beyond
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Algorithm 6.1 Building a decision-tree classifier associated to a set of active constraints

Input: A sample point (x̄, ȳ) such that x̄ ∈ dom C, ȳ ∈ argminP(x̄),

and the rows of AI , I = I(ȳ), are linearly independent.

Output: A classifier δI : Rs → {0, 1} defined on dom C
with values δI(x) = 1 if I(argminP(x)) = I(ȳ), and 0 otherwise.

1. Let J = {j : aT
j ȳ < x̄i} be the index set of inactive constraints at ȳ.

Set B = (AIA
T
I )−1, and let bTj denote the j-th row of B.

Set D = AJA
T
I B, and let dT

k denote the k-th row of D.

Define φj(x) = bTj xI .

Define ψk(x) = dT
k xI − xJ(k), where J(k) is the k-th index of J .

2. Create a root node and call it the current node.

3. Repeat for j = 1, . . . , p = |I| :
Split the current node using test φj(x) ≤ 0 (true for the left child),

attach label {0} to the right child, and call the left child the current node.

4. Repeat for k = 1, . . . , s− p :

Split the current node using test ψk(x) ≤ 0 (true for the left child),

attach label {0} to the right child, and call the left child the current node.

5. Attach label {+1} to the current node,

meaning that the local model y∗ = AT
I (AIA

T
I )−1xI , I = I(ȳ), is valid.

Algorithm 6.2 Learning minimizers (online version)

Input: A set of M classifiers {δIµ}1≤µ≤M and a new sample x ∈ dom C.
Output: y ∈ argminP(x) and an updated set of classifiers.

1. If x � 0, return y = 0, leaving the set of classifiers intact.

2. Evaluate at x the classifiers δIµ , 1 ≤ µ ≤M .

3. As soon as δIµ(x) = +1 for some µ ≤M ,

set I = Iµ and return y = AT
I (AIA

T
I )−1xI ,

leaving the set of classifiers intact.

4. Otherwise, call a solver. Set y ∈ argminP(x), and set I = I(y).

5. If the rows of AI are linearly independent,

build a classifier δIM+1 associated to IM+1 = I,

and append it to the set of existing classifiers.
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the domain of validity of the local models; in particular, it does not attempt to build a

single classifier per constraint, that would tell us whether a single constraint is active at

the optimal solution. When the input data cannot be processed by existing local models,

a standard quadratic programming solver is called, and its result is used to build a new

local model.

Algorithm 6.2 can be viewed as a quadratic programming solver that adapts itself to

the input data it receives, so as to “minimize” its response time. One could for example

fix a maximal number of local models, and then allow local models that are infrequently

called to be disposed of after some time, since the membership tests induce an overhead

at most linear with the number of existing local models (we refine the linear complexity

estimate in Lemma 6.28 below, and implement a strategy for managing the local models

in Section 6.5).

Algorithm 6.2 can also be viewed as the builder of a decision policy h, that assigns to

each input x ∈ Rs an optimal decision y ∈ Rm. Initially, the decision policy always calls

a quadratic programming solver, except when the solution is trivially 0. Denoting by π

the mapping from the input x to the optimal solution y implemented by the solver, the

policy h can be expressed as

h(x) =

{

0 if x � 0 ,

π(x) otherwise.

After after some training during which inputs xµ are received, outputs yµ = h(xµ) are

self-generated, and classifiers δIµ are built with Iµ = I(yµ) the set of active constraints

at yµ, the decision policy h : Rs → Rm can exploit, in the region Rs
+ ∪

(

⋃

µX(Iµ)
)

of

the input space, an explicit representation of the optimal solution mapping from x to y.

Namely, if M denotes the collection of index sets Iµ already seen, the policy h can be

formally expressed by 3 pieces, assuming for notational simplicity that the probability of

x falling on the boundaries of the cells X(I) is 0:

h(x) =







0 if x � 0 ,
∑

I∈MδI(x)AI(AIA
T
I )−1xI if x ∈ ⋃I∈MX(I)

π(x) otherwise.

(6.14)

6.4.2 Complexity.

With a finite number s of constraints, the number of possible cells X(I), say N , is finite

but very large:

6.24 Lemma. For the parametric program P(x) over y ∈ Rm with s constraints, the

number of cells X(I), written N , is at most

∑min{s, m}
p=1 s!/(p!(s− p)!) ≤ 2s − 1 ,

if we do not count X(∅) = {x ∈ Rs : x � 0}.

Proof. For the feasibility set C = {y ∈ Rm : Ay � x}, A ∈ Rm×s, and an index set I of

active constraints of cardinality p, the cell X(I) is well defined when the p rows of AI

(1 ≤ p ≤ s) are linearly independent. Note that if A has rank s (possible only if s ≤ m),

then AI has rank p and its rows linearly independent. Having the p rows of AI linearly
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independent is impossible if p > m. Thus, the index sets to consider are those obtained

by picking p constraints out of s, with p ≤ m. For programs with s ≤ m, there exist

2s − 1 theoretical combinations of active constraints.

Clearly, there is no hope of covering efficiently all the cells X(I). The proposed

approach is expected to work when the support of the distribution of x is concentrated

on a relatively modest number of cells. Instead of building in a systematic way the explicit

part of the mapping h, we let the construction process be driven by i.i.d. samples of x,

always allowing calls π(x) to the solver for samples that fall out of the domain where h

is known explicitly.

The complexity of building a classifier can be estimated as follows.

6.25 Lemma. Building a classifier δI requires at most O(ms2) operations.

Proof. We follow the notations of Proposition 6.22. If A ∈ Rm×s is not assumed to be

sparse, building a new classifier δI with |I| = p requiresO(mp2) operations to form AIA
T
I ,

O(p3) operations to invert AIA
T
I and obtain BI = (AIA

T
I )−1, O(mp2) operations to form

AT
I (AIA

T
I )−1 from AT

I and BI , and O(m(s − p)p) operations to form DI = AJA
T
I BI .

Note that m(s− p)p ≤ ms2/4.

The complexity of exploiting a classifier δI (steps 1 and 2 of Algorithm 6.2) can be

estimated as follows.

6.26 Lemma. A test x ∈ X(I) with |I| = p requires at most O(sp) operations, meaning

that the complexity is at most O(s2) for all I.

Proof. We follow the notations of Proposition 6.22. Checking that BIxI � 0 requires

O(p2) operations, and checking that DIxI − xJ � 0 requires O((s − p)p) operations.

Note that (s− p)p ≤ s2/4.

(Lemma 6.26 does not take into consideration the fact that a test should be aborted

as soon as one of the s inequalities to check is false.)

6.27 Lemma. A prediction for y given x ∈ X(I) with |I| = p requires at most O(mp)

operations, meaning that the complexity is at most O(ms) for all I if s ≤ m, or at most

O(m2) if s > m.

Proof. The prediction is y = AT
I (AIA

T
I )−1xI . The matrix product has already been

evaluated in the construction of the classifier δI , so that the complexity of evaluating the

prediction is reduced to the complexity of the matrix-vector multiplication.

If we assume that a stored classifier δI is never replaced by another in the course of

the training phase, appending a new classifier to the collectionM of stored classifiers as

described in Algorithm 6.2 can only make smaller the probability

p0 = P{x 6� 0 and x /∈ X(I) for all I ∈M} (6.15)

of a new sample x falling in an unknown subregion of the input space, but potentially

delays the call π(x) to the solver.
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It would be interesting to be able to check whether x is in the union of the cells inM,

so as to avoid unnecessary tests, but this approach seems rather difficult to concretize —

at least considering the number of tests induced by the expression of the convex hull of

the union of k polyhedra (Balas, 1998). In the following lemma, we assume that all tests

x ∈ X(I), I ∈M, have to be done before being able to conclude that x 6∈ ⋃I∈MX(I).

6.28 Lemma. Let N be the total number of cells X(I) induced by the parametric pro-

gram P(x). Let M = αN , α ∈ (0, 1], be the number classifiers appended sequentially

to an initially empty collectionM of classifiers, new cells X(I) being potentially discov-

ered as new i.i.d. samples of x are received. Let h be the policy (6.14) that maps x to

argminP(x). Then, the expected number of tests of the form x ∈ X(I) in the evaluation

of h(x) is upper bounded by M(1− α/2) + α/2.

Proof. Let X1, . . . , XN be the polyhedral cells X(I) induced by the parametric pro-

gram P. Let qi be the probability that x ∈ Xi. Let δ1, . . . , δM denote the distinct

classifiers of the collection M, indexed in the order of their creation. Each classifier δj

is associated to a different cell Xi, and the probability of the possible matchings is a

function of the probabilities qi. Given the sequence {δj}1≤j≤M , let t(x) be the number

of tests (implemented by the classifiers) needed to detect any event x ∈ Xi, or the event

that x falls in a cell not covered by any δj . We have t(x) = 0 if x � 0, t(x) = j if there

exists some j such that δj(x) = 1, and t(x) = M otherwise.

The choice of qi that maximizes E{t(x)} (where the expectation is taken over x and

over the possible sequences of classifiers) is obtained with qi = 1/N for each i, since

having any qi > 1/N would make Xi more likely to appear sooner in the sequence of

classifiers, and every new sample x more likely to hit Xi. Note that qi = 1/N also means

that the probability of x � 0 is chosen to be zero.

Then, thanks to the property that all the orderings of the classifiers are now equiprob-

able, it holds that t(x) = 0 with probability 0, t(x) = j with probability 1/N if j < M ,

and t(x) = M with probability 1/N +(N −M)/N . Writing M = αN for some α ∈ (0, 1],

the expectation of t with the worst-case distribution is

E{t(x)} =

M
∑

j=1

j

N
+M

N −M
N

=
M(1 +M)

2N
+M

N −M
N

= N(α− α2/2) + α/2 = M(1− α/2) + α/2 .

The expected time complexity of evaluating h as specified by (6.14) with M = αN

stored classifiers on a new sample x could be estimated as follows. With Tπ denoting the

expected time for evaluating π(x), TX the expected time for evaluating a cell membership

test (Lemma 6.26), Ty the expected time for evaluating a prediction given the positive

classifier (Lemma 6.27), and p0 the probability (6.15), h would be evaluated in expected

time

Th ≤ p0 · Tπ + (1− p0) · Ty + (M(1− α/2) + α/2) · TX ,

using the bound of Lemma 6.28 based on a worst-case distribution, which is also insen-

sitive to the possible reordering of the tests x ∈ X(I).
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6.5 Numerical Experiments

The potential merits of the proposed algorithms are evaluated on various random prob-

lems. We recall that problems with random constraint matrices are not necessarily

representative of practical problems (Edelman, 1992) — for the simplex method, they

do provide insights, but they are unable to explain the behavior of the algorithm in a

relevant neighborhood of some fixed input data (Spielman and Teng, 2004). However,

random problems are easy to specify, and by a statistical concentration phenomenon,

large problems tend to be very similar; taken together, these two features facilitate the

replication of experiments and observations.

6.5.1 Description of the Test Problems

We create the test problems as follows. We select sets of parameters for the input

dimension and the number of constraints, namely:

(m, s) = (5, 10), (10, 5), (10, 20), (20, 10), (20, 40), (40, 20).

For each set, we generate one random matrix U ∈ Rs×m with i.i.d. elements Uij drawn

from the uniform distribution in [0, 1]. We define V k = U − 0.1k11T for k = 1, 2, . . . , 5,

where 11T is a matrix of ones in Rs×m. We form the matrix Ak from V k by stacking

the s rows ak
i = 2αk

i v
k
i /||vk

i ||, where αk
i is drawn from the uniform distribution in [0, 1],

and vk
i is the i-th row of V k. We call P (m, s; k) the problem with A = Ak ∈ Rs×m. It

will turn out that problems get harder with k higher.

The parameter k controls the diversity of the directions normal to the halfspaces

defined by the random rows of A. With k small, the first singular value of Ak tends to

dominate the others.

In every problem P (m, s; k), we draw samples for x as follows. Starting from an

orthonormal basis Ã ∈ Rs×m0 for the range of A, where m0 = min{s,m} (the basis is

obtained from the svd decomposition of A), we set x = Ãξ0 + 0.5|ξ1|, where ξ0 ∈ Rm0

and ξ1 ∈ Rs are drawn from standard multivariate normal distributions, and | · | denotes

the elementwise absolute value. By Proposition 6.12, x ∈ dom C. We have kept the

magnitude of the term in |ξ1| relatively small, so as to avoid the case x � 0, to which is

associated the optimal solution y∗ = 0. Notice that the support of the distribution of x

is unbounded.

6.5.2 Description of the Experiments

We conduct a test on a problem P (m, s; k) as follows. We run Algorithm 6.2 on 5000

i.i.d. samples for x, storing classifiers if the rows of AI are linearly independent. The

rank deficiency of AI is checked from the svd decomposition of AI , which is also used to

compute (AIA
T
I )−1. Then, we test the stored classifiers on 5000 new i.i.d. samples to

estimate to which extent these classifiers cover the part of the input space relevant for

the distribution of the input data.

The results are presented on Table 6.1. We report:

• M : the number of classifiers δI built during training (online learning). Note that
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M also gives the number of calls to the quadratic programming solver made during

the training phase.

• n0 : the number of learning samples with y∗ = 0 (identified by X(∅): test x � 0).

These samples are not compensated by new samples, so they simply diminish the

effective size of the training set.

• nh : the number of samples processed by an already existing classifier during

training. These samples are not compensated by new samples. They are lost

for the detection of a useful cell X(I), but can be used to estimate the relative

importance of the classifiers, so as to reorder the classifiers at some point.

• Xh : the fraction of test samples that can be processed by the learned classifiers,

corresponding to the fraction of samples from the test set that hit some cell X(I)

seen during the training phase.

In these experiments, we did not encounter rank-deficient matrices AI , so for each

row of the table, we have M + n0 + nh = 5000.

We have also compared the cpu time taken by calling the quadratic programming

solver π(x) on the 5000 i.i.d. samples (reference method), to the cpu time taken by

running the online learning/prediction algorithm on the same 5000 samples, using in

addition the following rules for building and updating the collection of stored classifiers:

1. Never create more than 1000 classifiers over the course of the online learning process.

2. Never store more than 250 classifiers simultaneously.

3. Every 250 samples, reorder the classifiers by decreasing frequency of use, and remove

the stored classifiers that were never recalled after their creation.

Note that a same classifier could be rebuilt several times if it is removed too soon (espe-

cially for the last classifiers to be added within the window of 250 samples). However, the

rules imply together that a same classifier will be rebuilt at most 4 times. The purpose

of the first rule is to be able to decide online whether the learning approach should be

pursued: if one keeps building or rebuilding classifiers all the time, the problem is not well

adapted to the online learning approach, and one should stop building new classifiers.

The cpu times are reported on Table 6.1. In those tests, the solver is the Matlab

function quadprog.

6.5.3 Discussion of the Results.

The results of Table 6.1 suggest that for several problems, especially those where s < m

or k is small, the proposed approach is promising. A relatively small number of classifiers

suffices to cover almost all the input space relevant to the (unbounded) input distribution,

as shown by the fractions Xh close to 1. For those problems, we measured speed-up

factors between 2 and 15 over the systematic strategy that calls a quadratic programming

solver for each sample.

For other problems, especially those with many constraints and higher values for the

parameter k, the merits of the approach are less clear. The local models are valid on a
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relatively small volume of the input space, leading to a multiplication of the classifiers to

build. As the multiplication of the tests begin to hurt computing times, the management

rules for maintaining a useful collection of classifiers start to be important, if the proposed

approach is to remain competitive with the usual approach consisting in solving every

problem instance by calling the solver. Notice that the problem P (10, 5; 5) has M =

2s − 1 = 31 classifiers, meaning that all possible combinations of active constraints

are needed. Therefore, we believe that the problem P (20, 40; 5), on which the worst

fraction of the input space covered by 5000 classifiers is recorded, could in fact require,

by Lemma 6.24, as many as 0.6 · 1012 classifiers.

The last series of problems with m = 40, s = 20, illustrates clearly that the practical

speed-up performance of the proposed approach depends on the problem data A. The

whole table illustrates that the overhead cost of learning and maintaining classifiers can

be controlled, so that there is in fact a very strong incentive to use the proposed approach.

To close this section, we give on Figure 6.3 an example of prediction for the first

test problem P(5,10;1): two points x0, x1 ∈ R10 have been drawn randomly, and the

5 components of the optimal solution along the line segment x(t) = (1 − t)x0 + tx1,

t ∈ [0, 1], have been plotted against t.
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Tab. 6.1: Results on test problems: Covering by classifiers and Speed-up performance.

Parameters Training Testing

m s k M n0 nh Xh

5 10 1 101 423 4476 0.9956

5 10 2 131 418 4451 0.9946

5 10 3 176 400 4424 0.9930

5 10 4 228 340 4432 0.9868

5 10 5 251 416 4333 0.9866

10 5 1 25 609 4366 1.0000

10 5 2 25 584 4391 0.9998

10 5 3 30 588 4382 1.0000

10 5 4 30 535 4435 0.9998

10 5 5 31 567 4402 1.0000

10 20 1 465 36 4499 0.9544

10 20 2 742 29 4229 0.9276

10 20 3 1398 30 3572 0.8394

10 20 4 3092 22 1886 0.5216

10 20 5 3361 28 1611 0.4594

20 10 1 96 74 4830 0.9926

20 10 2 162 66 4772 0.9932

20 10 3 311 62 4627 0.9844

20 10 4 399 65 4536 0.9792

20 10 5 575 68 4357 0.9756

20 40 1 1513 0 3487 0.8032

20 40 2 2322 1 2677 0.6574

20 40 3 3957 0 1043 0.3134

20 40 4 4966 0 34 0.0180

20 40 5 5000 0 0 0.0002

40 20 1 276 3 4721 0.9766

40 20 2 674 0 4326 0.9236

40 20 3 1645 0 3355 0.7782

40 20 4 3181 1 1818 0.4850

40 20 5 4516 0 484 0.1442

Cpu time (sec)

(Ref)

11.81 1.51

12.54 2.08

14.56 3.20

15.19 4.08

15.02 4.64

11.38 0.59

12.02 0.69

13.51 0.85

14.20 0.89

15.50 0.94

15.45 6.31

17.23 11.17

22.00 21.06

28.87 31.83

29.14 31.98

15.20 1.66

17.56 2.92

23.84 7.49

28.95 9.98

37.83 18.38

24.63 21.08

29.05 29.68

38.38 40.26

57.51 58.24

86.14 86.86

22.99 5.59

33.92 15.36

44.92 36.11

88.13 79.72

130.01 127.88

m, s : number of variables and constraints of the problem (dimensions of A)

k : method of construction of the constraint matrix A (see text)

M : number of classifiers after training (without storage management rules)

n0 : samples with a zero optimal solution

nh : samples processed by an already existing classifier during training

Xh : empirical fraction of the relevant input space covered by the classifiers

Cpu time: of online learning on 5000 samples, using classifier storage management rules

(see text).

Ref: cpu time if one calls a solver on each of the 5000 samples.
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x0 x1xt

y1
y2

y3
y4

y5y(xt)

Fig. 6.3: The components yk of the optimal solutions y ∈ R5 for the test problem P (5, 10; 1),

along a random line segment defined by xt = (1 − t)x0 + tx1 ∈ R10, 0 ≤ t ≤ 1.

Breakpoints in the yk-curves indicate where the segment cuts a boundary between the

domains of 2 classifiers.

6.6 Conclusions

This chapter has discussed a family of parametrized optimization programs and a hy-

pothesis class for predicting, after some training on the task of solving random instances,

optimal solutions to new instances of the program. Based mainly on geometrical in-

sights, the analysis of the properties of optimal solutions has also emphasized the role

of constraint qualifications, and the possible occurrence of pathological cases for some

distributions of the input data. A natural choice for the hypothesis class was a piecewise

linear model describing how optimal solutions vary locally with the input data. Fitting

the model was possible using a strategy based on the exploitation of first-order optimality

conditions.

The technical assumption that the rows of AI (rows of active constraints at the op-

timal solution) are linearly independent corresponds to a linear independence constraint

qualification (LICQ). It implies that the set of optimal dual solutions is a singleton

(Facchinei and Pang, 2003, Proposition 3.2.1). Note that in nonlinear programming, a

necessary and sufficient condition ensuring that the set of optimal primal-dual solutions

is a singleton is the strict Mangasarian-Fromowitz constraint qualification (SMFCQ)

(Kyparisis, 1985) — see again Facchinei and Pang (2003, Proposition 3.2.1).

It is well known that a quadratic program subject to constraints with parametrized

righthand side admits a piecewise linear optimal solution (Garstka and Wets, 1974,

Proposition 3.5). Early results involving perturbations of the constraint matrix are also

available (Daniel, 1973), but they do not really allow to circumvent the difficulties that

arise from inequality constraints forming new equality constraints (the merging effect

detailed in Remark 6.6). An example revealing the combinatorial nature of the difficul-

ties, inspired from a linear program given by Martin (1975), is provided by the following

program over y = (y1, y2) ∈ R2, where the constraint matrix depends affinely on t ∈ R:

minimize 1
2 ||y||2 subject to y1 + y2 ≥ 1 , y1 + ty2 ≤ 1 .

The optimal solution, y∗ = (1/2, 1/2) if t ≤ 1, y∗ = (1, 0) if t > 1, is a discontinuous
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function of the parameter t. The optimal value as a function of t is also discontinuous

at t = 1.

That the input space (set of values for the parameter x of the program P(x)) can be

partitioned into polyhedral subregions associated to index sets of active constraints is a

well-established result in variational analysis. One already finds it in spirit in a basis

decomposition theorem for linear programming proved in Walkup and Wets (1969a) and

restated in Wets (1974, Theorem 7.2). Interestingly, local Lipschitz continuity properties

useful in the analysis of the stability of two-stage stochastic linear programs (see Ap-

pendix D, Lemma D.13) are proved in Rachev and Römisch (2002, Proposition 3.2) by

appealing to such a decomposition.

The decomposition of the input space into polyhedral cells is rediscovered in Bempo-

rad et al. (2002) in the context of online quadratic programming for Model Predictive

Control (MPC). Further work along that line (including work on better implementations)

has been pursued since then (Tøndel et al., 2003; Spjøtvold et al., 2007; Baotić et al.,

2008). We also arrive in Section 6.3 to the polyhedral decomposition in the context of our

learning setting, but then we let the construction of the cells be guided by the empirical

distribution of the input data. In the practical implementation of the approach, we use

a hybrid method able to find a tradeoff between cell-based, closed-form calculations and

standard optimization, recognizing that all problems are not addressable efficiently by

the subregion-based approach.

Indeed, the worst-case complexity of parametric linear programming (Murty, 1980)

suggests that it is always possible to come up with examples contrived in such a way

that a subregion-based approach performs badly — in our case, the problems P (m, s; 5)

with the rows of the constraint matrix uniformly distributed in every direction.

The identification of active constraints has been studied by Facchinei et al. (1998) in

the context of nonlinear programming and variational inequalities through so-called iden-

tification functions. This work starts from the observation that under the Mangasarian-

Fromowitz constraint qualification, a primal-dual solution has a neighborhood where the

set of active constraints is not modified. The technical conditions that identification

functions have to satisfy are defined, and identification functions are built for specific

problem classes by exploiting error bounds valid for those classes — see also Facchinei

and Pang (2003, Chapter 6). The determination of the subregion where the identification

of active constraints is correct is left as an open problem. The methodology that we have

adopted in this chapter is (i) to find conditions ensuring the existence of a neighborhood

where active constraints are not modified (Proposition 6.19); (ii) to check whether the

subregion associated to a set of active constraints is a connected set (Proposition 6.21);

(iii) to see whether the extent of the subregion could be found (Proposition 6.22).

The notion of local models used throughout the chapter can be seen as a basic form

of single-valued localization for general solution mappings, as developed by Dontchev and

Rockafellar (2009). Investigating some aspects of the framework expounded in Dontchev

and Rockafellar (2009) was also one of the goals of this chapter.

Finally, we mention that some additional work would be needed to adapt the results

established in this chapter to the concrete MAP repair procedure used in Section 5.3

for restoring the feasibility of decisions predicted by learned policies. In particular, the

results relative to the parametric program (6.1) would have to be generalized to the
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parametric program

P ′(x(ω), w(ω)) : minimize 1
2 ||y||2 subject to Ay � x(ω) , B1y +B2z � w(ω) ,

where the minimization is over y ∈ Rm1 and z ∈ Rm2 , and the parameters are x(ω) ∈ Rs1

and w(ω) ∈ Rs2 . This form is more general than (6.1), except when B2 is such that

{B2z : z ∈ Rm2} = Rs2 (which allows to ignore the constraint B1y + B2z � w(ω),

trivially satisfied for any y with some proper choice of z). The mapping of interest is the

mapping from (x(ω), w(ω)) to the uniquely determined part y∗(ω) of an optimal solution.
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Chapter 7

Conclusion

This thesis presents novel strategies for the search of approximate solutions to multistage

stochastic programs. The framework is based on the association of statistical learning

techniques to scenario-tree approximation techniques from the multistage stochastic pro-

gramming literature. At first, the framework serves two purposes:

• Making it possible to estimate the true value of an approximate solution in a generic

way;

• Making it possible to build discretizations (scenario trees) that allow to obtain

satisfying solutions to the true problem.

We propose several practical implementations of the framework based on various super-

vised learning techniques, ranging from neural networks to Gaussian processes, and apply

the general methodology to a variety of multistage problems (a family of risk-averse pro-

duction management problems under price uncertainty, and a multi-product assembly

problem under demand uncertainty).

From a higher level perspective, the association of multistage stochastic programming

and supervised learning can be viewed as a specific method for sequential decision making

under uncertainty, well adapted to large continuous action spaces. The quality of the

decision policies found on test problems with this approach suggests that it is possible

to capture a part of the value of multistage stochastic programming models in a variety

of contexts, at an acceptable computational cost.

7.1 Summary of Contributions

A multistage stochastic programming problem is an optimization problem of the form

minπ E{f(ξ, π(ξ))}, where ξ = ξ1, . . . , ξT is a random process, π is a mapping from ξ

to a sequence of decisions u = u1 . . . , uT adapted to the gradual observation of ξ, and

f(ξ, π(ξ)) is the cost of applying π(ξ) with ξ. The cost is formally set to +∞ if the

sequence of decisions π(ξ) is infeasible on ξ. Chapter 2 has provided an introduction to

this mathematical formalization, while more technical material has been collected in the

Appendices.

In the case where ξ has a continuous distribution, the expectation operator represents

a multidimensional integral, so even before considering the problem of searching for a

best mapping π, the mere evaluation of the cost function f given a fixed mapping π̄ is
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difficult. For general distributions, the question “Is E{f(ξ, π̄(ξ))} ≤ θ ?” can only be

answered up to a certain probabilistic confidence level α < 1.

A second computational difficulty stems from the fact that approximate stochastic

programming solution techniques furnish “solutions” that are fully specified only for

the first decision stage. To evaluate on a new realization of ξ the mapping π (the

decision policy) induced by these approximation techniques, one has to solve a sequence

of approximate versions of the original problem posed over gradually shrunk time horizons

(see Chapter 2).

Our diagnosis is that combined together, these two computational difficulties render

it impossible to assess in practice the third level in the hierarchy of the stochastic pro-

gramming methodology, namely, the adjustment of the sampling or discretization method

that replaces expectations by finite sums (so as to yield a program on a finite number of

optimization variables). Yet, we view this third level as a key ingredient for the success of

the whole approach (specific constructions back up this view in Chapter 4): the fact that

the random process is gradually observed, translated to a tree-structured representation

of the samples (scenarios), leaves many degrees of freedom for adjusting the location of

branchings in the tree, a possibility that should be exploited in the context of problems

posed over long time horizons (or more generally in the context of multistage problems

where the dimension of the random process is high).

In Chapter 2, we have presented multistage stochastic programming in the context of

several competing frameworks and methods for sequential decision making uncertainty,

such as Markov Decision Processes (MDP) and Model Predictive Control (MPC). We

have mentioned several solution heuristics for multistage stochastic programming that

have been explored in the optimization and operations research literature, such as two-

stage approximations, aggregation and averaging strategies, and consensus strategies

(Section 2.3).

In principle, the value of a multistage stochastic programming model over other or

simpler models cannot be estimated without building and developing a solution method

for all those models on the real data. The examples and case studies presented in the

thesis have been selected (Section 4.4) or created (Example 2.1, Section 5.3) after careful

experimentations on the model and problem data, in such a way that the multistage

model had a high value with respect to other models — in particular two-stage approxi-

mations — given the numerical data. This was an important stage for a sound evaluation

of the solution methods proposed in the thesis, but also time-consuming, which explains

in part why we chose not to multiply the number of examples or assess the methods on

problem instances with random or arbitrary data.

In Chapter 3, a series of statistical estimation methods has been considered, from max-

imum likelihood and maximum a posteriori estimation to bootstrap aggregating meth-

ods (bagging). The particular mix of perturbation, averaging and selection steps that

differentiates those methods suggests that the estimation and optimization aspects in

stochastic programming problems could in fact be given a unified treatment, based on

Monte Carlo methods and importance sampling methods. The Cross-Entropy method

for the simulation of rare events, and its application to combinatorial optimization, was

identified as a promising candidate for reducing the conceptual gap between the two

aspects (Section 3.2.3). At the same time, the idea of solving an ensemble of random

approximations to a multistage stochastic program, and then aggregating the results,
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was presented as an estimation technique, related to bagging, that can be applied to a

set of perturbed (noisy) first-stage decisions.

To serve as a test bed for the development of these ideas, a multistage stochastic

programming formulation of a simple benchmark problem from reinforcement learning

with a finite discrete action space has been considered (Section 3.3). The optimization of

scenario-tree approximations is made via the Cross-Entropy method. Standard aggrega-

tion procedures based on averages or majority votes are not suitable for the processing

of discrete decisions, so we have proposed a generalization of the aggregation operation

based on the introduction of positive-definite kernels. This approach has been evaluated

by a series of experiments on the test problem, for which it was shown that the proposed

aggregation technique allows indeed to select a good first-stage decision out of the set of

candidate optimized first-stage decisions.

In Chapter 4, we have proposed a practical procedure for deriving candidate map-

pings π (decision policies) from a data set containing optimized sequences of decision

contingent to scenarios, originating from an optimal solution to a given scenario-tree

based approximate program. We have proposed the use of supervised learning techniques

for inferring a mapping π, decomposed into its successive decision rules for u1, . . . , uT .

The learning task raises however several issues: (i) Each individual learning problem is

over a growing input space, and over an output space corresponding to a decision ut of

potentially large dimension; (ii) The decision policy π has to comply with the original

program’s feasibility constraints, that structure the sequence of decisions and the compo-

nents of the individual decisions ut, so that the learning problems cannot be completely

decoupled; (iii) The data sets of decisions are noisy and biased (as they are obtained

from approximate programs), whereas the learned policy should have good performances

on the true multistage stochastic program; (iv) The sequences of decisions π(ξ) must

be computed quickly, a requirement that restricts the policy representations usable in

practice (for example, by introducing limitations on the size of the models built with

nonparametric methods).

A first set of strategies to circumvent these difficulties has then been proposed and

evaluated in the context of a practical problem (Section 4.4). Namely,

• Preprocessing the data set of optimal solutions and scenarios, so as to obtain a

compact representation of the information state. The introduction of new state

variables, that may depend on past decisions and past state variables, allows a

dynamical decoupling of the learning problems.

• Posing the learning problems over a transformed output space, where the feasibility

constraints can be more easily enforced.

• Combining learned models to repair procedures, so as to adjust the predicted de-

cisions to the actual feasibility constraints.

• Basing the model selection of a feasible policy π on an estimate of its expected cost

on the true multistage problem, rather than on the loss function of the supervised

learning problems.

Two model selection strategies have been proposed. The first one consists in the simul-

taneous search of the hyperparameters of π viewed as a whole entity. The second one
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consists in searching the hyperparameters of π gradually on the sequence of decisions,

using optimizations over independent scenario trees of shrinking depth as a proxy as long

as the policy π is not fully specified (see Section 4.2.3).

In Chapter 4, we have taken advantage of these novel solution valuation capabilities to

open up new avenues for the generation of scenario trees adapted to multistage problems

on long time horizons. Specifically,

• We have proposed to consider several scenario trees for a same multistage problem,

each of them leading to distinct approximations of the true problem. The trees are

to be ranked according to the value of the best policy that can be learned using

the data set of decisions optimized on those trees.

• We have suggested to retain the best policy of the best tree, say π?, as a suboptimal

but feasible solution to the true multistage problem. The empirical estimate θ̂

of E{f(ξ, π?)}, obtained by simulating the policy π? on a new independent test

sample, furnishes a certificate of performance on the true problem. The estimate θ̂

can be adjusted if one wants to consider confidence levels. In other words, π? is a

witness to the claim

min
π

E{f(ξ, π(ξ))} ≤ θ̂

at a certain level of confidence. As the full distribution of the cost of using π?

can also be estimated from Monte Carlo simulation (using histograms), arbitrary

measures of risk could also be reliably estimated, using a very large test sample.

• Practically, we have proposed to randomize the branching structure of the scenario

trees, so as to obtain a rich diversity in the considered scenario trees. We have

proposed simple strategies that allow to generate the trees in a top-down fashion

(and thus do not require to build and store large trees before pruning them in a

bottom-up fashion).

• We have demonstrated on a family of test problems that the full approach is imple-

mentable in practice, at a very moderate computational cost, and yields, for those

test problems, near-optimal policies.

• Thanks to the moderate computational cost of this novel tree selection method, we

were able to study empirically the effect of meta parameters on the quality of the

solution, such as the number of scenarios in the trees to consider, or the type of

sampling processes for the values at the nodes of the trees.

Our experimentations indicate that considering a large number of small trees can lead

to an excellent tradeoff between solution quality and computational time.

In Chapter 5, we have considered a second set of strategies for learning policies, in

the context of a four-stage multi-product assembly problem under demand uncertainty

for which the value of the multistage formulation is high (Section 5.3).

• The general principle under the proposed learning approach is that the decisions

of a policy could initially be represented as probability densities conditioned on a

growing number of observations.
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• The selection of a single decision is formulated as a maximum a posteriori (MAP)

estimation problem, subject to feasibility constraints (Section 5.1). Under suitable

assumptions on the densities to consider, the procedure is closely related to the

projection of a single predicted decision on the current feasibility set.

• The framework has been found to lead naturally to Gaussian Process regression

techniques.

• The choice of the covariance matrices (kernels) of the Gaussian Process models is

sometimes facilitated by the knowledge of the algorithm that generates the scenario

tree.

• Experiments on the test problem have demonstrated that with a suitable choice of

the kernels and of the repair procedure (the projection of the candidate decisions

on the current feasibility set), a near-optimal policy could be selected.

In Chapter 6, we have addressed the more fundamental issue of the usefulness, in

terms of computational complexity, of building a model for predicting exact optimal

solutions rather than computing them with a standard optimization procedure, albeit

the issue has been addressed in the context of a specific setting (projections on random

polyhedra).

• We have indeed formulated the question in a setting where fruitful results and

insights can be derived. The setting is a well-known class of parametric strictly

convex quadratic programs, and is related to the feasibility restoration task as for-

mulated in Chapter 5, although some additional work would be needed to generalize

the results to general convex quadratic programming problems.

• We have improved our understanding of the structure of the solutions to these

parametric programs by establishing, from basic geometrical principles, properties

of the optimal solutions.

• In particular, we have identified a relation between the potential size of an exact

predictive model for the optimal solutions, and the smallest positive singular values

of some matrices. We have illustrated that relation by generating parametric test

problems in a particular way, and then estimating the size of the predictive models.

• We have developed a self-improving algorithm for solving a set of instances from

the considered class of parametric optimization problems, able to find a tradeoff

between an online learning approach and a pure optimization approach, mostly by

controlling the size of the learned model.

7.2 Perspectives

Learning a policy from a data set of optimized decisions is a technical compromise. One

would certainly prefer to optimize the parameters of a parametric policy directly on a

scenario tree, or by simulation combined to stochastic gradient descent techniques.

The idea of searching for policies directly seems to be as old as stochastic programming

itself (Garstka and Wets, 1974). Unfortunately, at the exception of particular settings
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where simple parametrizations can be used (decisions u affine in ξ or in features of ξ)

(Garstka and Wets, 1974; Ben-Tal et al., 2004), such formulations lead to nonconvex op-

timization problems. If one can still in theory argue for the selection of a local minimum,

one has also to observe that a parametric policy can seldom accommodate hard con-

straints, so that for most practical multistage problems, fixing the parametric form and

optimizing the parameters directly would simply lead to an infeasible problem. Circum-

venting such difficulties by relaxing hard constraints or reformulating the optimization

problem in terms of state variables would then simply bring us back to frameworks based

on Markov Decision Processes (Section 2.2.2).

By taking the intermediate step of exploiting the usual multistage stochastic pro-

gramming framework to obtain sequences of decisions tractably, one furnishes an initial

data set of decisions that plays the role of an initial condition for the simulation-based

optimization of a policy. As much flexibility is gained in the representation of the policy,

the policy can now be nonlinear (as in neural networks), non-parametric (as in Gaussian

processes), and/or incorporate repair procedures adapted to the hard constraints. From

that point of view, the use of several scenario trees can be interpreted as the use of sev-

eral initial conditions from which a policy can be locally optimized, while algorithms for

generating good scenario trees would implicitly aim at generating good initial conditions.

Clearly, by introducing an intermediate step in the direct policy optimization task,

we isolate (decouple) the two subtasks of optimizing decisions and optimizing policy

parameters, and thus block the circulation of information between the two subtasks. A

full range of iterative methods, alternating between the two subtasks, could be developed

with the aim of restoring the information flow — the iterative model selection procedure

(Algorithm 4.2) is a step in that direction. However, one would still have to demonstrate

that such an approach has some practical advantages over standard decision making

strategies based on successive shrinking-horizon optimizations.

In this thesis, we have presented methods, algorithms, and test problems on which

significant computational gains over alternative approaches could be shown. One can

still think of several potential improvements or extensions to the proposed techniques,

that will have to be sorted out by applying the proposed solution methodology based

on multistage stochastic programming and supervised learning to a wider variety of

applications.

• We have considered an application with many decision stages and a low-dimensional

random process (Section 4.4), but we have not considered an application with few

decisions stages and a high-dimensional random process. An adaptation of the

choices concerning the supervised learning component, and the model selection

procedure may be needed in that context.

• We have not considered multistage problems based on mixed-integer linear pro-

gramming formulations, that are currently under active investigation (Escudero,

2009). Our impression is that the advantage of a multistage stochastic program-

ming formulation over a Markov Decision Process formulation is less clear when

convex optimization tools cannot be used. Yet, an adaptation of the supervised

learning approach to discrete decision spaces is possible, in the spirit of the pro-

posals made in Chapter 3, and in that case, it should be possible to identify an

application on which the advantages of the solution methodology developed in
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Chapter 4 would appear.

• For specific applications, specific decisions rules might be proposed and tested. For

instance, it is often the case in planning and sequential decision making under

uncertainty that one is offered the choice to act now (the implementation details

being adjusted greedily), or to postpone the decision. Such situations have been

analyzed by Van Hentenryck and Bent (2006, Chapter 8) in the context of the

online dispatching of a taxi fleet, but could also be found in electricity generation

planning (optimal response to contingencies). Then, a fundamental component of

the decision policy is the mapping from the information state, possibly represented

by features, to the delay before taking irreversible or expensive decisions. The

mapping could be learned according to the data collected from optimized multistage

stochastic programs, and then further adjusted by simulations. If the decision of

acting now is selected, what we refer to as the repair procedure could be anything

from a greedy, one-step online optimization, to a call to another policy dedicated

to immediate actions.

• The proper way to associate, in a same data set, scenario/decisions examples col-

lected from several scenario-tree approximations solved to optimality, so as to infer

from this data set, or a post-processed version of it, a policy with better perfor-

mances on the exact problem than the best of the policies learned from the data

relative to a single scenario tree, is still to be found and shown to be computation-

ally efficient. Our intuition is that this approach could be especially interesting for

multistage problems with high-dimensional random processes, but would require

much work to ensure that the inconsistencies among the data sets of decisions are

innocuous in the context of the learning algorithm, or can be corrected by some

problem-dependent processing step.

• In Section 4.4.2, it was observed that a near-optimal policy had been obtained from

a scenario tree with statistical properties (including first moments) very far from

those of the targeted random process. This suggests that the paradigm according

to which finding ways to build a unique scenario tree as “close” as possible (in any

sense) to the original random process is the more rational objective one could aim

at, is in fact too limitative in the context of challenging multistage problems.

Besides the proposed multi-tree framework based on branching structure random-

ization, it might be conceivable to perturb the parameters of the targeted random

process itself (as long as the learned policies are ultimately tested on the exact

random process).

The objective of the approximate multistage programs could also be perturbed

or modified, for instance by adding regularization terms (as long as the learned

policies are ultimately tested with the exact cost function).

In Chapter 6, a simple setting was identified in which the complexity of an explicit

representation of an optimal solution mapping could be studied, and put in relation

with problem data (rather than problem structure). At the time of writing, we are still

discovering recent work on explicit representations of solution mappings in slightly more

general settings (Patrinos and Sarimveis, 2010), and we may expect that such research

directions will continue to be investigated in the future. Nevertheless, it is clear from our
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experiments that the construction of a purely explicit representation of an exact solution

mapping is doomed to fail in some circumstances.

If the hybrid approach that we have proposed in Chapter 6 is shown to be able to

extract the computational benefit of explicit solution mappings when it exists, while

avoiding the risk of catastrophic performances in terms of computational times in other

circumstances, a question not yet addressed in Chapter 6 is the determination of the

extent to which an inexact approach, based on supervised learning, and followed by a

simple feasibility restoration, allows to overcome the potentially overwhelming complexity

of an exact model.

In the pure supervised learning setting, this question has been answered (at least

for classification) by the notions of hypothesis space, structural risk minimization, and

VC-dimension (Vapnik, 1998). In this thesis, we have not constructed a general theory

for predicting the sample complexity (number of scenarios, location of branchings in the

trees, number of generated trees) for learning a good enough policy in the context of a cho-

sen hypothesis class (space of policies), but rather have relied on standard model selection

principles, and on numerical testing. It could be interesting to see whether supervised

learning notions of combinatorial complexity (such as VC-dimension and Rademacher

complexity) (Bartlett and Mendelson, 2002) could be adapted more directly to the set-

ting of optimal solution mapping approximation, for instance, referring to Chapter 6

again, by using quantities related to the the smallest positive singular values of matrices

of active constraints.

7.3 Influences on Research in Machine Learning

From a general point of view, technical or conceptual advances in stochastic program-

ming techniques can influence specific fields of machine learning. We list below some

possibilities that come to mind.

• The investigations on general risk functionals made in the context of multistage

stochastic programming can have an impact on the research in reinforcement learn-

ing focussed on risk-aware strategies, as confirmed by various recent work (Morimura

et al., 2010).

• Decomposition algorithms initially motivated by stochastic programming applica-

tions (Rockafellar and Wets, 1991) can be used in the context of supervised learning

(Defourny and Wehenkel, 2009). Algorithmic advances in robust stochastic approx-

imation methods (Nemirovski et al., 2009) could also have an impact on supervised

learning approaches relying on large-scale optimization techniques.

• The work on scenario tree generation methods is likely to have an impact on op-

timal experiment design, active learning, and on the direct selection of concise

data sets (Rachelson et al., 2010) for reducing, at the source, the complexity of

non-parametric models, or for facilitating the processing of data by complex algo-

rithms.

From a point of view more specific to the present work, Chapter 6 suggests possi-

ble research directions in supervised learning and artificial intelligence, based on simple
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settings in which concepts such as “learning to learn” or “learning faster” are given a

simple mathematical formalization. It would certainly be worth exploring and developing

further such approaches, that could allow to better integrate existing technologies, and

focus on context detection, rather than on the learning task itself. Related work in this

general orientation includes Ailon et al. (2006) and Hartland et al. (2006).
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Appendix A

Elements of Variational Analysis

This appendix presents material from variational analysis (Rockafellar and Wets, 1998)

useful in the study of minimization problems subject to constraints, and approximations

of those minimization problems.

This material is a part of the fundamental theoretical background supporting many

works in stochastic programming, and more generally many work in optimization. It

provides a convenient formalism that we use in the thesis for discussing optimization

programs abstractly, although we do not insist in the main body of the thesis on some

of the technical subtleties highlighted in the present appendix, as these subtleties are

not absolutely required to communicate on the kind of work made in the context of the

thesis.

The appendix is organized as follows. Section A.1 defines minimization problems

through extended-real-valued functions. Section A.2 introduces notations for dealing

with sequences, subsequences and neighborhoods. Section A.3 defines the notion of

semi-continuity. Section A.4 gives sufficient conditions for the existence of optimal so-

lutions. Section A.5 defines the notion of epigraph. Section A.6 defines the notion of

epi-convergence of functions. Section A.7 connects epi-convergence to the property that

optimal solutions converge to true optimal solutions. Section A.8 relates epi-convergence

to other modes of convergence of functions. Section A.9 consider the generalization of

results to parametric optimization. Section A.10 consider the particularization of results

to convex optimization. Section A.11 defines the notion of local Lipschitz continuity.

A.1 Minimization

Let R = R∪{−∞,+∞} denote the set of extended real numbers. Minimization problems

and constrained minimization problems can be defined through the notion of extended-

real-valued functions.

A.1 Definition. An extended-real-valued function f : Rn → R assigns to each

element x = (x1, . . . , xn) ∈ Rn a value in R, written f(x).

The infimum of f , written inf f , is the greatest lower bound of f , that is, the greatest

value v ∈ R such that v ≤ f(x) for all x ∈ Rn. The infimum of f on a (possibly empty)

set C ⊂ Rn, written infC f , is the greatest lower bound of the extended-real-valued

function that assigns to x ∈ C the value f(x), and to x ∈ Rn \ C the value ∞. When

C = Rn, infC f = inf f . To emphasize the argument of f , we may write infx f(x) instead
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of inf f , and infx∈C f(x) instead of infC f .

Similarly, the supremum of f , written sup f , is the least upper bound of f , and the

supremum of f on C ⊂ Rn is the least upper bound of the function that assigns to x ∈ C
the value f(x), and to x ∈ Rn \C the value −∞. We always have sup f = − inf −f . We

have infC f ≤ supC f if and only if C 6= ∅.

If infC f < ∞ and there exists some x ∈ C such that f(x) = infC f(x), we say that

the minimum of f on C is attained, we denote infC f by minC f , and we define the

set of minimizers of f over C, written argminC f , as the subset of elements of C such

that f(x) = inf f . If infC f < ∞ but no x ∈ C satisfies f(x) = infC f(x), we say that

the minimum of f on C is not attained, and we set argminC f to the empty set ∅. If

infC f =∞, we set argminC f = ∅.

Minimizing f on C refers to the task of evaluating minC f and finding a point x ∈
argminC f . Very often in applications, f and x have an interpretation, and requirements

on x are expressed through inequality constraints fj(x) ≤ 0 and equality constraints

hj(x) = 0 using functions fj : Rn → R, 1 ≤ j ≤ p, and hj : Rn → R, 1 ≤ j ≤ q. In that

specific case,

C = {x ∈ Rn : fj(x) ≤ 0 for 1 ≤ j ≤ p, hj(x) = 0 for 1 ≤ j ≤ q} .

As minimizing f on C is equivalent to minimizing the function that coincides with f

on C and is set to ∞ on Rn \ C, in the sequel we will simply focus on the minimization

of f [on Rn], assuming that C is already embedded in f .

Given a nonempty set X ∈ R, we also use the notation infX for the greatest v ∈ R

satisfying v ≤ x for all x ∈ X. When v = infX is in X, we write v = minX. Similarly,

supX is the least v ∈ R satisfying v ≥ x for all x ∈ X, written maxX when v ∈ X. The

case X = ∅ is handled by setting inf ∅ =∞ and sup ∅ = −∞.

A.2 Sequences

Let N (x̄) denote the collection of all neighborhoods of x̄ ∈ Rn. We take the notions

of open set and neighborhood for granted (Mendelson, 1990). We are about to deal

with properties that must hold for all V ∈ N (x̄). In the metric space (Rn, d) where

d(x, y) = ||x− y|| = [
∑n

i=1(xi − yi)
2]1/2, the properties that we will consider hold for all

V ∈ N (x̄) iff they hold for all open Euclidian balls of rational radius centered at x̄, that

is, for all V of the form {x ∈ Rn : ||x− x̄|| < δ} with 0 < δ ∈ Q.

Let the topological closure and interior of a set C ⊂ Rn be defined by

clC = {x ∈ Rn : V ∩ C 6= ∅ for all V ∈ N (x)} ,
intC = {x ∈ Rn : V ⊂ C for some V ∈ N (x)}

(Rockafellar and Wets, 1998, page 14). The topological boundary of a set C is defined

by bdryC = clC \ intC.

Let {xν}ν∈N denote a sequence x1, x2, . . . with xν ∈ Rn and ν ∈ N (the set of natural

numbers, taken as the index set of the elements of the sequence). The set of points xν in a

sequence {xν}ν∈N is called the range of the sequence (Rudin, 1976, page 48). A sequence

is said to be bounded if its range is bounded. In (Rn, d), a sequence {xν}ν∈N is said to
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converge to x̄ (or to have x̄ as its limit point), written xν → x̄ or limν→∞ d(xν , x̄) = 0,

if for any ε > 0, there is some ν0 ∈ N such that ν ≥ ν0 entails d(xν , x̄) < ε. For instance,

the constant sequence with xν = x̄ converges to x̄. We can also have xν → x̄ despite

xν 6= x̄ for all ν.

Given a sequence {xν}ν∈N, the sequence xν1 , xν2 , . . . , where ν1, ν2, . . . is a sequence of

positive integers such that ν1 < ν2 < . . . , is called a subsequence of {xν}ν∈N. To facilitate

statements involving subsequences, let N∞ denote the collection of subsets of N of the

form {ν0, ν0 + 1, . . . }, which contain all integers k greater or equal to some positive

integer ν0. Let N#
∞ denote the collection of all subsets of N of infinite cardinality. Note

that N∞ ⊂ N#
∞. Given N ∈ N∞ or N ∈ N#

∞, we shall write xν N→ x to indicate that

the subsequence {xk}k∈N of the sequence {xν}ν∈N converges to x. The limit point x of

a subsequence {xk}k∈N with N ∈ N#
∞ is called a cluster point of the sequence {xν}ν∈N.

It is also called an accumulation point of the sequence {xν}ν∈N if xν N→ x with xν 6= x

for all ν ∈ N . For instance, the sequence {(−1)ν}ν∈N has no limit point, but it has two

cluster points −1, +1 that are not accumulation points.

In a metric space, it is often illuminating to view a neighborhood V ∈ N (x̄) as the

[interior of the closure of the] union of the ranges from all sequences in V that converge

to x̄. Such a viewpoint leads to definitions based on sequences — consider, for instance,

clC = {x ∈ Rn : there is some sequence {xν}ν∈N

converging to x with xν ∈ C for all ν ∈ N}
= {x ∈ Rn : ∃xν → x with xν ∈ C} (brief statement),

intC = {x ∈ Rn : for all xν → x, there is some ν0 ∈ N

such that xk ∈ C for all k ≥ ν0}
= {x ∈ Rn : ∀ xν → x, ∃ N ∈ N∞ such that xν ∈ C for all ν ∈ N} .

In the sequel, following Rockafellar and Wets (1998), statements are made preferably

in terms of sequences.

A.3 Semicontinuity

The following definition of lower and upper limits uses a min/max characterization proved

in Rockafellar and Wets (1998, Lemma 1.7).

A.2 Definition. The lower and upper limits of an extended-real-valued function f :

Rn → R at x̄ are values in R defined respectively as

lim inf
x→x̄

f(x) = sup
V ∈N (x̄)

inf
x∈V

f(x)

= min{α ∈ R : ∃ xν → x̄ with f(xν)→ α} ,
lim sup

x→x̄
f(x) = inf

V ∈N (x̄)
sup
x∈V

f(x)

= max{α ∈ R : ∃ xν → x̄ with f(xν)→ α} .

The convergence to α = +∞ is interpreted as follows: f(xν) → ∞ (−∞) if for any

ρ > 0, there is some N ∈ N∞ such that ν ∈ N entails xν ≥ ρ.
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By considering the constant sequence xν = x̄ one sees that lim infx→x̄ f(x) ≤ f(x̄)

and lim supx→x̄ f(x) ≥ f(x̄).

A.3 Definition. A function f : Rn → R is lower semicontinuous (l.s.c) at a point x̄

if lim infx→x̄ f(x) ≥ f(x̄), or equivalently lim infx→x̄ f(x) = f(x̄). It is upper semicon-

tinuous (u.s.c.) at a point x̄ if lim supx→x̄ f(x) ≤ f(x̄), or equivalently lim supx→x̄ f(x) =

f(x̄). The function f is l.s.c (respectively u.s.c.) if it is l.s.c. (respectively u.s.c.) at

every point x̄ ∈ Rn.

Sometimes we speak of functions with properties (such as semicontinuity) relative to a

set X with X a subset of Rn. This means that we only consider sequences xν converging

to x̄ ∈ X, with xν ∈ X for all ν. In that case, we write xν X→ x̄, and redefine the liminf

and limsup operators as follows.

A.4 Definition. For properties invoked as relative to X, the limits are taken over se-

quences in X. In particular, the lower and upper limits of f : Rn → R at x̄ relative to X

become

lim inf
x

X
→x̄

f(x) = sup
V ∈N (x̄)

inf
x∈V ∩X

f(x) and lim sup

x
X
→x̄

f(x) = inf
V ∈N (x̄)

sup
x∈V ∩X

f(x) .

Among the numerous characterization of continuity, we can thus find the following

ones.

A.5 Proposition. A function f : Rn → R is continuous iff it is both l.s.c. and u.s.c.

A.6 Proposition. A function f : Rn → R is continuous relative to X iff xν X→ x̄

entails f(xν) → f(x̄). In particular with X = Rn, f is continuous iff xν → x̄ entails

f(xν)→ f(x̄).

A.4 Attainment of a Minimum

Let f : Rn → R be an extended-real-valued function. We consider the minimization of f ,

and in that context, we define the effective domain of f as the set

dom f = {x ∈ Rn : f(x) <∞} .
A.7 Definition. The function f is proper if f has a nonempty effective domain and is

finite-valued there, that is, f(x) > −∞ for all x ∈ dom f .

The extended-real-valued functions that coincide with some real-valued function f0 on

a nonempty set C and are equal to ∞ outside C are proper, whereas all other extended-

real-valued functions are improper. When f is proper, the corresponding real-valued

function f0 is referred to as the essential objective function.

A.8 Definition. The function f is lower level-bounded if for all α ∈ R, the set

lev≤α f = {x ∈ Rn : f(x) ≤ α} is bounded.

For example, the function x 7→ x2 is lower level-bounded whereas x 7→ exp(x) is not.

Both functions are continuous on their domain R.

The following theorem (Rockafellar and Wets, 1998, Theorem 1.9) provides sufficient

conditions under which an extended-real-valued function attains its minimum.
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A.9 Theorem. If f : Rn → R is lower semicontinuous, lower level-bounded, and proper,

the infimum inf f is finite and attained on a nonempty compact subset of Rn.

To handle situations where the evaluation of inf f and argmin f has a finite precision,

it is useful to consider, when inf f is finite, the set of ε-optimal solutions

ε- argmin f = {x ∈ Rn : f(x) ≤ inf f + ε}.

As the elements of ε- argmin f are themselves evaluated with a finite precision, it is useful

to clarify in which sense elements x̃ close to ε-optimal solutions are close to being optimal

(Rockafellar and Wets, 1998, Theorem 1.43):

A.10 Theorem. If f : Rn → R is l.s.c. with inf f finite, the closed Euclidian ball of

radius ρ > 0 centered at an ε-optimal solution x̄ (ε > 0) contains a point x̃ which is the

unique solution to the minimization of the perturbed function f(x) + ερ−1||x − x̃|| and

satisfies f(x̃) ≤ f(x̄).

A.5 Epigraph

For a real-valued function f0 : Rn → R, recall that the graph of f0 is the set gph f0 =

{(x, α) ∈ Rn × R : α = f0(x)}. For extended-real-valued functions to be minimized, we

consider epigraphs.

A.11 Definition. The epigraph of an extended-real-valued function f : Rn → R is the

subset of Rn+1 defined by epi f = {(x, α) ∈ Rn × R : α ≥ f(x)}.

There are correspondences between the properties of an extended-real-valued function

and properties of its epigraph.

A.12 Proposition. For an extended-real-valued function f and its epigraph epi f :

i. dom f = {x ∈ Rn : (x, α) ∈ epi f for some α ∈ R}.
ii. f is proper iff epi f 6= ∅ and {(x, α) : α ∈ R} 6∈ epi f for all fixed x ∈ Rn.

iii. cl(epi f) = {(x, α) ∈ Rn+1 : α ≥ lim infx′→x f(x′)} (Rockafellar and Wets, 1998,

Exercise 1.13(a)).

iv. f is lower semicontinuous iff epi f is closed (Rockafellar and Wets, 1998, Theo-

rem 1.6(b)).

v. int(epi f) = {(x, α) ∈ Rn+1 : α > lim supx′→x̄ f(x′)} (Rockafellar and Wets, 1998,

Exercise 1.13(b)).

A.13 Definition. The lower closure of a function f : Rn → R, denoted cl f , is the

function whose epigraph is cl(epi f). A function f is said to be closed when f = cl f .

Specifically, cl f(x) = lim infx′→x f(x′) (Rockafellar and Wets, 1998, Equation 1(7)).

We note that in earlier references (Rockafellar, 1970, 1974), a slightly altered definition

of the closure of a function was used: the function lim infx′→x̄ f(x) of definition A.13 was

denoted lsc f , and cl f was set to the constant function −∞ whenever lim infx′→x f(x′) =

−∞ for some x; cl f was set to lsc f otherwise.
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A.6 Epi-convergence

First we consider notions of limits for sequences of subsets of Rn.

A.14 Definition (Painlevé-Kuratowski convergence of sets). The outer limit of

a sequence {Cν}ν∈N of subsets Cν ⊂ Rn is the set of limit points (if any) of all sequences

{xν}ν∈N such that N ∈ N#
∞ and ∅ 6= Cν 3 xν for each ν ∈ N :

lim sup
ν→∞

Cν = {x ∈ Rn : ∃N ∈ N#
∞,∃ xν ∈ Cν for each ν ∈ N, such that xν N→ x}

=
⋂

N∈N∞

cl
⋃

ν∈N

Cν .

The inner limit of a sequence {Cν}ν∈N of subsets Cν ⊂ Rn is the set of limit points (if

any) of all sequences {xν}ν∈N such that N ∈ N∞ and ∅ 6= Cν 3 xν for each ν ∈ N:

lim inf
ν→∞

Cν = {x ∈ Rn : ∃N ∈ N∞,∃ xν ∈ Cν for each ν ∈ N, such that xν N→ x}

=
⋂

N∈N#
∞

cl
⋃

ν∈N

Cν .

From the definition, the inner and outer limits are (possibly empty) closed sets. In

particular, for an arbitrary subset V of Rn, the constant sequence with Cν = V has

lim infν→∞ Cν = lim supν→∞ Cν = cl(V ). We always have the inclusion lim infν→∞ Cν ⊂
lim supν→∞ Cν since N∞ ⊂ N#

∞. For instance, given two closed subsets A,B ⊂ Rn, the

sequence {Cν}ν∈N with Cν = A for ν odd and Cν = B for ν even has lim supν→∞ Cν =

A ∪B and lim infν→∞ Cν = A ∩B.

A.15 Definition. If lim infν→∞ Cν = lim supν→∞ Cν = C, the limit limν C
ν exists and

is equal to C. One writes Cν → C to indicate that the sequence {Cν}ν∈N converges to C

(in the sense of the Painlevé-Kuratowski convergence of sets).

Next we consider a sequence {f ν}ν∈N of extended-real-valued functions f ν : Rn → R.

A.16 Definition. The lower epi-limit of the sequence {f ν}ν∈N, denoted e-lim infν f
ν ,

is the function defined by identifying its epigraph to the outer limit of the sequence of

sets epi fν :

epi(e-lim infν f
ν) = lim sup

ν→∞
(epi fν)

= {(x, α) ∈ Rn+1 : ∃ (xν , αν)
N→ (x, α) with αν ≥ fν(xν) for some N ∈ N#

∞} .

The upper epi-limit of the sequence {f ν}ν∈N, denoted e-lim supν f
ν , is the function

defined by identifying its epigraph to the inner limit of the sequence of sets epi f ν :

epi(e-lim supν f
ν) = lim inf

ν→∞
(epi fν)

= {(x, α) ∈ Rn+1 : ∃ (xν , αν)
N→ (x, α) with αν ≥ fν(xν) for some N ∈ N∞} .

The value of the epi-limits at x has the following characterization proved in Rockafellar

and Wets (1998, Proposition 7.2). Note that for a sequence {yν}ν∈N in R, the least and

greatest cluster points of the sequence are respectively lim infν y
ν = limν→∞[infκ≥ν y

κ]

and lim supν y
ν = limν→∞[supκ≥ν y

κ].
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A.17 Proposition. For a sequence of functions f ν : Rn → R and a point x ∈ R,

(e-lim infν f
ν)(x) = min{α ∈ R : ∃ xν → x with lim infνf

ν(xν) = α} ,
(e-lim supν f

ν)(x) = min{α ∈ R : ∃ xν → x with lim supνf
ν(xν) = α} .

A.18 Definition. The sequence {f ν}ν∈N is said to epi-converge to f when the lower

and upper epi-limits are identical and equal to f . This is written f ν e→ f .

Since by definition the lower and upper limits are closed, the epi-limit f , when it

exists, is lower semicontinuous (Rockafellar and Wets, 1998, Proposition 7.4(a)).

A.19 Proposition. The sequence {f ν}ν∈N epi-converges to f iff at each point x, the

two following conditions hold (Rockafellar and Wets, 1998, Equation 7(3)):

i. lim infν f
ν(xν) ≥ f(x) for every sequence xν → x,

ii. lim supν f
ν(xν) ≤ f(x) for some sequence xν → x.

We note the following monotone convergence property (Rockafellar and Wets, 1998,

Proposition 7.4(c-d)): if fν ≥ fν+1 for all ν (in the sense that fν(x) ≥ fν+1(x) for every

x and ν), then fν e→ cl[infν f
ν ]. If fν ≤ fν+1 for all ν, then fν e→ supν [cl fν ].

A.7 Convergence in Minimization

Consider a sequence of extended-real-valued functions f ν : Rn → R representing a se-

quence of minimization problems. Among the several possible notions of convergence

according to which we could say that f ν converges to f , epi-convergence plays a key role

for ensuring that the optimal value of f ν also converges to the optimal value of f as

ν → ∞, and that sequences of minimizers for the functions f ν have cluster points that

are also optimal for f .

A.20 Theorem. Assume that the sequence {f ν}ν∈N epi-converges to a proper func-

tion f , with the functions fν satisfying the assumptions of Theorem A.9 (f ν is proper,

l.s.c., and level-bounded). Then

i. The sets argmin fν are nonempty and compact (by A.9);

ii. inf f is finite with argmin f nonempty and compact;

iii. inf fν → inf f ;

iv. The cluster points of sequences {xν}ν∈N with xν ∈ argmin fν are optimal for f :

∅ 6= lim supν(argmin fν) ⊂ argmin f ;

v. If argmin f = {x̄}, any sequence {xν}ν∈N with xν ∈ argmin fν converges to x̄.

In Rockafellar and Wets (1998, Theorem 7.33), the assumptions on the functions f ν

are weakened: the sets lev≤α f
ν have to be bounded for all α ∈ R only for ν in some

N ∈ N∞, as having argmin fν nonempty and compact in the tail of the sequence suffices.

Also, the sets from which are extracted the solutions xν are the sets

εν-argmin fν = {x ∈ Rn : fν(x) ≤ inf fν + εν}
with {εν}ν∈N a sequence with εν > 0 decreasing monotonically to 0. In Theorem A.20

it is explicitly assumed that f is lower semicontinuous but actually as an epi-limit, f is

necessarily lower semicontinuous (Rockafellar and Wets, 1998, Proposition 7.4(a)).
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A.8 Pointwise, Continuous and Uniform Convergence

Pointwise convergence of a sequence {f ν}ν∈N concerns the convergence of fν(x) with x

fixed, in contrast to epi-convergence concerned with f ν(xν).

A.21 Definition. Let {fν}ν∈N be a sequence of functions fν : Rn → R. The sequence

is said to converge pointwise on X when f ν(x̄)→ f(x̄) for every x̄ ∈ X.

The pointwise convergence fν to a function f on Rn means that lim infν f
ν(x) =

lim supν f
ν(x) = f(x) for every x ∈ Rn.

In contrast to epi-convergence, pointwise convergence does not entail that inf f ν con-

verges to inf f (Rockafellar and Wets, 1998, Figure 7-1).

A.22 Proposition. Assume that {f ν}ν∈N converges pointwise to f . Even if f ν and f

satisfy the assumptions of Theorem A.9, we can have limν→∞(infx f
ν(x)) 6= infx f(x)

and lim supν(argmin fν) ∩ argmin f = ∅.

With the following definition, taken from Rockafellar and Wets (1998, Exercise 7.9),

one gets a condition under which pointwise convergence entails epi-convergence (Rock-

afellar and Wets, 1998, Theorem 7.10). Here min{a, b} and max{a, b} refer to the lowest

and highest value between a and b.

A.23 Definition. A sequence {f ν}ν∈N is equi-lower semicontinuous at x̄ relative to

X ⊂ Rn iff for every ρ > 0 and ε > 0,

lim inf
x

X
→x̄

fν(x) ≥ min{fν(x̄)− ε, ρ} for all ν ∈ N .

The sequence is equi-upper semicontinuous at x̄ relative to X iff for every ρ > 0 and

ε > 0,

lim sup

x
X
→x̄

fν(x) ≤ max{fν(x̄) + ε, −ρ} for all ν ∈ N .

A sequence {fν}ν∈N is equicontinuous at x̄ relative to X if it is both equi-l.s.c. and

equi-u.s.c. at x̄ relative to X. It is equi-l.s.c./u.s.c./continuous relative to X if it has

the corresponding property at every x̄ ∈ X. It is said to be asymptotically equi-

l.s.c./u.s.c./continuous relative to X if the stated conditions hold for all ν ∈ N for some

N ∈ N∞.

A.24 Theorem. Let {fν}ν∈N be a sequence of l.s.c. functions f ν : R → R. Assume

that the sequence is asymptotically equi-lower semicontinuous. Then f ν epi-converges

to a function f iff fν converges pointwise to f .

At the same time, observe from Proposition A.17 that when f ν epi-converges to f ,

there is at least one sequence xν → x̄ such that fν(xν)→ f(x̄), whereas for an arbitrary

sequence xν → x̄ epi-convergence does not ensure that f ν(xν)→ f(x̄).

A.25 Definition. The sequence {f ν}ν∈N is said to converge continuously to f at x̄

relative to X iff xν X→ x̄ entails fν(xν)→ f(x̄).

The following theorem is taken from Rockafellar and Wets (1998, Theorem 7.10):
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A.26 Theorem. The sequence {f ν}ν∈N converges continuously to f at x̄ relative toX iff

fν epi-converges to f at x̄ relative toX and the sequence is asymptotically equicontinuous

at x̄ relative to X.

Finally, we define the notion of uniform convergence for a sequence of extended-

real-valued functions (Rockafellar and Wets, 1998, Definition 7.12) and its relation with

epi-convergence (Rockafellar and Wets, 1998, Proposition 7.15(a)).

A.27 Definition. The ρ-truncation of an extended-real-valued function f : Rn → R

is the real-valued function fρ : Rn → R defined by fρ(x) = f(x) on {x : |f(x)| ≤ ρ},
fρ(x) = ρ on {x : f(x) > ρ}, fρ(x) = −ρ on {x : f(x) < −ρ}.

A.28 Definition. A sequence {f ν}ν∈N of real-valued functions fν : Rn → R is said to

converge uniformly to f on X ⊂ Rn if for each ε > 0, there is some N ∈ N∞ such

that |fν(x)− f(x)| ≤ ε for every x ∈ X when ν ∈ N . A sequence {f ν}nu∈N of extended-

real-valued functions fν : Rn → R is said to converge uniformly to f on X ⊂ Rn if

for each ρ > 0, the real-valued ρ-truncations f ν
ρ converge uniformly to the real-valued

ρ-truncation fρ.

A.29 Theorem. Let {fν}ν∈N be a sequence of lower semicontinuous functions f ν :

Rn → R. If the functions fν converge uniformly to a function f : Rn → R on a set

X ⊂ Rn, then the functions fν epi-converge to f relative to X.

A.9 Parametric Optimization

A minimization problem with n optimization variables and m parameters can be viewed

as a single extended-real-valued function f : Rn ×Rm → R. Such a function with values

f(x, u) induces a function-valued mapping u 7→ f(·, u).
Parametric optimization is concerned with the variation of p(u) = infx f(x, u) and of

P (u) = argminx f(x, u) with u, that is, the characterization of the extended-real-valued

function u 7→ infx f(x, u) and of the set-valued mapping u 7→ argminx f(x, u).

Sufficient conditions for the attainment of the infimum infx f(x, u) will use the fol-

lowing generalization of Definition A.8 (Rockafellar and Wets, 1998, Definition 1.16).

A.30 Definition. A function f : Rn×Rm → R with values f(x, u) is said to be (lower)

level-bounded in x locally uniformly in u if for each ū ∈ Rm, the sets

lev≤α(u) = {x : f(x, u) ≤ α}

are bounded for all α ∈ R and for every u in some neighborhood V ∈ N (ū) of ū.

The following definition is useful inasmuch as one cannot usually assert that p(u) is

continuous in u.

A.31 Definition. Let p be an arbitrary function from Rm to R. A sequence of points

uν ∈ Rm is said to converge in the p-attentive sense to ū if uν → ū and p(uν) →
p(ū).

A.32 Proposition. For having uν converging to ū in the p-attentive sense, it suffices

to have uν → ū with p continuous at ū relative to a set U containing uν and ū.
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As with Theorem A.20, there is a useful notion of epi-convergence, now adapted

to function-valued mappings. The following definition results from combining Proposi-

tion 7.2 and Exercise 7.40 in Rockafellar and Wets (1998).

A.33 Definition. Let f : Rn × Rm → R with values f(x, u). The function-valued

mapping u → f(·, u) is said to be epi-continuous at ū iff for every sequence uν → ū,

the sequence of functions fν = f(·, uν) epi-converges to the function f(·, ū).

A.34 Theorem. Let f : Rn × Rm → R be proper and l.s.c. (on Rn × Rm) with

f(x, u) level-bounded in x locally uniformly in u. Consider p(u) = infx f(x, u) and

P (u) = argminx f(x, u).

i. The function p is proper and l.s.c. (on Rm).

ii. (Generalization of Theorem A.9.) The set-valued mapping P assigns to each u ∈
dom p a nonempty compact set, and is empty-valued for each u /∈ dom p.

iii. If a sequence of points uν ∈ dom p converges to ū ∈ dom p in the p-attentive sense,

then any sequence {xν}ν∈N with xν ∈ P (uν) is bounded and has its cluster points

in P (ū), that is (given that P (ū) is bounded),

∅ 6= lim sup
u

dom p
→ ū

p(u)→p(ū)

P (u) ⊂ P (ū).

iv. If p is continuous at ū relative to a set U with ū ∈ U and P (ū) 6= ∅, then any

sequence {xν}ν∈N with xν ∈ P (uν) is bounded and has its cluster points in P (ū),

that is, lim sup
u

U
→ū

P (u) ⊂ P (ū) with P (ū) ⊂ B for some bounded set B.

v. For p to be continuous at ū relative to U containing ū, a sufficient condition is the

existence of some x̄ ∈ P (ū) such that f(x̄, u) is continuous in u at ū relative to U

(Rockafellar and Wets, 1998, Theorem 1.17(c)).

vi. For p to be continuous at ū relative to U containing ū, another sufficient condition

is to have the function-valued mapping u 7→ f(·, u) epi-continuous at ū relative

to U (Rockafellar and Wets, 1998, Theorem 7.31(b)).

A.10 Convexity

We start with the notion of convexity for subsets of Rn.

A.35 Definition. A subset C of Rn is convex if for all points x, y ∈ C and for 0 < λ < 1,

the points (1− λ)x+ λy are in C.

Convex extended-real-valued functions are defined as follows.

A.36 Definition. A function f : Rn → R is convex iff its epigraph epi f is convex in

Rn × R.

We recall for comparison the definition of convexity for real-valued functions(Rockafellar,

1970, page 10): A function f from a convex set C ⊂ Rn to R is convex iff for all points

x, y ∈ C and for 0 < λ < 1, it holds that f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y). Note

also that f is said to be strictly convex iff for all x, y ∈ C, x 6= y, and for 0 < λ < 1,

it holds that f((1− λ)x+ λy) < (1− λ)f(x) + λf(y).
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Convex functions are continuous at least on the interior of their effective domain

(Rockafellar and Wets, 1998, Theorem 2.35):

A.37 Proposition. Let f : Rn → R be convex. Then f is continuous on int(dom f). If

f is also l.s.c., f is continuous relative to the convex hull of any finite subset of dom f .

The last implication means that for every integer m and sets X(m) = {x ∈ Rn : x =
∑m

k=1 λk xk with λk > 0,
∑m

k=1 λk = 1, xk ∈ dom f}, it holds that xν X(m)→ x̄ implies

f(xν)→ f(x̄).

Proposition A.37 also covers the result that lower semicontinuous convex functions

whose effective domain is a polytope are continuous on their domain (Gale et al., 1968).

Convex functions can have discontinuities on the boundary of their effective domain,

even if they are also l.s.c.:

A.38 Proposition. Let f : Rn → R be convex, proper, and lower semicontinuous.

i. f may fail to be continuous relative to a compact subset of dom f (Rockafellar and

Wets, 1998, Example 2.38).

ii. However, if n = 1, f : R → R is continuous relative to the closure of its domain

(Rockafellar and Wets, 1998, Corollary 2.37)).

A sequence of convex functions can epi-converge under favorable circumstances. The

following theorem is taken from Rockafellar and Wets (1998, Theorem 7.17(c)):

A.39 Theorem. Let {fν}ν∈N be a sequence of convex functions f ν : Rn → R. If

the functions fν converge uniformly to f on every compact set that does not meet the

boundary of dom f , with f convex, l.s.c., and having a nonempty interior, then f ν epi-

converges to f .

A.11 Lipschitz Continuity

A function f : Rn → Rm is said to be Lipschitz continuous if there exists a finite constant

κ ≥ 0 such that

||f(x)− f(x′)|| ≤ κ||x′ − x|| for all x, x′ ∈ Rn .

For extended-real valued functions, it makes sense to focus on Lipschitz continuity prop-

erties locally (Rockafellar and Wets, 1998, page 350).

A.40 Definition. Let f : Rn → R be an extended-value function and let X be an open

subset of Rn containing a point x̄. Then, the Lipschitz modulus of f at x̄ relative to X

is defined as the value

lipXf(x̄) = lim sup
x, x′ X

→x̄
x6=x′

|f(x)− f(x′)|
||x− x′|| ,

where by convention |f(x) − f(x′)| = ∞ if f(x) or f(x′) (or both) is infinite. The

function f is said to be strictly continuous (or locally Lipschitz continuous) at x̄

relative to X if lipXf(x̄) is finite, and f is said to be strictly continuous relative to X if

it has that property at each x̄ ∈ X. The mention to X is omitted when X = int dom f .
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Appendix B

Basic Probability Theory

This appendix presents standard material from measure and probability theory (Billings-

ley, 1995; Pollard, 1990).

The definitions and results collected in the present appendix are relevant to this thesis

inasmuch as stochastic programming fundamentally deals with randomness. As random

objects more general than random vectors are required in the context of stochastic pro-

gramming, we define them here, using a formalism based on set-valued mappings (see

Definition B.8), following Rockafellar and Wets (1998).

The appendix is organized as follows. Section B.1 defines the notions of sigma-algebra

and probability space. Section B.2 defines random variables and random vectors. Section

B.3 defines random sets. Section B.4 defines random functions. Section B.5 defines the

expectation, including the treatment of extended-real-valued functions (Rockafellar and

Wets, 1998, Chapter 14). Section B.6 defines distributions and cumulative distribution

functions.

B.1 The Probability Space

The probability space is made of three elements: the sample space, the sigma-algebra,

and the probability measure.

B.1 Definition. The sample space Ω is an arbitrary nonempty set.

An element of Ω is denoted by ω. Often the sample space is interpreted as an arbitrary

space or set of points consisting of all the possible results or outcomes of an experiment

(Billingsley, 1995, page 17).

Then, a collection of subsets of Ω is identified for the purpose of performing set

operations involving limits along sequences of sets. In essence, admissible collections are

those that are closed under countable set operations.

B.2 Definition. A sigma-algebra B of subsets of a space Ω is a class of subsets of Ω

(a collection of sets B ⊂ Ω) such that

i. The set Ω belongs to B;

ii. If a set B is in B, then its complement Bc = Ω \B is in B;

iii. For a countable collection {Bν}ν∈N of sets Bν in B, the union
⋃∞

ν=1B
ν is in B.

The empty set Ωc = ∅ and the sample space Ω are always in B by definition. Countable
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intersections of sets in B are also in B, since (∪νBν)c = ∩ν(Bν)c and (∩νB
ν)c = ∪ν(Bν)c

(De Morgan’s laws of set theory).

Sigma-algebras can be constructed from an initial class B0 of subsets of interest.

B.3 Definition. The sigma-algebra generated by B0 is the intersection of all the sigma-

algebras that contain the class B0.

Note that there are often several ways of generating a same sigma-algebra.

Examples of useful sigma-algebras are given below.

• The trivial sigma-algebra is the smallest possible sigma-algebra, made of the two

sets ∅ and Ω.

• The Borel sigma-algebra of the unit interval B((0, 1]) is the sigma-algebra generated

by the class of subintervals of (0, 1] of the form I = (a, b] with 0 < a < b ≤ 1. In

fact, the sigma-algebra generated by a countable number of subintervals (a, b] with

a, b restricted to rational numbers and 0 < a < b ≤ 1 can also be shown to coincide

with B((0, 1]).

• The Borel sigma-algebra B(R) is the sigma-algebra generated by the class of inter-

vals I = (a, b] of R. It can also be generated by the class of intervals (−∞, t], t ∈ R.

When we define functions on sigma-algebra that may be valued on the extended

real line R = R ∪ {±∞}, we consider the Borel sigma-algebra B(R) generated by

the subsets of B(R) and the two sets {−∞} and {+∞}, or alternatively by intervals

of the form (t,+∞], [−∞, t), t ∈ R.

• The k-dimensional Borel sigma-algebra B(Rk) is the sigma-algebra generated by

the class of bounded rectangles {x = (x1, . . . , xk) ∈ Rk : ai < xi ≤ bi, i = 1, . . . , k}.

In general, Borel sigma-algebras can be generated from all the open subsets of a topo-

logical space, or alternatively, from all the closed subsets of the topological space.

The elements of B(Rk) are called Borel sets, without mention to Rk when k is clear

from the context.

A set B of a sigma-algebra B is said to be B-measurable. In the context of probability

theory, a set B ∈ B is referred to as an event.

Probabilities can be assigned to events by the means of a probability measure.

B.4 Definition. A measure on a sigma-algebra B is an extended-real-valued function µ

defined on the class B of subsets of Ω such that

i. (Nonnegativity.) 0 ≤ µ{B} ≤ ∞ for every B ∈ B;

ii. µ{∅} = 0;

iii. (Countable additivity.) For any countable collection {Bν}ν∈N of sets Bν ∈ B with

Bi ∩Bj = ∅ if i 6= j, µ{⋃∞
ν=1B

ν} =
∑∞

ν=1 µ{Bν}.

A probability measure P on a sigma-algebra B is a measure P with P{Ω} = 1.

A measurable space is a pair (Ω,B) with Ω a nonempty set and B a sigma-algebra

on Ω. A measure space is a triple (Ω,B, µ) with Ω a nonempty set, B a sigma-algebra
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on Ω, and µ a measure on B. A probability space is a measure space (Ω,B,P) with P

a probability measure.

Some sets are special in the context of a given probability space (Ω,B,P). A set B

is said to be a support of P if B is in B with P{B} = 1 (Billingsley, 1995, page 23).

A set B is said to be P-negligible if B is in B and P{B} = 0. When a property holds

for all ω on a set B with P{B} = 1, the property is said to hold with probability 1, or

almost surely.

B.5 Definition. A probability space (Ω,B,P) or a sigma-algebra B is said to be com-

plete for the probability measure P if any subset of a P-negligible set is also in B (and

hence P-negligible).

A measurable space can be made complete relative to a measure P by enlarging its

sigma-algebra (Pollard, 2001, Definition 2.27):

B.6 Definition. The P-completion of a sigma-algebra B is the class of sets B for which

there exist sets B0, B1 ∈ B with B0 ⊂ B ⊂ B1 and P{B1 \B0} = 0.

Measurable spaces can be combined together.

B.7 Definition. Let (Ω1,B1) and (Ω2,B2) be measurable spaces.

i. The product space of Ω1 and Ω2, denoted Ω1×Ω2, is the set of all pairs (ω1, ω2)

with ωi ∈ Ωi (i = 1, 2).

ii. The product sigma-algebra on Ω1 × Ω2, denoted B1 ⊗ B2, is the sigma-algebra

generated by the collection of sets of the form B1 × B2 = {(ω1, ω2) ∈ Ω1 × Ω2 :

ωi ∈ Bi (i = 1, 2)} with Bi ∈ Bi (i = 1, 2).

B.2 Random Variables

Let us first describe notions relative to set-valued mappings.

B.8 Definition. A set-valued mapping F : X ⇒ Y assigns to each element x of X

one or more elements of Y , or possibly none. The set of elements y ∈ Y assigned by F

to x is denoted by F (x) (Dontchev and Rockafellar, 2009, page 2, exact citation).

i. The domain of F : X ⇒ Y is the set domF = {x ∈ X : F (x) 6= ∅}.
ii. The range of F is the set rangeF = {y ∈ Y : y ∈ F (x) for some x ∈ X}.
iii. The inverse mapping F−1 is the set-valued mapping F−1 : Y ⇒ X defined by

F−1(y) = {x ∈ X : y ∈ F (x)} .

iv. The image of a set B ⊂ X by F is the set

F (B) =
⋃

x∈B F (x) = {y ∈ Y : F−1(y) ∩B 6= ∅} .

v. The inverse image of a set C ⊂ Y (or pre-image of C) by F is the set

F−1(C) =
⋃

y∈C F
−1(y) = {x ∈ X : F (x) ∩ C 6= ∅} .
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There is a one-to-one correspondence between set-valued mappings from X to Y and

subsets of X × Y , by identifying a set-valued mapping F to its graph gphF = {(x, y) ∈
X × Y : y ∈ F (x)}. Note that the projection (x, y) 7→ x maps gphF to domF , that

(x, y) 7→ y maps gphF to rangeF , and that (x, y) 7→ (y, x) maps gphF to gphF−1.

In the standard usage, the word function designates a relation f that assigns to

each element x of a subset dom f of X, one element y of a subset range f of Y , written

y = f(x), and is undefined on X \ dom f . The inverse of a function f is not defined

on Y \ range f . There is however a one-to-one correspondence between functions and

set-valued mappings, in the sense that to each function f can be associated a set-valued

mapping F , that is single-valued on dom f with values F (x) = {y}, and empty-valued

on X \ dom f .

In the sequel, we adopt a compromise that consists in calling indifferently mapping or

function the relation F : X → Y that assigns to each element x of a subset domF ⊂ X,

one element y of a subset rangeF of Y , written y = F (x), and is empty-valued on

X \domF . This is because the functions F : X → Y considered in the sequel are defined

on the full space X anyway. The inverse mapping of F , written F−1 is defined on the

full space Y as a set-valued mapping.

Let us now consider the probability space (Ω, B, P), and a measurable space (Ω′, C).
We view a random variable with values in Ω′ as a mapping F : Ω → Ω′. Mappings of

interest are those for which the pre-image of every element of C is in B.

B.9 Definition. Let (Ω,B) and (Ω′, C) be measurable spaces. A mapping F : Ω → Ω′

is said to be B/C-measurable if for each C ∈ C, the pre-image F−1(C) is B-measurable.

In practice, it is not necessary to check that the pre-image of every element of the

sigma-algebra C is in B: checking the condition for a class of subsets generating the

sigma-algebra C is sufficient (Billingsley, 1995, Theorem 13.1(i)):

B.10 Theorem. Let F : Ω → Ω′ be a mapping with Ω equipped with a sigma-algebra

B and Ω′ equipped with a sigma-algebra C. If a class C0 generates C, and if for every

C0 ∈ C0, the inverse image F−1(C0) is in B, then F is B/C-measurable.

When Ω′ = R with C the Borel sigma-algebra B(R), the B/C measurable mapping is

a real-valued mapping corresponding to a real-valued random variable.

B.11 Definition. A real-valued random variable f on the probability space (Ω,B,P) is

a real-valued mapping from Ω to R that is B/B(R)-measurable.

Similarly, extended-real-valued random variables on (Ω,B,P) correspond to mappings

f : Ω→ R that are B/B(R)-measurable.

Random variables with values in Rk are called random vectors in Billingsley (1995).

B.12 Definition. A k-dimensional random vector f on the probability space (Ω,B,P)

is a B/B(Rk)-measurable mapping from Ω to Rk.

In fact, a random vector turns out to be simply a k-tuple f = (f1, . . . , fk) of one-

dimensional random variables, since it can be shown that the random vector f(ω) =

(f1(ω), . . . , fk(ω)) is B/B(Rk)-measurable if and only if its components fi(ω) are B/B(R)-

measurable (Billingsley, 1995, page 183).
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Random variables can also be defined as functions of other random variables, not

necessarily defined on the same measurable space. For that purpose, the following result

is useful (Billingsley, 1995, Theorem 13.1(ii)).

B.13 Theorem. If F : Ω → Ω′ is B/B′-measurable and G : Ω′ → Ω′′ is B′/B′′-

measurable, then the composed mapping G ◦ F from Ω to Ω′′ is B/B′′-measurable.

Sometimes one considers the random variables first, and then generates the sigma-

algebras in such a way that the random variables of interest are measurable.

B.14 Definition. The sigma-algebra generated by a collection of random variables is

the intersection of all sigma-algebras with respect to which each random variable is

measurable.

That is, the sigma-algebra generated by f1,. . . ,fk, with fi a mapping from Ω to a space Ω′
i

equipped with a sigma-algebra Ci, is defined as the sigma-algebra generated by the class

of sets {f−1
i (C) : C ∈ Ci, i = 1, . . . , k}.

Random variables measurable with respect to the sigma-algebra generated by a collec-

tion of random variables are equivalent to functions of those random variables (Billingsley,

1995, Theorem 20.1):

B.15 Theorem. Let f = (f1, . . . , fk) be a k-dimensional random vector.

i. The sigma-algebra generated by f1, . . . , fk consists of the sets {f ∈ H} for H ∈
B(Rk).

ii. A random variable h is measurable with respect to the sigma-algebra generated by

f1, . . . , fk iff there exists a measurable mapping g from Rk to R such that for all ω,

h(ω) = g(f1(ω), . . . , fk(ω)).

(For brevity, we also allow ourselves to say that h is measurable with respect to f1, . . . , fk

when h is measurable with respect to the sigma-algebra generated by f1, . . . , fk.)

Consider again the collection of random variables f1, . . . , fk where fi is a B/Ci-
measurable mapping from Ω to Ci. Let F0 denote the trivial sigma-algebra, and let

Fi denote the sigma-algebras generated by the subcollection {f1, . . . , fi} of random vari-

ables. By definition, it holds that Fi ⊆ Fj for 0 ≤ i < j ≤ k.

B.16 Definition. The natural filtration associated to a sequence f1, . . . , fk of random

variables is the family {Fi : i = 0, . . . , k} of sub-sigma-algebras of B generated by the

growing subcollections {f1, . . . , fi} of random variables.

The natural filtration represents the growing information on ω obtained by considering

growing collections of B-measurable random variables. Note from Theorem B.15 that

adding to a collection f1, . . . , fi a random variable fi+1 which is merely a function of

f1, . . . , fi will not alter the sub-sigma-algebra generated by the collection, that is, will

not refine the available information on ω.

B.3 Random Sets

Random sets are defined as measurable set-valued mappings. We will only consider

mappings to closed subsets of Rn.
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B.17 Definition. Let (Ω,B) be a measurable space. A set-valued mapping F : Ω ⇒

Rn is measurable if for every open set C ⊂ Rn, the pre-image F−1(C) is in B. If

F is closed-valued (the sets F (x) are closed), an equivalent measurability condition is

F−1(C) ∈ B for every closed set C (Rockafellar and Wets, 1998, Theorem 14.3(b)).

The purpose of a measurable selection, defined below, is to reduce a measurable set-

valued mapping to a measurable (single-valued) mapping. This is useful, for instance,

for selecting a single optimal solution from a set of optimal solutions to a parametric

optimization program. Other examples of selections that are frequently met in practice

are the particular choices of matrix pseudo-inverses for returning a single solution to

an underdetermined system of equations. For a particular example in the thesis, see

Example 6.1.

We use the following non-standard definition of the measurable selection to avoid

issues posed by set-valued mappings that are empty-valued in some regions of the sample

space (see Remark B.1 below).

B.18 Definition. Given a measurable set-valued mapping F : Ω ⇒ Rn, a measur-

able selection for F is a measurable set-valued mapping f : Ω ⇒ Rn which is single-

valued with values f(ω) ∈ F (ω) whenever F (ω) is nonempty, and empty-valued whenever

F (ω) = ∅.

If F (ω) is nonempty for all ω ∈ Ω, the measurable selection can be defined more

simply as a measurable function f : Ω→ Rn with values f(ω) ∈ F (ω) for all ω ∈ Ω.

A measurable closed-valued mapping always admits a measurable selection (Rockafellar

and Wets, 1998, Corollary 14.6).

Remark B.1. It is not clear to us whether the empty set is considered in Rockafellar

and Wets as an admissible value for a closed-valued mapping, and how the selection

defined as a function can handle that case. The definition of the selection has

been changed in Dontchev and Rockafellar (2009, page 49) to allow for a local

definition, but a local definition on the subset Ω0 of Ω where F is not empty-valued

is not desirable for a measurable selection, which should be defined on the full

sample space Ω. Aubin and Frankowska (1990, Theorem 8.1.3) avoid the issue

by dealing only with non-empty-closed-valued measurable mappings F , but this

choice rules out the use of a measurable selection for selecting an optimal solution

to a parametric optimization program which is infeasible in some region of the

parameter space.

There is a correspondence between the measurability of mappings and the measura-

bility of their associated graph (Rockafellar and Wets, 1998, Theorem 14.8).

B.19 Theorem. Let (Ω,B,P) be a probability space. Let F : Ω ⇒ Rn be closed-valued.

If the probability space is complete, the 3 following properties are equivalent.

i. The set-valued mapping F is measurable;

ii. For any set C ∈ B(Rn), the pre-image F−1(C) is in B;

iii. gphF is a B ⊗ B(Rn)-measurable subset of Ω× Rn.
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B.4 Random Functions

Random functions can be interpreted as mappings from Ω × Rn to R: for every ω ∈ Ω,

there is a function f(ω, ·) from Rn to R. They can also be defined using their epigraph

representation: for every ω ∈ Ω, there is a subset epi f(ω, ·) of Rn+1. In the sequel, we

will only consider l.s.c. random functions. Recall that the epigraph of a l.s.c. function is

a closed set (Proposition A.12).

If x is a random variable with values x(ω) and f is a random l.s.c. function with “val-

ues” f(ω, ·), where f(ω, ·) is a l.s.c. function, then f(·, x(·)) defines a random variable

with values f(ω, x(ω)) (a measurable mapping from Ω to R) if f satisfies suitable mea-

surability conditions. These conditions are given below: f has to be a normal integrand

(Rockafellar and Wets, 1998, Definition 14.27).

B.20 Definition. Let (Ω,B,P) be a probability space. Let f : Ω×Rn → R be a random

function with associated domain and epigraph

Df (ω) = dom f(ω, ·) = {x ∈ Rn : f(ω, x) <∞}
Sf (ω) = epi f(ω, ·) = {(x, α) ∈ Rn × R : f(ω, x) ≤ α} .

If Sf : Ω ⇒ Rn×R is closed-valued and measurable (as a set-valued mapping defined on

Ω×Rn), the function f is said to be a normal integrand (Rockafellar and Wets, 1998,

Definition 14.27).

The following results are taken from Rockafellar and Wets (1998, Propositions 14.28,

Theorem 14.37).

B.21 Proposition. Let (Ω,B,P) be a probability space and f : Ω×Rn → R a random

function with domain Df and epigraph Sf . If f is a normal integrand, then Df : Ω ⇒ Rn

is measurable (as a set-valued mapping), f is l.s.c. in x ∈ Rn for each fixed ω ∈ Ω, and f

is B-measurable in ω ∈ Ω for each fixed x ∈ Rn. In addition, the random variable defined

by ω 7→ f(ω, x(ω)), where x is B/B(Rn)-measurable, is itself B/B(R)-measurable.

B.22 Theorem. Let f : Ω×Rn → R be a normal integrand. Then for p(ω) = inf f(ω, ·)
and P (ω) = argmin f(ω, ·), it holds that the function p : Ω → R is measurable, the

mapping P : Ω ⇒ Rn is closed-valued and measurable, and in particular P admits a

measurable selection.

Examples of normal integrands are recorded below (Rockafellar and Wets, 1998, Ex-

amples 14.29, 14.31, 14.32; Proposition 14.39; Exercise 14.55), whereas Theorem B.19

gives the general measurability condition for set-valued mappings that characterizes nor-

mal integrands.

B.23 Proposition. Let f : Ω× Rn → R be a random function with domain Df (ω). If

any of the following conditions hold, f is a normal integrand.

i. (Carathéodory integrands.) f(ω, x) is finite-valued, measurable in ω for each x,

and continuous in x for each ω.

ii. There is a Carathéodory integrand f0 : Rn → R and a closed-valued measurable

mapping C : Ω ⇒ Rn such that f(ω, x) coincides with f0(ω, x) if x ∈ C(ω) and

f(ω, x) =∞ if x /∈ C(ω).
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iii. (Jointly l.s.c. functions.) Ω is a Borel subset of Rd and f is l.s.c. (over Ω× Rn).

iv. (Convex integrands.) f(ω, ·) is l.s.c. and convex (over Rn) for each ω, the interior

of Df (ω) is nonempty whenever Df (ω) is nonempty, and f(ω, x) is measurable in ω

for each x.

v. (Simple integrands.) The range of Df and the range of f are finite (this holds true

in situations where the set of feasible x given ω is finite and Ω is finite).

B.5 Expectation

Let (Ω,B, µ) be a measure space. Let M denote the class of all B/B(R)-measurable

mappings from Ω to R, and letM+ denote the class of all nonnegative mappings inM.

The expectation (or expected value) of nonnegative random variables is defined through

the integral (Billingsley, 1995, Equation 15.3).

B.24 Definition. The integral of a function f ∈M+ on a measure space (Ω,B, µ) is
∫

f dµ = sup
∑

ν

[

inf
ω∈Bν

f(ω)

]

µ(Bν)

where the supremum is over the partitions {Bν}1≤ν≤N of Ω with N finite and Bν ∈ B.

The expectation of a random variable f ∈ M+ on a probability space (Ω,B,P) is

(setting µ to P)

E{f} =

∫

f d P .

The expectation of nonnegative random variables can also be defined through prop-

erties (Pollard, 2001, Theorem 2.12). For a set B ∈ B, let IB ∈M+ denote the indicator

function of B defined by IB(ω) = 1 if ω ∈ B and IB(ω) = 0 if ω /∈ B.

B.25 Definition. For each probability measure P on the measurable space (Ω,B), there

is a functional E from M+ to [0,∞] uniquely determined by the following properties.

i. E{IB} = P{B} for all B ∈ B;

ii. E{0} = 0 where the zero of the left-hand side denotes a zero-valued measurable

mapping;

iii. For α, β ≥ 0 and f, g ∈M+, E{αf + βg} = αE{f}+ βE{g};
iv. If f, g are in M+ and f(ω) ≤ g(ω) for almost all ω ∈ Ω, then E{f} ≤ E{g};
v. (Monotone convergence.) For a sequence {f ν}ν∈N of functions fν ∈ M+, if

fν(ω) → f(ω) with fν(ω) ≤ fν+1(ω) for almost all ω ∈ Ω, then E{f ν} → E{f}
with E{fν} ≤ E{fν+1}.

The expectation of an extended-real-valued random variable f is obtained by decom-

posing f into its positive and negative parts f+, f− ∈M+.

B.26 Definition. Let f : Ω → R be an extended-real-valued random variable. Define

f+(ω) = max{0, f(ω)} and f−(ω) = max{0,−f(ω)}. If E{f+} and E{f−} are not both

infinite, the expectation of f is said to be well-defined, and

E{f} = E{f+} − E{f−} .
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E{αf+βg} = αE{f}+βE{g} for α, β in R provided that the situation∞−∞ is avoided.

The expectation has additional properties.

B.27 Proposition. Let {fν}ν∈N be a sequence of functions in M.

vi. (Fatou’s lemma.) E{lim infν f
ν} ≤ lim infν E{fν}.

vii. (Dominated convergence.) If f ν(ω) → f(ω) for almost all ω and if there is some

g ∈ M such that |fν(ω)| ≤ g(ω) for all ν and almost all ω with E{g} < ∞, then

E{fν} → E{f} with E{fν} finite and E{f} finite.

viii. (Uniform integrability.) If f ν(ω) → f(ω) for almost all ω and if the sequence is

uniformly integrable, in the sense that supν E{|fν |I{|fν |>α}} tends to 0 as α→∞,

then E{fν} → E{f}.

Classes of random variables with finite expectations define particular spaces of mea-

surable functions (Pollard, 2001, Section 2.7).

B.28 Definition. Let (Ω,B,P) be a probability space. For 1 ≤ p < ∞, consider the

space Lp(Ω,B,P) of functions f ∈ M such that E{|f |p} is finite. For p = ∞, consider

the space L∞(Ω,B,P) of functions f ∈ M for which the essential supremum inf[α ∈ R :

P{ω : |f(ω)| > α} = 0} is finite. Then, the Lebesgue space Lp(Ω,B,P) (1 ≤ p ≤ ∞)

is defined as the space of equivalence classes of functions [f ] = {g ∈ Lp(Ω,B,P) : g =

fP-almost surely}.

To each element f of the space Lp(Ω,B,P) can be associated the real number ||f ||p =

(E{|f |p})1/p. The reduction to equivalence classes of functions is made so that in

Lp(Ω,B,P), ||f − g||p = 0 entails f = g. (|| · ||p is a semi-norm for Lp(Ω,B,P) and

a norm for Lp(Ω,B,P): see Definition C.3.)

B.29 Definition. Let Lp(Ω,B,P; Rn) be the space of B-measurable mappings x : Ω →
Rn such that the Euclidian norm mapping ω 7→ ||x(ω)|| is in Lp(Ω,B,P). Then, the

Lebesgue space Lp(Ω,B,P; Rn) (1 ≤ p ≤ ∞) is defined as the space of equivalence

classes of functions [f ] = {g ∈ Lp(Ω,B,P; Rn) : g = f P-almost surely}.

Now we turn our attention to expectations over random functions. The expectation

over a random function is well-defined for normal integrands (Rockafellar and Wets, 1998,

Proposition 14.58):

B.30 Proposition. Let (Ω,B,P) be a probability space. Let X denote a space of

B/B(Rn)-measurable mappings, and let x : Ω → Rn be a mapping in X . If the ran-

dom function f : Ω × Rn → R is a normal integrand, the functional Ef from X to R

given by

Ef [x] = E{f(ω, x(ω))}
is well-defined, under the additional convention (in a context of minimization) that

E{f(ω, x(ω))} =∞ if E{f+(ω, x(ω))} =∞. When Ef [x] is finite, it holds that x(ω) lies

in dom f(ω, ·) almost surely.

An important theorem identifies conditions under which the infinite-dimensional min-

imization of Ef [x] over x ∈ X reduces to a minimization of f(ω, ·) for each ω (Rockafellar

and Wets, 1998, Theorem 14.60). The result makes use of a property possessed by certain

spaces X of measurable functions (Rockafellar and Wets, 1998, Definition 14.59).
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B.31 Definition. A space X of measurable functions x : Ω → Rn is decomposable

relative to a measure µ if for every function x0 ∈ X , every set B ∈ B with µ(B) finite

and every bounded measurable function x1 : Ω → Rn, X contains the function x that

coincides with x0 on Ω \B and coincides with x1 on B.

The Lebesgue spaces Lp(Ω,B,P; Rn) are decomposable, whereas the space of constant-

valued functions and the space of continuous mappings f : Ω→ Rn are not decomposable

relative to most measures P (Rockafellar and Wets, 1998, page 677).

B.32 Theorem. Let (Ω,B,P) be a probability space. Let X be a space of measurable

functions x : Ω → Rn decomposable relative to P. Let f : Ω × Rn → R be a normal

integrand. Then, as long as Ef [x] 6≡ ∞,

inf
x∈X

E{f(ω, x(ω))} = E{ inf
x∈Rn

f(ω, x)} ,

and as long as infx∈X E{f(ω, x(ω))} > −∞, it holds that x̄ ∈ X is in argminx∈X Ef [x]

iff x̄(ω) is in argminx∈Rn f(ω, x) for P-almost every ω ∈ Ω.

B.6 Distributions

Let (Ω,B,P) be a probability space and let x : Ω → Rm be a B/B(Rm)-measurable

mapping.

B.33 Definition. The distribution of a random vector x : Ω→ Rm is the mapping µ

from the Borel sets B ∈ B(Rm) to the interval [0, 1], with values

µ(B) = P{x(ω) ∈ B} .

The support of the distribution of x, also referred to as the support of x, is defined as

the smallest closed set B (with respect to the set-inclusion ordering) such that µ(B) = 1.

The cumulative distribution function (cdf) of x is the mapping F : Rm → R with

values

F (t) = P{xi(ω) ≤ ti , i = 1, . . . ,m} .

For a real-valued random variable x : Ω→ R, the corresponding distribution function

F has an integral representation

F (t) =
∫ t

−∞f(t)dt

if and only if F is absolutely continuous (Billingsley, 1995, Theorem 31.8), in the following

sense (Billingsley, 1995, Equation 31.28):

B.34 Definition. A function F : R→ R is absolutely continuous if for each ε > 0, there

is some δ > 0 such that the following condition holds: for each collection of k intervals

[ai, bi] with a disjoint interior,

k
∑

i=1

|F (bi)− F (ai)| < ε if

k
∑

i=1

(bi − ai) < δ .



Appendix C

Elements of Functional Analysis for Kernel

Methods

This appendix presents results from functional analysis useful in the theory of kernel

methods. We use kernels or kernel-based methods in several places in the thesis (Chapters

3, 5).

The appendix is organized as follows. Section C.1 defines Hilbert spaces. Section C.2

defines continuous linear mappings. Section C.3 defines reproducing kernels, positive def-

inite kernels, and reproducing kernel Hilbert spaces. Section C.4 gives the interpretation

of positive definite kernels as generalized inner products.

C.1 Hilbert Spaces

C.1 Definition. Let F be a nonempty set. A metric for F is a function d : F ×F → R

with the following properties (where f, g, h ∈ F ):

i. d(f, g) ≥ 0 with d(f, g) = 0 iff f = g

ii. d(f, g) = d(g, f)

iii. (Triangle inequality.) d(f, h) ≤ d(f, g) + d(g, h).

A metric space (F, d) is defined as a nonempty set F equipped with a metric d.

In a metric space (F, d), the distance from an element f ∈ F to a set C ⊂ F is

given by d(f, C) = infg∈C d(f, g), with d(f,∅) = ∞. We say that a metric space (F, d)

is separable if F has a dense countable subset, in the sense that there exists a set

Q = {qν}ν∈N of elements of F such that for all ε > 0 and f ∈ F , d(f,Q) < ε.

A sequence {fν}ν∈N in a metric space (F, d) is a Cauchy sequence if for each ε > 0,

there is some Nε ∈ N∞ such that d(fµ, fν) < ε when µ, ν ∈ Nε. We say that {fν}ν∈N

converges [strongly] to some limit point f if limν→∞ d(fν , f) = 0. We denote the

limit by s-limν→∞ fν = f and write fν → f .

C.2 Definition. A metric space (F, d) is complete if every Cauchy sequence in it

converges to an element of F .

If (F, d) is a complete metric space, then a set C is closed when d(f, C) = 0 entails

f ∈ C.

Recall that a linear space F over a field K is a set F for which the addition (+) of two

elements f, g ∈ F and the multiplication (·) of an element f ∈ X by a scalar α ∈ K obey
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the standard rules of algebra (commutativity, associativity, distributivity), with f + g

and α ·f being also elements of F (Yosida, 1980, Section 0.4). For the properties of fields

we refer to Rudin (1976, Definition 1.12). A linear space is called a real linear space if

K = R. A linear space is called a complex linear space if K = C.

C.3 Definition. A linear space F over a field K is a normed linear space if to every

element f ∈ F is associated a real number ||f ||, called the norm of f , with the following

properties (where f, g ∈ F and α ∈ K):

i. ||f || ≥ 0 with ||f || = 0 iff f = 0

ii. (Subadditivity.) ||f + g|| ≤ ||f ||+ ||g||
iii. ||αf || = |α| · ||f ||.

A normed linear space is a pre-Hilbert space if its norm also satisfies

iv. ||f + g||2 + ||f − g||2 = 2(||f ||2 + ||g||2) .

In a normed linear space F , the function d(f, g) = ||f − g|| is a metric for F .

In Definition C.3, if ||f || satisfies only the conditions ii and iii (which imply ||f || ≥ 0),

then ||f || is called a semi-norm. If ||f || satisfies conditions i, ii, and instead of condition iii

the weaker set of conditions

iii’. || − f || = ||f || ,

αν → 0 entails ||ανf || → 0 ,

||fν || → 0 entails ||αfν || → 0 ,

then ||f || is called a quasi-norm, and F is called a quasi-normed linear space. When F

is a quasi-normed or a normed linear space, f ν → f entails ||fν || → ||f ||; furthermore, if

fν → f , gν → g, and αν → α, it holds that fν + gν → f + g and ανfν → αf (Yosida,

1980, Proposition 2.2).

C.4 Proposition. Let F be a real pre-Hilbert space. The inner product between

f, g ∈ F , is defined by

〈f, g〉 = 1
4 ||f + g||2 − 1

4 ||f − g||2 ,

and satisfies the following properties (where f, g, h ∈ F and α ∈ R):

〈αf, g〉 = α〈f, g〉 ; 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 ; 〈f, g〉 = 〈g, f〉 ; 〈f, f〉 = ||f ||2.
Moreover, we have |〈f, g〉| ≤ ||f || ||g|| (Cauchy-Schwartz inequality).

If F is a complex pre-Hilbert space, the inner product is defined as 〈f, g〉 = (f, g) +

j(f, j g) with (f, g) = ||f + g||2/4 − ||f − g||2/4 and j =
√
−1. The properties of

Proposition C.4 hold with α ∈ C, except that now 〈f, g〉 = 〈g, f〉 (complex conjugate).

In particular, 〈f, αg〉 = α〈f, g〉.

C.5 Definition. A normed linear space that is complete is called a Banach space. A

pre-Hilbert space that is complete is called a Hilbert space.

A set B = {fν}ν∈I of elements of a Hilbert space F is called an orthonormal set of F

if 〈fν , fν〉 = 1 and 〈fµ, fν〉 = 0 for µ 6= ν. If in addition B is not a proper subset of an

orthonormal set of F , then B is an orthogonal basis of F .

C.6 Proposition. A separable Hilbert space F has an orthogonal base {f ν}ν∈I with

at most a countable number of elements (Yosida, 1980, Corollary III.5). Any f ∈ F
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can be represented as f =
∑

ν∈I c
νfν with cν = 〈f, fν〉 (Fourier expansion), whereas

||f ||2 =
∑

ν∈I |cν |2 (Parseval’s relation).

C.2 Linear Mappings

C.7 Definition. Let X, Y be Banach spaces over a field K. A mapping T : X → Y is

said to be a linear mapping if domT = X and T (αx1 + βx2) = αT (x1) + βT (x2) for

every x1, x2 ∈ X and scalar α1, α2 ∈ K.

Let us denote by || · ||X and || · ||Y the norms of the Banach spaces X and Y . Let ||T ||
denote the smallest constant c > 0 such that ||T (x)||Y ≤ c||x||X for all x ∈ domT . We

say that T is bounded if ||T || is finite, and call ||T || the operator norm of T . It holds

that a linear mapping T : X → Y is continuous if and only if T is bounded (Yosida,

1980, Corollary I.6.2).

Let L(X,Y ) denote the space of all continuous linear mappings T : X → Y . The

following statement of Riesz’s representation theorem is taken from Yosida (1980, Section

III.6).

C.8 Theorem. Let X be a Hilbert space over the field K and let f be an element of

L(X,K). Then there exists a unique element yf ∈ X such that f(x) = 〈x, yf 〉 for every

x ∈ X with ||f || = ||yf ||X . Conversely, an element y ∈ X defines a unique mapping fy

in L(X,K) by fy(x) = 〈x, y〉 for every x ∈ X with ||fy|| = ||y||X .

There is a one-to-one correspondence between elements f ∈ L(X,K) and elements

yf ∈ X. In particular, if X is a real Hilbert space, L(X,R) (the dual of X) can be

identified to a real Hilbert space equipped with the inner product 〈f, g〉 = 〈yf , yg〉. If X

is a complex Hilbert space, L(X,C) can be identified to a complex Hilbert space equipped

with the inner product 〈f, g〉 = 〈yf , yg〉.

C.3 Reproducing Kernel Hilbert Spaces

C.9 Definition. Let F be a space of functions f : X → K forming a Hilbert space. The

inner product between f, g ∈ F is written 〈f(·), g(·)〉. Then, the mapping k : X×X → R

with values k(x, y) is a reproducing kernel of F if

i. For every y ∈ X, the function fy(·) = k(·, y) is in F ;

ii. (Reproducing property.) For every f ∈ F and every y ∈ X, f(y) = 〈f(·), k(·, y)〉.

Note that k(·, y) acts as a Dirac distribution centered at y by the reproducing property,

whereas k(·, y) is actually a function defined on X.

With f(·) = k(·, y), Property ii. yields k(x, y) = 〈k(·, y), k(·, x)〉. For real Hilbert

spaces we can write k(x, y) = 〈k(·, x), k(·, y)〉, whereas for complex Hilbert spaces we

have k(x, y) = 〈k(·, x), k(·, y)〉.
If a reproducing kernel k exists, it is unique (Aronszajn, 1950). A Hilbert space

for which a reproducing kernel exists is called a reproducing kernel Hilbert space

(RKHS). A reproducing kernel of F exists if and only if for every y ∈ X, the mapping

f 7→ f(y) (called the evaluation functional) is a continuous linear mapping with
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respect to f ∈ F , meaning that there exists a finite cy > 0 such that |f(y)| ≤ cy||f || for
all f ∈ F . If k exists, the smallest cy is k(y, y)1/2 by Cauchy-Schwartz inequality (C.4)

applied to f(y) = 〈f(·, k(·, y))〉, whereas if a continuous linear mapping Fy(f) = f(y)

exists for every y, we have Fy(f) = 〈f(·), gy(·)〉 for some gy ∈ X (by Theorem C.8) so

that gy(x) = k(x, y) is a reproducing kernel (Yosida, 1980, Proof of Theorem III.9.1).

From the relation |f(y)| ≤ k(y, y)1/2||f ||, one deduces that if there exists a scalar

c > 0 such that k(y, y)1/2 ≤ c for all y ∈ X, then ||f ||∞ = supy∈X |f(y)| ≤ c||f ||. For

the particular case of normalized kernels [k(y, y) = 1] we have ||f ||∞ ≤ ||f ||.
For a sequence {fν}ν∈N in a RKHS, ||fn − f || → 0 entails fn(y) → f(y) for every

y ∈ X, since we have, by definition of the strong convergence, fn → f , and then fn(y)→
f(y) by continuity of the evaluation functional k(·, y).

C.10 Proposition. A reproducing kernel k for a class F of K-valued functions has the

property that
∑n

i=1

∑n
j=1 αik(yi, yj)αj = ||∑n

i=1 k(·, yi)αi||2 ≥ 0 for any finite collection

of elements yi ∈ F and coefficients αi ∈ K. That is, the Gram matrix K ∈ Kn×n with

elements Kij = k(yi, yj) is positive semi-definite.

When X ⊂ Rd, Proposition C.10 can also be stated as follows: the linear mappings

L : F → K defined by L(f) =
∫

X

∫

X
α(x)k(x, y)α(y) dx dy, with k a reproducing kernel

and α any K-valued continuous function with nonzero values on a compact subset of X,

are such that F (f) ≥ 0.

The converse of Proposition C.10 is also true (Aronszajn, 1950, Theorem 2.4 at-

tributed to E.H. Moore). Before stating the theorem, we define the notion of positive

definite kernel.

C.11 Definition. A function k : X ×X → K that is hermitian [k(x, y) = k(y, x)], and

such that any matrix in Kn×n (n ∈ N) with elements Kij = k(yi, yj) (yi ∈ X, 1 ≤ i ≤ n)

is positive semi-definite, is called a positive definite kernel.

C.12 Theorem. To every positive definite kernel k : X × X → K, there corresponds

a unique class F of functions f : X → K forming a Hilbert space with a uniquely

determined inner product and with k as a reproducing kernel.

Being a reproducing kernel, a positive definite kernel k has the property that k(·, y)
is continuous for every y ∈ X. The property does not imply that k is continuous as a

mapping from X ×X to K (Lehto, 1952). A continuous positive definite kernel is called

a Mercer kernel. Since a function is continuous at any isolated point of its domain

(Rudin, 1976, Definition 4.5), the distinction between positive definite kernels and Mercer

kernels is irrelevant when X is a discrete set.

To build the class F of Theorem C.12 corresponding to a positive definite kernel k,

we follow Aronszajn (1950):

C.13 Proposition. The class F is generated by functions of the form

f(·) =
∑m

i=1 αik(·, yi) for some m ∈ N, αi ∈ K, yi ∈ X

to which corresponds a norm ||f || = [
∑

i

∑

j αik(yi, yj)αj ]
1/2 and then the class is com-

pleted by limit functions of Cauchy sequences in the metric of the norm.

The inner product between two functions f(·) =
∑m

i=1 αik(·, yi) and g(·) =
∑n

j=1 βjk(·, y′j)
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is then given by

〈f, g〉 = ∑m
i=1

∑n
j=1 αiβjk(y

′
j , yi) =

∑m
i=1

∑n
j=1 αiβjk(yi, y′j) .

C.4 Positive Definite Kernels

Theorems C.10 and C.12 show that Reproducing Kernel Hilbert Spaces are uniquely

determined by the choice of a positive definite kernel. In the sequel, we refer to a

positive definite kernel simply as a kernel.

If X is a compact subspace of Rd, a continuous kernel k : X × X → R admits an

eigenfunction expansion

k(x, y) =
∑m

ν=1 λ
νψν(x)ψν(y)

with λν > 0 and m ≤ ∞ (Mercer, 1909). The vector φ(x) = {
√
λνψν(x)}1≤ν≤m is

interpreted as a feature vector for x, whereas k(x, y) is viewed as a generalized inner

product between the vectors φ(x), φ(y) valued in some feature space F . The mapping

φ : X → F is called a feature map (Aizerman et al., 1964).

To elucidate the nature of F , observe that φ(x) belongs to the space `2 of vec-

tors {ξν}ν∈N such that
∑∞

ν=1 |ξν |2 < ∞, since k(x, x) =
∑m

ν=1 φ
ν(x)2 is finite. In fact

`2 is a linear normed space equipped with the norm ||{ξν}ν∈N|| = [
∑∞

ν=1(ξ
ν)2]1/2, which

can be interpreted as a generalization of the Euclidian norm in Rn when n tends to ∞.

The feature map is continuous: xν → x̄ entails φ(xν) → φ(x̄), since ||φ(xν) − φ(x̄)|| =
k(xν , xν) + k(x̄, x̄)− 2k(xν , x̄)→ 0 by continuity of k (Cucker and Smale, 2001).

From k(·, y) =
∑m

ν=1 λ
νψν(·)ψν(y) and f(·) =

∑n
i=1 αik(·, yi) for some n ≤ ∞, one

can see that f has the form f(·) =
∑m

ν=1 α
ν
fψ

ν(·) with αν
f =

∑n
i=1 αiλ

νψν(yi), and that

〈f, g〉 =
∑m

ν=1 α
ν
fα

ν
g/λ

ν .

In machine learning, it is common to extend the feature map interpretation to more

general spaces X and say that a function k : X × X → K is a kernel if there exist a

Hilbert space H and a mapping φ : X → H such that k(x, y) = 〈φ(x), φ(y)〉 for all

x, y ∈ X (Steinwart and Christman, 2008, Definition 4.1). The corresponding RKHS is

the class F of functions of the form f(·) = 〈h, φ(·)〉H for some h ∈ H, equipped with

the norm ||f || = infh∈H{||h||H : f(·) = 〈h, φ(·)〉H} (Steinwart and Christman, 2008,

Theorem 4.21). Proposition C.13 still holds.

For the class of shift-invariant continuous kernels k : X×X → R with X = Rd, where

the shift-invariance property means that k(x+τ, y+τ) = k(x, y) for any τ ∈ Rd, Bochner’s

theorem (Bochner, 1933) [see also Yosida (1980, Theorem XI.13.2)] characterizes the

kernels k in the frequency domain. The following statement particularizes to real-valued

normalized kernels (k(x, x) = 1 for all x ∈ Rd) a form of Bochner’s theorem given in

Hofmann et al. (2008).

C.14 Theorem. Let h : Rn → R by a continuous function with h(0) = 1 and h(x) =

h(−x). Then, the function k : Rn × Rn → R with values k(x, y) = h(x − y) is a

kernel iff there exists a random vector ξ ∈ Rn on a probability space (Ω,B,P) such that

h(x) = E{exp{j 〈x, ξ〉}}.

Thus we have k(x, y) = E{exp{j〈x, ξ〉}exp{j 〈y, ξ〉}}, which is very similar to Mercer’s

eigenfunction expansion (the countable sum has been replaced by an integral as X = Rd



170 Appendix C. Elements of Functional Analysis for Kernel Methods

is now unbounded).

From Bochner’s theorem, Schoenberg (1938) obtains a characterization of shift-invariant

kernels having a radial symmetry.

C.15 Definition. A function f : R → R with values f(t) is completely monotone

(c.m.) for t ≥ 0 if it is infinitely continuously differentiable on (0,∞) with f(0) = f(0+)

and has for every k its derivative of order k satisfying

(−1)kf (k)(t) ≥ 0 for 0 < t <∞.

C.16 Theorem. The function k : Rn × Rn → R with values k(x, y) = f(||x− y||2) is a

kernel iff f : R→ R is a completely monotone (c.m.) function for R+.

An example of c.m. function for R+ is f(t) = exp{−at} with a ≥ 0; it shows that

the function k(x, y) = exp{− 1
2 ||x − y||2/σ2} is a kernel. Other simple examples of c.m.

functions are (a+ b t)−q with q > 0 and a, b ≥ 0 (a, b not both 0), and log(a+ bt−1) with

a ≥ 1 and b > 0. Simple composition rules are as follows: If f1, f2 are c.m. for t ≥ 0,

then α1f1 + α2f2 with α1, α2 ≥ 0 is c.m. and f1(t)f2(t) is c.m.; If f is c.m. and g is

nonnegative with a c.m. derivative g′, then f(g(t)) is c.m.

Kernels are closed under positive sums and pointwise products:

C.17 Proposition. If ki : X×X → K (i = 1, 2) are kernels, then the following functions

k : X ×X → K are kernels.

i. k = α1k1 + α2k2 (α1, α2 ≥ 0) with values k(x, y) = α1k1(x, y) + α2k2(x, y) .

ii. k = k1 · k2 with values k(x, y) = k1(x, y)k2(x, y).

If ki : Xi ×Xi → K (i = 1, 2) are kernels, then the following functions k : (X1 ×X2) ×
(X1 ×X2)→ K are kernels.

iii. k = k1 ⊕ k2 with values k(x1, x2, y1, y2) = k1(x1, y1) + k2(x2, y2).

iv. k = k1 ⊗ k2 with values k(x1, x2, y1, y2) = k1(x1, y1)k2(x2, y2).

If k : (X × X) × (X × X) → K with values k(x1, x2, y1, y2) is a kernel, then k∆ :

X ×X → K with values k∆(x, y) = k(x, x, y, y) is a kernel (Haussler, 1999).

Kernels are also closed under pointwise limits:

C.18 Proposition. If {kν}ν∈N is a sequence of kernels kν : X × X → K such that

kν(x, y)→ k(x, y) for all x, y ∈ X, then k is a kernel.

Using basic kernels and positivity-preserving operations, more complex kernels can

be built. For example, one can define a kernel k : X ×X → R with values

k(x, y) = E{φ(ω, x)φ(ω, y)} ,

where φ : Ω×X → R is such that φ(ω, x) is in L2(Ω,B,P) for each x ∈ X. If in addition

E{φ(ω, x)} = 0 for each x, we can interpret the Gram matrix for k evaluated at x1, . . . , xn

as the covariance matrix of the random variables φ(·, x1), . . . , φ(·, xn).



Appendix D

Structural Results for Two-Stage Stochastic

Programming

This appendix describes a classical formulation of the two-stage stochastic linear program

with recourse, and gives details on the structure of optimal solutions. We have included

this appendix in the thesis, because it clarifies the origin of certain assumptions that are

found to be technically challenging to remove in stochastic programming models.

The material is mainly taken from Birge and Louveaux (1997), up to some adjustments

based on Wets (1974); Römisch and Wets (2007); Shapiro et al. (2009).

The appendix is organized as follows. Section D.1 states the problem and gives a list

of assumptions that ensure that the formulation is meaningful. Section D.2 gives useful

properties that can be derived from the previous assumptions.

D.1 Problem Statement and Assumptions

Let (Ω,B,P) be a probability space. A two-stage stochastic linear program with recourse

is a program of the form

minimize 〈c, x〉+ E{Q(x, ω)} (D.1)

subject to x ∈ K1 ∩K2 , (D.2)

where Q(x, ω) = miny{ 〈q(ω), y〉 :

T (ω)x+W (ω)y = h(ω),

0 � y ∈ Rm2} (D.3)

K1 = {x ∈ Rm : Ax = b, x � 0} (D.4)

K2 = {x ∈ Rm : E{Q(x, ω)} <∞} (D.5)

with c ∈ Rm (first-stage cost vector), A ∈ Rs×m, b ∈ Rs, and B-measurable mappings

q : Ω → Rm2 (second-stage cost vector), T : Ω → Rs2×m (technology matrix), W : Ω →
Rs2×m2 (recourse matrix), h : Ω → Rs2 . We let ai, ti, wi denote the i-th rows of A, T ,

W respectively.

Let z : Ω→ Rm2 ×Rs2×m ×Rs2×m2 ×Rs2 be the B-measurable mapping with values

z(ω) = ( q(ω), t1(ω), . . . , ts2
(ω), w1(ω), . . . , ws2

(ω), h(ω) ) (D.6)

which collects all the (possibly non-random) elements of (q, T,W, h). Let Z ⊂ Rp with

p = m2 + s2(m+m2 + 1) denote the support of z.
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Various well-posed forms of the program can be distinguished. To this end, we describe

standard assumptions. The joint role of those assumptions is detailed in Section D.2.

D.1 Definition (Measurability). The support of z is a Borel set of Rp, and the sigma-

algebra B contains the collection of Borel sets of the support of z, that is,

B ⊃ {B ∩ Z : B ∈ B(Rp)} .

The stated measurability assumption is consistent with Wets (1974, page 311). The

measurability of Q(x, ·) for each fixed x requires at least that the sigma-algebra gener-

ated by z be included in B. It does not harm to allow sigma-algebras larger than the

sigma-algebra generated by z since this would not alter the optimal value of the pro-

gram. Note that using larger sigma-algebras makes it possible to select distinct vectors

y∗(ω1), y
∗(ω2) for attaining the optimal value of Q when z(ω1) = z(ω2), that is, to im-

plement a stochastic policy for y. Most authors rule out this possibility, but in practice

a numerical solution algorithm could indeed return distinct optimal values for y in face

of duplicate realizations of z.

Now, recall that a mapping F : Rd → Rm is said to be affine iff it has values F (ξ) =

b̄+Bξ for some fixed b̄ ∈ Rm and B ∈ Rm×d.

D.2 Definition (Affine dependence). There exist a random variable ξ : Ω → Rd

(d ≤ p) and affine mappings qf : Rd → Rm2 , Tf : Rd → Rs2×m, Wf : Rd → Rs2×m2 ,

hf : Rd → Rs2 , possibly constant-valued, such that for all ω ∈ Ω,

q(ω) = qf (ξ(ω)) , T (ω) = Tf (ξ(ω)) , W (ω) = Wf (ξ(ω)) , h(ω) = hf (ξ(ω)).

The affine dependence assumption enforces the parametrization of (q, T,W, h) by ξ.

It is made without loss of generality, as it is always possible to set ξ = z, and ex-

tract the appropriate coordinates of z through mappings qf , Tf ,Wf , hf . One goal of the

parametrization is to represent through ξ the randomness of the non-constant elements

of z. Ideally, ξ is made of a small number of components, and the measure P is specified

indirectly by the joint distribution of those components.

If we define

Qf (x, ξ) = miny {〈qf (ξ), y〉 : Tf (ξ)x+Wf (ξ)y = hf (ξ), 0 � y ∈ Rm2} , (D.7)

we have Q(x, ω) = Qf (x, ξ(ω)).

D.3 Definition (Fixed Recourse). For all ω, W (ω) is a fixed matrix W ∈ Rs2×m2 .

Fixed recourse is a simplifying assumption under which the value function E{Q(·, ω)}
is easier to describe. The rows of the fixed matrix W are always assumed to be linearly

independent to avoid trivial redundancies or conflicts among equality constraints (Wets,

1974, page 312).

D.4 Definition (Complete Recourse). For all ω, W (ω) is a fixed matrix W ∈
Rs2×m2 , and the positive hull of W coincides with Rs2 :

posW = {Wy : y � 0} = WR
m2

+ = Rs2 .
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The condition WR
m2

+ = Rs2 implies that for any x ∈ Rm and all ω ∈ Ω, there exists

some y � 0 such that T (ω)x + Wy = h(ω). This surjectivity condition is sufficient

for having Q(x, ω) < ∞ almost surely. From (D.8) below, one can show that complete

recourse holds iff {π ∈ Rs2 : WTπ � 0} = {0} (Shapiro et al., 2009, page 33). Recall

from Rockafellar (1970, page 65) that the dimension of the largest subspace contained

in a cone is called the lineality of the cone; methods to check that the lineality of posW

is s2 are described in Wets and Witzgall (1967) and Wallace and Wets (1992).

D.5 Definition (Relatively Complete Recourse). For all x ∈ K1 and P-almost all

ω ∈ Ω, there exists some y � 0 such that T (ω)x+W (ω)y = h(ω), that is,

h(ω)− T (ω)x ∈W (ω)Rm2

+ .

The relatively complete recourse assumption means that Q(x, ω) < ∞ for almost

all ω and x ∈ K1. We could still have E{Q(x, ω)} = ∞ if the distribution of Q(x, ·) is

not integrable. In particular, the assumption alone does not guarantee that K1 ⊂ K2

— compare to Wets (1974, Definition 6.1) and Birge and Louveaux (1997, page 92).

Note that no generic method is available for checking that a relatively complete recourse

assumption holds. Relatively complete recourse is thus typically asserted at the modeling

step, where penalties in the objective can be favored over hard constraints.

D.6 Definition (Dual Feasibility). For P-almost all ω ∈ Ω, the set

Π(ω) = {π ∈ Rs : W (ω)Tπ � q(ω)}
is nonempty.

The dual feasibility assumption ensures that Q(x, ω) > −∞ for almost all ω and all x.

Indeed, by weak duality,

Q(x, ω) = infy{ 〈q(ω), y〉 : T (ω)x+W (ω)y = h(ω), y � 0 }
≥ supπ{ 〈π, h(ω)− T (ω)x〉 : W (ω)Tπ � q(ω) } (D.8)

> −∞ if Π(ω) 6= ∅.

D.7 Definition (Fixed Technology). For all ω, T (ω) is a fixed matrix T ∈ Rs2×m.

D.8 Definition (Finite Second Moments). z ∈ L2(Ω,B,P), that is, E{||z||2} <∞.

D.9 Definition (Finite Support). The support of z is finite, that is, there exists a

finite set Z = {z1, z2, . . . , zn} such that P{ω : z(ω) = zν} = pν > 0 with
∑n

ν=1 p
ν = 1.

D.10 Definition (Polyhedral Support). The support of z is a polyhedral set.

A set is said to be polyhedral if it can be described as the intersection of a finite

number of halfspaces. For instance, by definition, K1 is polyhedral. A classic result from

Weyl (1935) shows that polyhedral sets are the only sets that can also be described as the

convex hull of a finite number of points and directions (Rockafellar, 1970, Theorem 19.1).

As the image of a polyhedral set in Rn1 by a linear transformation F : Rn1 → Rn2

is a polyhedral set in Rn2 (Rockafellar, 1970, Theorem 19.3), the polyhedral support

assumption holds if the affine dependence assumption holds with a polyhedral support

for ξ. Note also that an affine mapping F : Rd → Rm with values F (ξ) = b̄ + Bξ is

Lipschitz continuous with modulus ||B|| = max||u||=1Bu (Rockafellar and Wets, 1998,

Example 9.3).
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D.2 Structural Properties

It is interesting to identify conditions under which K1∩K2 (constraint D.2) is polyhedral

(Walkup and Wets, 1967). Clearly, the intersection of a finite number of polyhedral sets

is a polyhedral set, so the question, if it is not circumvented by the relatively complete

assumption, is reduced to investigating under which circumstances K2 is polyhedral.

Sufficient conditions are collected in the next proposition, mainly based on Wets (1974)

and Birge and Louveaux (1997, Section 3.1). Essentially, these results concern cases

where the recourse matrix W is fixed and cases where the random variables have a finite

support.

D.11 Proposition (Representations of the effective domain of E{Q(·, ω)}). Un-

der the following sufficient conditions, the set K2 = {x ∈ Rm : E{Q(x, ω)} <∞} in (D.5)

admits the following representations.

i. Under the finite second moments assumption,

K2 = {x ∈ Rm : P{ω : Q(x, ω) <∞} = 1} .

ii. Under the finite second moments and fixed recourse assumptions,

K2 = {x ∈ Rm : for P-almost all ω ∈ Ω, there is some y � 0

such that Wy + T (ω)x = h(ω)} ,

or equivalently, with Σ denoting the support of the distribution of (h, T ),

K2 =
⋂

(h,T )∈Σ

{x ∈ Rm : WR
m2

+ 3 h− Tx} ,

as shown in Wets (1974, Theorem 4.2) or Shapiro et al. (2009, Equation 2.33).

iii. Under the finite second moments and fixed recourse assumptions, if the support

of T is polyhedral and if h, T are statistically independent, then K2 is polyhedral

(Wets, 1974, Corollary 4.13).

iv. Under the finite second moments, fixed recourse and fixed technology assumptions,

K2 is polyhedral; more precisely (Wets, 1974, Theorem 4.10) there exist a matrix

W ∗ ∈ Rp×s2 (p finite) and a vector α∗ ∈ R
p

such that

K2 = {x ∈ Rm : W ∗Tx � α∗} .

v. Under the finite second moments and complete recourse assumptions, K2 = Rm.

vi. Under the finite support assumption, K2 is polyhedral; more precisely,

K2 = {x ∈ Rm : for all ω ∈ Ω, there is some y(ω) � 0

such that W (ω)y(ω) = h(ω)− T (ω)x}

=

n
⋂

ν=1

{x ∈ Rm : yν � 0, W νyν = hν − T νx}

where the elements indexed by ν refer to the realizations ξν .
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A proper function is said to be polyhedral when its epigraph is a polyhedral set. The

domain of a polyhedral function is necessarily a polyhedral set. A result established in

Rockafellar and Wets (1998, Theorem 2.49) shows that the class of proper polyhedral

functions is the class of proper convex piecewise linear functions.

It is interesting to identify conditions under which E{Q(x, ω)} (second term of ob-

jective in D.1, often referred to as the value function) is polyhedral. The finite sum

of proper polyhedral convex functions is polyhedral (Rockafellar, 1970, Theorem 19.4)

and the multiplication of a proper polyhedral convex function by a nonnegative scalar is

polyhedral (Rockafellar, 1970, Corollary 19.5.1), so when the support of ξ is finite, the

question is reduced to investigating under which conditions the integrand of the value

function, Q(x, ω), is proper and polyhedral.

The next lemma (Römisch and Wets, 2007, Lemma 3.1), which reformulates results in

Walkup and Wets (1969a), is instrumental in describing the structure of Q(x, ω) without

necessarily assuming fixed recourse. Under the affine dependence assumption, let Ξ ⊂ Rd

denote the support of ξ, and let Φ : Rd × Rm2 × Rs2 → R be a mapping with values

Φ(ξ, q, t) = infy{〈q, y〉 : Wf (ξ)y = t, y � 0} .

Observe that

Q(x, ω) = Qf (x, ξ(ω)) = Φ( ξ(ω), qf (ξ(ω)), hf (ξ(ω))− Tf (ξ(ω)) x ) .

By analogy to the relatively complete recourse assumption, let H(ξ) = Wf (ξ)Rm2

+ , and

by analogy to the dual feasibility assumption, let

Πf (ξ) = {π ∈ Rs2 : Wf (ξ)Tπ � qf (ξ)} , D(ξ) = {q ∈ Rm2 : Πf (ξ) 6= ∅} .

D.12 Lemma. Let the affine dependence and the polynomial support assumptions hold.

Let ξ ∈ Ξ be fixed. Then,

i. The sets D(ξ) and H(ξ) are polyhedral;

ii. The function Φ(ξ, ·, ·) is finite and continuous on D(ξ)×H(ξ);

iii. The function Φ(ξ, q, ·) is piecewise linear convex on H(ξ) for fixed q ∈ D(ξ);

iv. The function Φ(ξ, ·, t) is piecewise linear concave on D(ξ) for fixed t ∈ H(ξ).

Inasmuch as t = hf (ξ(ω))− Tf (ξ(ω))x, it holds that t depends affinely on x when ω

and thus h, T are fixed.

When the recourse is fixed, Lemma D.12 allows to establish the following local Lips-

chitz continuity properties for Q or equivalently Qf (Rachev and Römisch, 2002, Propo-

sition 3.2).

D.13 Lemma. Let the affine dependence and the polynomial support assumptions hold.

Under the finite second moments, the fixed recourse, the relatively complete recourse and

the dual feasibility assumptions, there exist constants L1 > 0, L2 > 0, K > 0 such that

for all ξ, ξ′ ∈ Ξ, any ρ > 0, and for all x, x′ ∈ K1 ∩K2 ∩ ρB,

i. |Qf (x, ξ)−Qf (x, ξ′)| ≤ L1ρmax{1, ||ξ||, ||ξ′||} ||ξ − ξ′|| ;

ii. |Qf (x, ξ)−Qf (x′, ξ)| ≤ L2 max{1, ||ξ||2} ||x− x′|| ;

iii. |Qf (x, ξ)| ≤ Kρmax{1, ||ξ||2} .
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Finally, the following proposition, that addresses the differentiability of the value

function, is based on Walkup and Wets (1969b), Wets (1974) and Shapiro et al. (2009,

Propositions 2.7, 2.8, 2.9). Note that under the finite second moments and relatively

complete recourse assumptions, we have K1 ⊂ K2, so that K2 is nonempty if K1 is

nonempty.

D.14 Proposition. Under the finite second moments, fixed recourse, relatively complete

recourse and dual feasibility assumptions, and assuming that K1 is nonempty,

i. E{Q(·, ω)} is proper;

ii. E{Q(·, ω)} is convex, lower semicontinuous and Lipschitz continuous on K2;

iii. If (q, T ) is constant-valued, and the distribution of h is absolutely continuous, then

E{Q(·, ω)} is differentiable at x0 ∈ intK2;

iv. If for almost all (q, T ), the distribution of h conditionally to (q, T ) is absolutely

continuous, and if for almost all ω ∈ Ω, the dual solution set at x0 ∈ intK2

arg maxπ{ 〈π, h(ω)− T (ω)x0〉 : WTπ � q(ω) }

is a singleton, then E{Q(·, ω)} is differentiable at x0 ∈ intK2.
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ε-optimal solution, 111, 147

accumulation point, 145

bagging, 35, 42

boosting, 35, 78

boundary of a set, 144

branching process, 9, 65

Bregman divergence, 84

cell, 120, 122

classifier, 120

closure

of a function, 147

of a set, 144

cluster point, 145

complete recourse, 173

conditional sampling, 24

continuity, 146

of convex functions, 153

convergence

of optimal values, 149

of sets, 148

pointwise, 150

uniform, 151

convexity, 14, 152

in the random variables, 94

of the value function, 176

strict, 107, 152

cross-entropy, 30

method, 41

cumulative distribution function (cdf), 164

curse of dimensionality, 14

decision stage, 7

decomposable space, 164

distribution

of a random vector, 164

problem, 17, 19

dual feasibility, 173

effective domain, 146

elite samples, 41, 46

ensemble methods, 34

epi-convergence, 149

for function-valued mappings, 152

from pointwise convergence, 150

of convex functions, 153

epigraph, 111, 147

exogenous stochastic process, 13

expected value, 162

of perfect information (EVPI), 17

problem, 16

exponential

family of distributions, 80

utility function, 63, 68, 70

extended-real-valued function, 111, 143

feasibility set, 7

feature map, 169

filtration, 159

fixed recourse, 172

Gaussian process, 86, 117

graph, 147

Hilbert space, 166

ill-posed problem, 52

infimum, 143

inner product, 166

interior of a set, 144

Itakura-Saito distance, 84

kernel

as covariance function, 86

for decisions, 42

for disturbances, 39

from feature map, 169

positive definite, 168, 169

reproducing, 167

Lebesgue space Lp, 163

Lipschitz continuous, 153

locally, 153, 175

lower

level-bounded, 146, 151

semicontinuous (l.s.c.), 146, 147

Mahalanobis distance, 81

Markov decision process (MDP), 14
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maximum a posteriori (MAP), 32

maximum likelihood, 30, 41

measurable, 158

selection, 160

set-valued mapping, 160

space, 156

metric, 165

minimum, 144

attained, 146, 151

model predictive control (MPC), 16, 97

model selection, 34

for policies, 59

for trees, 73

moment matching, 24

Monte Carlo simulation

of a policy, 26

neural networks, 69

nominal plan, 5, 16, 88

non-anticipativity, 11

normal

cone, 108

integrand, 161, 163

parametric optimization, 106, 119, 151

policy search, 15, 27

polyhedral

function, 175

set, 105, 173

probability metrics method, 24, 39

probability space, 155

progressive hedging algorithm, 18, 48

proper, 146, 147

quadratic distortion, 65, 93

random

function, 161

set, 159

vector, 158

regularization, 31

relatively complete recourse, 173

repair procedure, 53, 102

robust optimization, 6

sample average approximation (SAA), 24

scenario tree, 9

generation, 22

incomplete, 38, 45

with random branching structure, 61

self-improving algorithm, 107

set-valued mapping, 157

shrinking-horizon policy, 26, 77, 89

complexity, 57, 97

sigma-algebra, 155

Borel, 156

generated, 159, 172

product, 157

stationary quantizer, 93

supremum, 144

essential, 163

tangent cone, 111

time consistency, 75

two-stage

approximation, 16, 19, 98

stochastic program, 7, 171

uncertainty set, 6

value

function, 175

of multistage stochastic programming

(VMS), 17, 19, 98

of the stochastic solution (VSS), 16

Wasserstein distance, 66


