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Abstract— Optimizing decisions on an ensemble of incomplete
disturbance trees and aggregating their first stage decisions has
been shown as a promising approach to (model-based) planning
under uncertainty in large continuous action spaces and in small
discrete ones. The present paper extends this approach and
deals with large but highly structured action spaces, through a
kernel-based aggregation scheme. The technique is applied to
a test problem with a discrete action space of 6561 elements
adapted from the NIPS 2005 SensorNetwork benchmark.

I. INTRODUCTION

D ISTURBANCE (or scenario) tree approaches for multi-
stage stochastic programming (see e.g. [1] for an

introduction to this paradigm for sequential decision making
under uncertainty) have been extensively investigated in the
operations research community during the last 10 or 20 years
[2], [3], [4]. In this approach, uncertainties [5] are modeled
as a finite number of random trajectories w0, w1, . . . , wT−1

organized in a tree (see Figure 1). The branches of the tree
are weighted by probabilities and to its internal nodes are
attached decision variables. For a given initial state at the root
of the tree, and given system dynamics and reward function
[6], the disturbance tree expresses the relation between the
choice of decisions and the expected total return, leading to
an optimization problem with as many sets of variables as
there are internal nodes in the disturbance tree.
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Fig. 1. A 2-stage disturbance tree on a binary disturbance space wi ∈
{1, 2} with decisions ui attached to nodes, allowing the computation of
states xi and rewards ri. The x0 , wi , p correspond to problem data;
the ui are to be chosen optimally; the xi, ri are functions of these two.

The disturbance tree approach has been well studied in
the context of convex [7] problems (i.e. problems with
continuous state and action spaces, linear dynamics and
convex return functions) [8], [9], [10] and has already been
applied to very large scale applications, such as for example
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electric power generation scheduling [11], [12] and financial
applications [13], [14]. Its main advantage with respect to
the dynamic programming framework is primarily that it
may be directly applied to very high-dimensional continuous
state and action spaces [15] but also that it can cope with
a larger class of optimality criteria [16] (in particular non-
decomposable ones). Its main drawback stems from the fact
that in order to remain tractable, the approach is strongly
limited in terms of tree branching factor and depth [17].
In practice, this means that the true (typically continuous,
and often high-dimensional) disturbance process needs to
be reduced to a rather rough discrete approximation [18].
Much work in this field has therefore been devoted to
the construction of “optimal” disturbance trees of limited
complexity [19], [20], [21]. Also, in order to mitigate the
so introduced suboptimalities, the approach is typically used
in a “receding horizon fashion” (just like in model-predictive
control [22]) where, at each time step, a new disturbance tree
is rebuilt and re-optimized in order to compute the optimal
current first-stage decision [23].

To improve (see [24]) the disturbance tree approach, we
have proposed in [25] a simple extension inspired by the
“perturb and combine” paradigm of supervised learning [26],
[27]. Rather than deriving the first-stage decision from a sin-
gle optimized tree, an ensemble of randomized disturbance
trees are solved for their optimal first-stage decisions, and
these latter decisions are then aggregated in some fashion.
This method is in principle very generic: it may be applied
both to large continuous and discrete state and/or action
spaces and cope with a large class of performance criteria.
Earlier results in continuous action spaces and aggregation by
averaging [28], and those in [25] focusing on small discrete
action spaces and aggregation by majority vote, illustrate the
promising character of the method.

The present paper extends this approach to large dis-
crete action spaces by using kernel-based [29] aggregation
schemes exploiting the problem structure. The paper is orga-
nized as follows: Section II defines the class of problems that
we address and discusses the three main ingredients of our
algorithm, namely randomized disturbance tree generation,
computation of their optimal first stage decisions by the
cross-entropy method [30], and finally the kernelized deci-
sion aggregation scheme; Section III shows how to use these
ideas in practice on a test problem with a large and structured
action space; finally, Section IV discusses our work with
respect to related approaches in stochastic programming
and planning under uncertainties. Section V concludes and
outlines directions of further research.



II. METHODS

In this section we outline the principle of the proposed
approach, while briefly discussing the main underlying as-
sumptions. We start by formally describing the class of
problems addressed and then provide a schematic overview
of the main ingredients of the proposed solution approach,
namely the procedure for generating ensembles of distur-
bance trees, an algorithm for computing optimal first-stage
decisions from them based on the cross-entropy method, and
finally a discussion of the way for structuring the space of
candidate decisions by using kernel-based methods and how
to use this for the aggregation of first-stage decisions derived
from an ensemble of trees.

A. Basic algorithm and assumptions (adapted from [25])

1) Problem formulation – assumptions: We consider a
system that evolves according to a state transition function
xt+1 = ft(xt, ut, wt) starting from an initial state x0. Its
trajectories are controlled by the decisions ut ∈ U that are
to be optimized, and perturbed by disturbances wt ∈ W
which are chosen by a memory-less and exogenous process
(i.e. independently of each other and of previous states and
decisions) from a probability distribution Pt,w. A reward
process is defined by rt = rt(xt, ut, wt) for 0 ≤ t < T . The
system dynamics ft(·), reward function rt(·), disturbance
model Pt,w, as well as the initial state x0 are supposed to be
known beforehand, and the goal is to find a non anticipative
(see below for a precise definition) decision strategy µ
choosing the actions ut maximizing the expectation of the
sum of the rewards over T stages, i.e.

J∗(x0) = max
µ

E{

T−1∑

t=0

rt(xt, ut, wt)|x0}. (1)

The candidate strategies µ for selecting the decisions ut

at any time 0 ≤ t < T consist of a time-indexed set of
deterministic mappings µt, each one projecting a current
history ht = [w0, w1, . . . , wt−1] of the disturbance process
to decisions ut = µt(ht) ∈ U at time t.

Notice that in this paper we make no assumptions about
the size or structure (e.g. finiteness) of the state space X ,
while we restrict the space U of possible actions and the
space W of possible disturbances to be finite, but they
may possibly be of very large size. On the other hand,
the assumption of a memory-less disturbance process is
made only to facilitate the connection with the dynamic
programming framework (see [25]). This latter assumption,
as well as the assumption that the disturbance process is
exogenous may indeed be relaxed, provided that at the
decision making steps sufficient information is available to
predict correctly the probabilities of all future disturbance
sequences. Furthermore, the decomposable nature of the
performance criterion of Eqn. (1), while fundamental in
dynamic programming frameworks, is not essential in the
approach proposed in this paper.

2) Exact solution based on a complete disturbance tree:
A complete disturbance tree of depth T represents all the
possible outcomes of the process w0, w1, . . . , wT−1 together
with their probabilities of occurrence. In such a tree, the
root node (at depth 0) corresponds to t = 0 and has an
empty disturbance process history and a probability of one
associated to it. To each node n of depth t ∈ (0; T ] in the tree
corresponds a history hn = [w0, . . . , wt−1]n of the process,
through the unique path from the root to the node n. The
disturbance (wt−1)n is directly associated to node n together
with its probability of occurrence, while [w0, . . . , wt−2]n and
their joint probability can be collected from the disturbances
and probabilities associated to the nodes in the path.

Any strategy µ can be mapped on the tree by associating
to each node n of depth 0 ≤ t < T the value un = µ(hn).
Consequently, searching for an optimal strategy becomes
equivalent to jointly optimizing the values un attached to
all internal nodes of the tree.

The performance criterion defined by the expectation in
(1) can be computed in a forward way once the vector of
node decisions has been chosen. Indeed, from the given value
of x0, u0 = µ0 and a particular w0, one may compute
r0 = r0(x0, u0, w0) and x1 = f0(x0, u0, w0) by exploiting
the model. The values r0 and x1 can thus be assigned to the
node associated to [w0]; its probability P0,w(w0) may also
be determined from the disturbance process model. From
the node decision for u1 = µ1(w0) and using x1 and a
particular w1 one gets x2 and r1. The value r1 can be
assigned to the node corresponding to [w0, w1], and has
probability P0,w(w0)P1,w(w1). The propagation continues
up to xT , rT−1. It can be done through all disturbance paths
of the tree. Therefore, for a given decision strategy µ, all
the rewards and probabilities in the expectation in (1) are
directly computable in a forward way from the system model
(ft(·), rt(·), Pt,w) and the initial state x0.

Notice that, in a more general setting, the performance
criterion would be expressed as a non decomposable func-
tion of the vector of variables [wn, un, xn] of the tree; its
computation would also be based on a forward pass used to
first determine the values of xn at each node as a function
of the wn and un variables.

The optimization of µ itself may be done directly by
searching over a vector of all possible combinations of values
of decisions un at the internal nodes of the disturbance tree.
However, the number of possible values of this vector of
decision variables is of O(|U ||W |T−1

), which means that as
soon as |U |, |W | or |T | are a bit large, an exact optimization
becomes intractable.

3) Approximate solution based on an ensemble of in-
complete disturbance trees: Conceptually, an incomplete
disturbance tree is obtained by selecting a subset of the
nodes of a complete tree, by removing the arcs leading to
these nodes as well as the subtrees emanating from them
and by adjusting probabilities of successor nodes so that
they sum to one (see §II-B), with the restriction that each
node of depth < T in the resulting incomplete tree has
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Fig. 2. Sketch of the method. The sequential decision making problem is
posed on randomly generated trees Ti. Each tree is solved separately. The
first-stage decisions u∗

0
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at least one successor. In practice, incomplete trees may
be constructed top-down, for example by subsampling the
disturbance process according to its probabilities, with the
constraint that their total complexity remains manageable in
terms of the solution process of the optimization problem.

While the optimization of the decision variables associated
to the nodes of an incomplete disturbance tree will only per-
mit an incomplete description of a decision strategy (because
the nodes are representative only of a subset of the possible
histories), such a strategy always provides a value for the
first stage decision u0. Thus, one could replace the original
problem of solving a complete disturbance tree (generally
intractable), by the combined problems of determining an
optimal incomplete tree and optimally solving the latter.

Instead of this approach, we propose here to subsample the
ensemble of incomplete trees and compute u0 by aggregating
their first stage decisions. We thus assume that the informa-
tion about the optimized first stage decisions of incomplete
trees is valuable, and that we know how to aggregate them
(see §II-D) and can use this aggregated value as a useful
approximation of the optimal first stage decision that would
have been determined from the complete tree (see Figure 2).

Thus, we suggest that the solution of the original sequen-
tial decision problem may be approached by a combination
of three ideas, namely the generation of an ensemble of in-
complete trees according to some approppriate subsampling
scheme of successors combined with an appropriate node
reweighting scheme and optimization method, the proper
aggregation of first stage decisions obtained by optimally
solving each one of these incomplete trees, and the receeding
horizon approach which consists in re-optimizing (according
to the same approach) the optimal value of first stage
decisions as time flows.

The main ingredients of this approach are further discussed
below, while focusing on decision problems with large dis-
crete action and disturbance spaces.

B. Generation of an ensemble of incomplete trees
In our proposal, the generation of an ensemble of incom-

plete disturbance trees is based on random sampling of a
small number of successors, in a top-down fashion. Given
the complexity constraint on incomplete trees, their internal

nodes have usually only a few children nodes, representing
explicitly only a small subset V of W . Since we attempt
to optimize an expected reward-to-go at each node, say QV

instead of QW , in the hope that the decision maximizing
QV is also near-optimal for QW , it is important to attach
probabilities to the tree branches in the best possible way.

Without any a priori knowledge about the good decisions
and state trajectories, we want to limit the approximation
error uniformly over the possible decisions and states. In the
proposed framework, V is determined by sampling. But how
to wisely choose the probabilities of the elements Wi in V ?
Indeed, V now stands for the support of a new distribution
that approximates the original distribution of larger support
W . Not much can be said on the approximation errors (and
on the justification of the approximation scheme in the first
place) without assuming that disturbances that are close in a
certain sense also yield close rewards-to-go. Now, under this
assumption, if we put a metric over the disturbance space and
redistribute the probability of a disturbance not in V among
the closest disturbances present in V , then in the computation
of an expected reward-to-go, this amounts to replace some
rewards-to-go by (presumably) close rewards-to-go, and thus
reduce the approximation error between QV and QW .

In particular, we can exploit a kernel k(w, w′) : W×W →
R to define the distance between disturbances by d(w, w′) =
(k(w, w)+k(w′, w′)−2k(w, w′))1/2, so as to associate every
w ∈W \V to its nearest neighbor(s) in V , and compute the
probability associated to elements of V by

P̂n(v) = Pt,w(v) +
∑

w′∈C−1(v) Pt,w(w′)/|C(w′)| , (2)

where |C(w′)| denotes the size of the subset of V of nearest
neighbors of w′ and where C−1(v) denotes the subset of
elements of W \ V of which v is a nearest neighbor. These
ideas will be illustrated in Section III.

C. Optimization with the Cross-Entropy method
Because we want to address a class of non-convex combi-

natorial optimization problems, we propose to use the Cross-
Entropy method [30] as a tool to solve the optimization
problem associated to each incomplete tree. This algorithm
is based on two components: first, a random generator G(θ)
with parameters θ for sampling candidate solutions (the
parametrization is such that the distribution can be uniform or
degenerate into any deterministic solution); second, a scoring
device S(µ) for scoring a candidate solution µ, represented
here by a vector of node variables un.

Starting from a uniform distribution, one generates N
samples of candidate solutions, scores them, and tags as elite
solutions those with a score at least equal to the dNρe-th
largest score, with ρ small, say 10−2. The parameter θ is
then updated to maximize the probability of generating the
elite solutions, and a new set of N samples is drawn by using
the update value of θ in the random generator. The steps are
repeated until the distribution degenerates or the elite scores
have ceased to improve, and the best candidate solution is
then returned. Usually one chooses N proportional to the



number of parameters in θ, itself being a function of the size
of the search space. Also, the update of θ is often smoothed
as θt+1 = αθ̃ + (1 − α)θt where θ̃ is the elite probability
maximizer, and 0 < α ≤ 1 the smoothing parameter.

A key to the successful application of the Cross-Entropy
method lies in finding a parametrization of the solution
generator such that those near-optimal parts of a solution that
have a positive effect on the score can be made more likely
to occur. Often one tries to exploit some decomposability
property of the score. This will be illustrated in Section III.

D. Aggregation of optimal first stage decisions
Let u∗

i ∈ U be a near-optimal first stage decision obtained
from an incomplete tree i. The tree i approximates the in-
tractable complete tree having an optimal first stage decision
u∗ ∈ U . Consider a set S∗ = {u∗

1, . . . , u
∗
m} of near-optimal

first stage decisions from m incomplete trees. We ask the
question: can we find an estimate û∗ of some u∗ ∈ U , on
the basis of the set S∗?

Each element in S∗ is near-optimal with respect to an
objective defined by a complex process, and satisfies possibly
complex constraints. So in that sense the elements in S∗ are
structured, inherit optimality properties from the underlying
approximate problems, and through these approximations
(or weak models), optimality properties from the original
problem. In the spirit of “perturb and combine” methods,
û∗ could be formed by aggregating the decisions in S∗. But
the challenge lies in the discovery or at least the preservation
of properties of u∗ present in the elements of S∗.

To do so, we propose to take for û∗ the decision in
S∗ closest to the centroid of the decisions in S∗ with
respect to a given metric induced on U by a kernel k(·, ·)
measuring the similarities of pairs of decisions over U ×U .
Formally, let ϕ : U → H be the feature-map from the
decision space to the Hilbert space induced by the kernel
k(·, ·). Define the centroid of S∗ in that Hilbert space as
ϕ(ū) = m−1

∑m
i=1 ϕ(u∗

i ). With k(u, u′) = 〈ϕ(u), ϕ(u′)〉
denoting the inner product, the squared distances between
the centroid and some solution u are thus evaluated as

||ϕ(u)− ϕ(ū)||22 = 〈ϕ(u), ϕ(u)〉−

2m−1
m∑

i=1

〈ϕ(u), ϕ(u∗
i )〉 + m−2

m∑

i=1

m∑

j=1

〈ϕ(u∗
i ), ϕ(u∗

j )〉 .

Consequently, the squared distance from u∗
k ∈ S∗ to the

centroid ū may be expressed directly in terms of the elements
of the Gram matrix by

||ϕ(u∗
k)− ϕ(ū)||22 = (3)

Kkk − 2m−1
m∑

i=1

Kik + m−2
m∑

i=1

m∑

j=1

Kij ,

where the element Kij of the Gram matrix K ∈ R
m×m is

defined by k(u∗
i , u

∗
j ) = 〈ϕ(u∗

i ), ϕ(u∗
j )〉.

The aggregated solution

û∗ ∈ arg min
u∗

k
∈S∗

||ϕ(u∗
k)− ϕ(ū)||22 (4)

may thus also be computed directly from the Gram matrix.
Let us also notice that the kernelized variance VS∗ ,

m−1
∑m

k=1 ||ϕ(u∗
k) − ϕ(ū)||22, which could serve as a mea-

sure of discrepancy between candidate decisions in S∗, may
also be directly computed from the Gram matrix.

Discussion: First consider the case where U only pos-
sesses a handful of elements. There is no complex structure
there, and thanks to the small cardinality of U , optimal
elements u∗ should be present in the set S∗ of candidate
solutions. Therefore a simple majority vote among the ele-
ments of S∗ can be used as the estimate û∗ of an optimal
decision. Notice that the majority vote can be obtained from
the general formulation (4) by setting Kij = δ{u∗

i = u∗
j},

where δ{·} denotes the 0-1 indicator function. Indeed, the
squared distances ||ϕ(u∗

k) − ϕ(ū)||22 will differ by the term
−2m−1

∑m
i=1 Kik, where the sum of indicators will amount

to count the number of solutions in S∗ identical to u∗
k.

Now consider the case where U is still finite but has a
number of elements much larger than m, the size of S∗. It is
then very likely that a clear majority will not be attained in
S∗, especially if there are many quasi-equivalent decisions in
terms of optimality. However, a large U is likely to be formed
from the combination of several elementary decisions, e.g.
U = U1 × . . .×Ud. One could thus combine kernels on the
elementary decision spaces Ul, e.g. by summing majority
vote kernels made of indicator functions on each elementary
decision : Kij =

∑d
l=1 δ{Πl(u

∗
i ) = Πl(u

∗
j )} where Πl acts

as a projection operator from U to the subspace Ul.
Besides other variations along this line, the kernelization

of the decision space provides a way of injecting knowledge
on the structure of the decision space. Typically, one can
define kernels which are invariant with respect to classes of
decisions which are known to be invariant in terms of their
impact on the problem performance.

III. EXPERIMENT

In this section we illustrate the proposed approach on a
benchmark problem which has a large, structured, discrete
action space. We explain in detail how the action space is
kernelized, how incomplete disturbance trees are generated
and optimized, and provide an assessment of the decision
strategy obtained with our approach in comparison to the
exact solution of this benchmark problem.

A. Description of the benchmark
The benchmark SensorNetwork originates from [31] and

was part of the NIPS 2005 benchmarking event in reinforce-
ment learning. The problem consists in two arrays of sensors
bracketing an array of three target cells. Two targets float over
the target cells (Fig. 3). The targets start at energy level 3.
At each step, a sensor can focus on the cell to its left or to
its right, or be idle. Once the action of each sensor is set, the
targets can move; in turn (from left to right), a target that
is adjacent to at least one empty cell uniformly randomly
chooses to try to move left, to try to move right, or to stay
in its current cell – if the cell it tries to move into is empty, it
succeeds. At that moment the focused sensors are activated.



A target in a cell hit by 3 sensors or more loses one energy
point. A target is killed when its energy falls to zero. The
goal is to eliminate the targets as soon as possible.

(configuration written as
x = [3 3 0]

u = \/--
/---

for targets with energy 3 each)

Fig. 3. SensorNetwork with its targets (o), focused sensors (/ or \) and
idle sensors (-).

The state space is X = {0, 1, 2, 3}3 for the target energy
level (0 to 3) of the 3 cells. When a target moves from one
cell to another, these cells swap their energy level. The initial
state is either [3 3 0], [3 0 3], [0 3 3], i.e. 2 targets of energy
3. The state [0 0 0] with no remaining targets is terminal. The
decision space is U = {0, 1, 2}8 for the 3 possible actions (0:
idle, 1: focus left, 2: focus right) for the 8 sensors, totalling
6561 possible actions. There is a reward −1 for each sensor
focus, and one of +30 for killing a target. We put a discount
factor γ = 0.95, and limit the time horizon to T = 10.

B. Disturbance tree node probabilities
The disturbances are the joint tried moves of the two

targets: W = {W1, . . . , W9} and Pw,t(Wi) = 1/9. A
disturbance has the form [∆L ∆R], with ∆L the tried
move of the leftmost target (3 same possibilities: left, right,
stay), and ∆R is the tried move of the rightmost target (3
possibilities). The part ∆R is ignored when there is only one
target left. It is convenient to define the operator ΠL (resp.
ΠR) that extracts the part ∆L (resp. ∆R) of the disturbance.

We will assume that if Wi and Wj have the same ∆L

or the same ∆R, they are closer in terms of induced state
transitions and rewards compared to the case of disturbances
with no move in common. Thus we will use a kernel on the
disturbance space that induces such distances:

k(w, w′) = δ{ΠL(w) = ΠL(w′)}+ δ{ΠR(w) = ΠR(w′)} .

C. Cross-entropy based optimization
The sampling distribution for candidate solutions µ for

a given disturbance tree of #n decision nodes is factored
into #n independent components, one per node. The #n
components are themselves decomposed into 8 independent
parts corresponding to the 8 sensors. Each part defines the
distribution over {0, 1, 2} of the action aij of a sensor j at
a node i:

P{aij = 0} = pij P{aij = 1} = qij

P{aij = 2} = 1− pij − qij .

The distribution of the solution µ ∈ R
#n (actions at node i

are packed into a single code for the resulting node decision,
hence the dimension of µ) is thus specified by 2 · 8 · #n
parameters. At the beginning, pij = qij = 1/3 (uniform
distribution). In fact the decomposition in elementary actions

is coherent with the kernelization of the decision space U
described in Section III-D.

Once elite samples µ(1), µ(2), . . . , µ(L) are identified on
the basis of the associated expected discounted sum of
rewards computed on the disturbance tree, the parameters
are updated by the rule

pij ← α p̃ij + (1− α) pij qij ← α q̃ij + (1− α) qij

p̃ij , L−1
∑L

l=1 δ{a
(l)
ij = 0} q̃ij , L−1

∑L
l=1 δ{a

(l)
ij = 1} .

Note that p̃ij and q̃ij are such that a so-updated distribution
would match the empirical frequencies of the elementary
actions in the elite samples.

The Cross-Entropy optimization is stopped when the sam-
pling distributions corresponding to the actions relative to the
root node are almost deterministic, because ultimately only
these actions are extracted and used in the aggregation step.

D. Aggregation of optimal first stage decisions
The aggregation scheme will exploit the decomposition of

the decision space into separate sensor actions. The action of
sensor l in the centroid decision ū is chosen by a majority
vote over the action of sensor l in the first stage decisions
collected in S∗. Following Section II-D, the Gram matrix of
a kernel inducing such a vote is (with Πl(u) denoting the
action of sensor l extracted from a first stage decision u, and
u∗

i , u
∗
j ∈ S∗)

Kij =
∑8

l=1 δ{Πl(u
∗
i ) = Πl(u

∗
j )} . (5)

Notice that even more knowledge could have been injected,
for example by considering classes of equivalent decisions
based on the target cells hit by 3 or more focused sensors. To
this end, one could use K̃ij =

∑3
l=1 δ{Π̃l(u

∗
i ) = Π̃l(u

∗
j )}

with Π̃l(u) the indicator function for the event “The cell l is
hit by at least 3 sensors” according to decision u.

E. Numerical simulations
Table I reports typical outcomes of the approach with five

incomplete trees (reporting their number of decision nodes
#n) and 3 initial states. For each decision node, 38 actions
are possible. The optimization follows Section II-C, using
N = 32 #n samples per iteration, i.e. twice the dimension
of θ. The smoothing is set to α = 0.6. The optimization stops
as soon as the 8 actions at the root have their distribution
concentrated on an action with probability 0.99.

The first stage decision extracted for each tree k (û∗
k) is

reported pictorially. Note that the centroid reported pictori-
ally at the left of û∗ need not be computed in practice, as û∗

directly comes from (4). The value V̂k denotes the optimized
expected discounted sum of rewards. Incomplete trees were
grown by sampling with replacement m disturbances at each
node. Distinct samples are taken as the children of the node,
and assigned a probability (cf. Section II-B). The number
m is random. For a node of depth d, m = 3 samples are
drawn with probability 1/(1 + d), and m = 1 samples with
probability 1 − 1/(1 + d). This reduces the expected tree
size. Also, trees of more than 150 nodes were rejected. In



x0 Disturbance trees Centroid û
∗

#n 27 55 95 85 80 4424
[3 3 0] u
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k
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V̂k 35.19 34.10 33.96 32.93 34.92 5224
#n 78 94 47 76 24 4444
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V̂k 34.10 37.03 34.53 33.53 34.03 3443
#n 116 100 93 71 58 3335
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V̂k 36.31 33.16 34.21 32.28 34.95 3443

Tests on 3 initial conditions x0.
For each tree, #n: number of decision nodes; u

∗

k : root decision; V̂k : root value.
Last 2 columns: centroid with the 8 counts (2 to 5) of dominant actions,
and û

∗: implemented decision.

TABLE I
TYPICAL RESULTS WITH AN ENSEMBLE OF 5 TREES.
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--/\

-\--
-/\-

-\\/
-/\\

-/--
/\--

\-\-
/\/\

\\/-
/\\-

[3 3 0] 26.33 27.82 26.28 28.57 27.19 30.08

[3 0 3] 27.72 27.13 27.88 27.52 27.78 27.50
[0 3 3] 28.36 28.62 30.20 26.60 26.89 27.30

Optimal values are boxed.
Equivalent decisions are those hitting the same 1 or 2 cells with 3 sensors per cell.
States [3 3 0] and [0 3 3] are not exactly symmetric due to the priority rule in the
movements of the targets.

TABLE II
REFERENCE: EXACT EXPECTED VALUE OF (x0 ,u0) PAIRS (FOR T = 10, γ = 0.95).

contrast, the complete tree on the |W | = 9 disturbances has
3.9 · 109 nodes.

The benchmark can be solved exactly using the value
iteration algorithm [6]. It turns out that 6 useful classes
of sensor configurations suffice for optimally targeting the
cells. Table II gives the exact expected value of a decision
from each class, as if it were used as first stage decision and
that at subsequent steps optimal decisions were selected. The
comparison with Table I shows that the proposed approach
has missed for x0 = [3 0 3] the exact u∗. However the
selected decision is the second-best and is still near-optimal
(value 27.78 instead of 27.88).

In general, a direct majority vote over the sensor actions
destroys the structure of optimal, or at least efficient, deci-
sions: Table I shows centroids with 2 or 4 sensors targeted
to a same cell, instead of 0 or 3. This is not the case of
the projection of the centroid on the set of decisions in the
ensemble.

Other tests with larger trees or ensembles, or other initial
conditions were consistent with the reported results. We
repeated 10 times the experiment of building an ensemble of
5 trees and computing the aggregated decision. An optimal
decision was found: 7 times for x0 = [3 3 0], 9 times for
x0 = [0 3 3], and 5 times for x0 = [3 0 3] with a second-best
decision found in the 5 other cases.

F. Benefits of the kernelization
The approach using an ensemble of incomplete disturbance

trees of [25] relied on a majority vote for aggregating the
optimal first stage decisions computed from these trees.
By applying the kernel-based decision aggregation scheme
to the SensorNetwork Benchmark, we found out that we
could obtain performances similar to those obtained with the
majority voting approach, while using a set of incomplete
disturbance trees which was several orders of magnitude
smaller.

The kernel-based probability imputation over disturbances
allows to produce incomplete trees which represent in a
better way the original disturbance process than those built
with the approach of [25] which uses empirical sampling
frequencies to determine node probabilities. We have indeed
observed that to obtain near-optimal solutions, much smaller
trees can be built with the proposed kernel-based probability
imputation scheme than with the empirical weighting scheme
of [25].

IV. RELATED WORK

The ensemble of disturbance trees approach is inspired by
the “perturb and combine” paradigm of supervised learning
[26], [27], already employed in the search for closed-loop
decision rules [32], [33]. Works on game tree evaluation
tracing back to Monte Carlo Go [34] suggest that information



on optimal decisions can be obtained from suboptimal or
random sequences of decisions. Several other works support
the view that subsampling schemes can perform well. In
[35], the authors build trees with nodes corresponding to
disturbance-decision pairs in a Markov Decision Process,
and analyze a sparse sampling strategy of the disturbance
space. Random [9] or deterministic [19], [36], [37], [4] sub-
sampling schemes for building scenario trees in the context
of stochastic programming have been studied, along with
their consistency, mostly for continuous distributions and
convex problems. Also for convex problems, authors studied
arithmetic means of solutions based on a unique scenario
[38] or a scenario tree [39], [28].

Kernelization of output spaces is currently a very active
research topic in the context of supervised learning. Various
approaches for learning with output space kernels have been
recently proposed which could possibly be exploited in the
context of the proposed approach [40], [41].

V. CONCLUSIONS

This paper has proposed an approach for leveraging the
ensemble of disturbance trees framework [25] to problems
having complex discrete action spaces. The proposal relies
on a kernelization of the action space which is used for
the purpose of aggregating decisions derived from different
disturbance trees generated by random sampling. It has been
illustrated on the so-called SensorNetwork [31] benchmark,
demonstrating its applicability in the context of large struc-
tured discrete action spaces.

Given the excellent practical performances of this ap-
proach, we believe that it would be wishful to characterize
its theoretical properties. To begin, the ability of optimized
decisions to “overfit” a subset of disturbance paths suggests
that the average of the optimal values obtained from incom-
plete disturbance trees is an optimistically biased estimator
of the true optimal value. Thus, it would be useful to study
how the bias and variance of this estimator depend on
the specificities of the algorithm used for generating the
ensemble of incomplete trees. It would also be useful to
obtain a pessimistically biased estimator, so as to bracket
the true optimal value.

Kernelization of action spaces seems to be a rather pow-
erful approach to incorporate problem domain knowledge in
the context of ensemble based multistage stochastic program-
ming. We thus plan to further investigate this approach in the
context of a broader variety of practical problems, concerning
complex discrete as well as continuous action spaces.

Further analysis is also needed in order to more pre-
cisely delineate the features of this approach with respect
to stochastic dynamic programming and other reinforcement
learning approaches. We believe that these analyses should
be more specifically oriented towards the specifications of
the basic assumptions underlying these frameworks, such as
their information structure as well as the mathematical forms
of their performance criteria.

While we have up to now focused on extracting only an
approximation of the optimal first stage decision from the

ensemble of optimized incomplete trees, it is in principle
straightforward to extend the proposed algorithm so as to
exploit the full set of history-action pairs at all internal nodes
of the trees to extract a “complete” approximate decision
policy applicable to the successive stages of the planning
problem. This could for example be achieved by using
supervised learning methods using kernelized output spaces
[41] in order to map histories to decisions obtained at the
convergence of the cross-entropy optimization process, or
by applying batch-mode reinforcement learning algorithms
[33] to subsets of the intermediate solutions produced by the
cross-entropy optimization process. This would for example
allow one to use Monte Carlo simulation on an independent
set of scenarios so as to efficiently compute estimates of
optimality of any such “complete” decision strategy produced
by the different variants of the approach. In particular, this
would allow one to compare in a systematic way different
types of kernels, and different values of the other parameters
of the method, such as incomplete tree sampling schemes and
the size of the tree ensemble, so as to adapt automatically
their choice to the characteristics of the problem at hand.
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