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Abstract. To explore the Perturb and Combine idea for estimating
probability densities, we study mixtures of tree structured Markov net-
works derived by bagging combined with the Chow and Liu maximum
weight spanning tree algorithm, or by pure random sampling. We em-
pirically assess the performances of these methods in terms of accuracy,
with respect to mixture models derived by EM-based learning of Naive
Bayes models, and EM-based learning of mixtures of trees. We find that
the bagged ensembles outperform all other methods while the random
ones perform also very well. Since the computational complexity of the
former is quadratic and that of the latter is linear in the number of
variables of interest, this paves the way towards the design of efficient
density estimation methods that may be applied to problems with very
large numbers of variables and comparatively very small sample sizes.

1 Introduction

Learning of graphical probabilistic models essentially aims at discovering a max-
imal factorization of the joint density of a set of random variables according to
a graph structure, based on a random sample of joint observations of these
variables [1]. Such a graphical probabilistic model may be used for elucidat-
ing the conditional independencies holding in the data-generating distribution,
for automatic reasoning under uncertainties, and for Monte-Carlo simulations.
Unfortunately, currently available optimization algorithms for graphical model
structure learning are either restrictive in the kind of distributions they search
for, or of too high computational complexity to be applicable in very high di-
mensional spaces [2]. Moreover, not much is known about the behavior of these
methods in small sample conditions and, as a matter of fact, one may suspect
that they will suffer from overfitting when the number of variables is very large
and the sample size is comparatively very small.

In the context of supervised learning, a generic framework which has led to
many fruitful innovations is called “Perturb and Combine”. Its main idea is to



on the one hand perturb in different ways the optimization algorithm used to
derive a predictor from a dataset and on the other hand to combine in some
appropriate fashion a set of predictors obtained by multiple iterations of the
perturbed algorithm over the dataset. In this framework, ensembles of weakly
fitted randomized models have been studied intensively and used successfully
during the last two decades. Among the advantages of these methods, let us
quote the improved predictive accuracy of their models, and the potentially im-
proved scalability of their learning algorithms. For example, ensembles of bagged
(derived from bootstrap copies of the dataset) or extremely randomized decision
or regression trees, as well as random forests, have been applied successfully in
complex high-dimensional tasks, as image and sequence classification [3].

In the context of density estimation, bagging (and boosting) of normal dis-
tributions has been proposed by Ridgeway [4]. In [5] the Perturb and Combine
idea for probability density estimation with probabilistic graphical models was
first explored by comparing large ensembles of randomly generated (directed)
poly-trees and randomly generated undirected trees. One of the main findings
of that work is that poly-trees, although more expressive, do not yield more
accurate ensemble models in this context than undirected trees.

Thus, in the present paper we focus on ensembles of tree structured undi-
rected probabilistic graphical networks (we call them Markov tree mixtures) and
we study various randomization and averaging schemes for generating such mod-
els. We consider two simple and in some sense extreme instances of this class
of methods, namely ensembles of optimal trees derived from bootstrap copies of
the dataset by the Chow and Liu algorithm [6], which is of quadratic complexity
with respect to the number of variables (we call this bagging of Markov trees),
and mixtures of tree structures generated in a totally randomized fashion with
linear complexity in the number of variables (we call them totally randomized
Markov tree mixtures). We assess the accuracy of these two methods empirically
on a set of synthetic test problems in comparison to EM-based state of the art
methods building respectively Naive Bayes models and mixtures of trees, as well
as a golden standard which uses the structure of the target distribution.

The rest of this paper is organized as follows. Section 2 recalls the classical
Bayesian framework for learning mixtures of models and Section 3 describes
the proposed algorithms. Section 4 collects our simulation results, Section 5
discusses the main findings of our work, and Section 6 briefly concludes and
highlights some directions for further research.

2 Bayesian modeling framework

Let X = {X1, . . . , Xn} be a finite set of discrete random variables, and D =
(x1, · · · , xd) be a dataset (sample) of joint observations xi = (xi1, · · · , xin) inde-
pendently drawn from some data-generating density PG(X).

In the full Bayesian approach, one assumes that PG(X) belongs to some space
of densities D described by a model-structure M ∈ M and model-parameters
θM ∈ ΘM , and one infers from the dataset a mixture of models described by the



following equation:

PD(X|D) =
∑
M∈M

P(M |D) P(X|M,D), (1)

where P(M |D) is the posterior probability over the model-spaceM conditionally
to the data D, and where P(X|M,D) is the integral:

P(X|M,D) =
∫
ΘM

P(X|θM ,M) dP(θM |M,D). (2)

So PD(X|D) is computed by:

PD(X|D) =
∑
M∈M

P(M |D)
∫
ΘM

P(X|θM ,M) dP(θM |M,D), (3)

where dP(θM |M,D) is the posterior model-parameter density and P(X|θM ,M)
is the likelihood of observation X for the structure M with parameters θM .

When the space of model-structuresM and corresponding model-parameter
ΘM is the space of Bayesian networks or the space of Markov networks over
X, approximations have to be done in order to make tractable the computa-
tion of equation (3). For Bayesian networks for example, it is shown in [7] that
equation (2) can be simplified by the likelihood estimated with the parameters
of maximum a posteriori probability θ̃M = arg maxθM

P(θM |M,D), under the
assumption of a Dirichlet distribution (parametrized by its coefficients αi) for
the prior distribution of the parameters P(θM |M).

Another approximation to consider is simplifying the summation over all the
possible model-structures M . As the size of the set of possible graphical model
structures is super-exponential in the number of variables [8], the summation of
equation (1) must in practice be performed over a strongly constrained subspace
M̂ obtained for instance by sampling methods [9–11], yielding the approximation

PM̂(X|D) =
∑
M∈M̂

P(M |D)P(X|θ̃M ,M). (4)

Let’s note here that this equation is simplified once more when using classical
structure learning methods, by keeping only the model M = M̃ maximizing
P(M |D) over M:

PM̃ (X|D) = P(X|θ̃M̃ , M̃). (5)

3 Randomized Markov tree mixtures

In this work, we propose to choose as set M̂ in equation (4) a randomly generated
subset of pre-specified cardinality of Markov tree models.

3.1 Poly-tree models

A poly-tree model for the density over X is defined by a Directed Acyclic Graph
(DAG) structure P which skeleton is acyclic and connected, and the set of ver-
tices of which is in bijection with X = {X1, . . . , Xn}, together with a set of



conditional densities PP (Xi|paP (Xi)), where paP (Xi) denotes the set of vari-
ables in bijection with the parents of Xi in P . Like more general DAGs, this
structure P represents graphically the density factorization

PP (X) =
n∏
i=1

PP (Xi|paP (Xi)). (6)

The model parameters are thus here specified by the conditional distributions:

θP = (PP (Xi|paP (Xi)))
n
i=1 . (7)

The structure P can be exploited for probabilistic inference over PP (X) with
a computational complexity linear in the number of variables n [12].

One can define nested subclasses Pp of poly-tree structures by imposing con-
straints on the maximum number p of parents of any node. In these subclasses,
not only inference but also parameter learning is of linear complexity in the
number of variables.

3.2 Markov tree models

The smallest subclass of poly-tree structures is called the Markov tree subspace,
in which nodes have exactly one parent (p = 1). Markov tree models have the
essential property of having no v-structures [1], in addition to the fact that
their skeleton is a tree, and their dependency model may be read-off without
taking into account the direction of their arcs. In other words, a poly-tree model
without v-structures is a Markov tree and is essentially defined by its skeleton.
These are the kind of models that we will consider subsequently in this paper.
Importantly, Markov tree models may be learned efficiently by the Chow and Liu
algorithm which is only quadratic in the number of vertices (variables) [6]. Given
the skeleton of the Markov tree, one can derive an equivalent directed acyclic
(poly-tree) graph from it by arbitrarily choosing a root node and by orienting
the arcs outwards from this node in a depth-first fashion.

3.3 Mixtures of Markov trees

A mixture distribution PT̂ (X1, . . . , Xn) over a set T̂ = {T1, . . . , Tm} of m
Markov trees is defined as a convex combination of elementary Markov tree
densities, ie.

PT̂ (X) =
m∑
i=1

µiPTi
(X), (8)

where µi ∈ [0, 1] and
∑m
i=1 µi = 1, and where we leave for the sake of simplic-

ity implicit the values of the parameter sets θ̃i of the individual Markov tree
densities.

While single Markov tree models impose strong restrictions on the kind of
densities they can faithfully represent, mixtures of Markov trees, as well as mix-
tures of empty graphs (i.e. Naive Bayes with hidden class), are universal approx-
imators (see, e.g., [13]).



3.4 Generic randomized Markov tree mixture learning algorithm

Our generic procedure for learning a random Markov tree mixture distribution
from a dataset D is described by Algorithm 1; it receives as inputs X, D, m,
and three procedures DrawMarkovtree, LearnPars, CompWeights.

Algorithm 1 (Learning a Markov tree mixture)

1. Repeat for i = 1, · · · ,m:
(a) Draw random number ρi,
(b) Ti = DrawMarkovtree(D, ρi),
(c) θ̃Ti = LearnPars(Ti, D, ρi)

2. (µ)mi=1 = CompWeights((Ti, θ̃Ti
, ρi)mi=1, D)

3. Return
(
µi, Ti, θ̃Ti

)m
i=1

.

Line (a) of this algorithm draws a random number in ρi ∈ [0; 1) according to
a uniform disribution, which may be used as a random seed for DrawMarkovtree
which builds a tree structure Ti possibly depending on the dataset D and ρi and
LearnPars which estimates the parameters of Ti. Versions of these two procedures
used in our experiments are further discussed in the next section. The algorithm
returns the m tree-models, along with their parameters θTi

and the weights of
the trees µi.

3.5 Specific variants

In our investigations reported below, we have decided to compare various versions
of the above generic algorithm.

In particular, we consider two variants of the DrawMarkovtree function: one
that randomly generates unconstrained Markov trees (by sampling from a uni-
form density over the set P1 of all Markov tree models), and one that builds
optimal tree structures by applying the MWST (Maximum Weight Spanning
Tree) structure learning algorithm published in the late sixties by Chow and Liu
[6] on a random bootstrap [14] replica of the initial learning set D. The random
sampling procedure of the first variant is described in [5]. The second variant
reminds the Bagging idea of [15].

Concerning the parameter estimation by LearnPars, we use the BDeu score
maximization for each tree structure individually, which is tantamount to se-
lecting the estimates using Dirichlet priors. More specifically, in our experiments
which are limited to binary random variables, we used non-informative priors,
which then amounts to using α = 1/2, i.e. p(θ, 1 − θ) ∝ θ−1/2(1 − θ)−1/2 for
the prior density of the parameters characterizing the conditional densities at-
tached the Markov tree nodes, once this tree is oriented in an arbitrary fashion.
Notice that in the case of tree-bagging, these parameters are estimated from the
bootstrap sample used to generate the corresponding tree structure.

Finally, we consider two variants for the CompWeights function, namely uni-
form weighting (where coefficients are defined by µi = 1

m ,∀i = 1, . . . ,m) and



Bayesian averaging (where coefficients µi are proportional to the posterior prob-
ability of the Markov tree structure Ti, derived from its BDeu score [1] computed
from the full dataset D).

4 Empirical simulations

4.1 Protocol

In order to evaluate the four different variants of our algorithm, we carried
out repetitive experiments for different data-generating (or target) densities, by
proceeding in the following way.

Choice of target density All our experiments were carried out with models
for a set of 8 and 16 binary random variables. We chose to start our investigations
in such a simple setting in order to be able to compute accuracies exactly (see
Section 4.1), and so that we can easily analyze the graphical structures of the
target densities and of the inferred set of trees.

To choose a target density PG(X), we first decide whether it will factorize
according to a poly-tree or to a more general directed acyclic graph structure.
Then we use the appropriate random structure generation algorithm described
in [5] to draw a structure and, we choose the parameters of the target density
by selecting for each conditional density of the structure (they are all related to
binary variables) two random numbers in the interval [0, 1] and by normalizing.

Generation of datasets For each target density and dataset size, we generated
10 different datasets by sampling values of the random variables using the Monte-
Carlo method with the target structure and parameter values.

We carried out simulations with dataset sizes of N = 250 elements for models
with 8 or 16 variables and for N= 2000 for the models with 16 variables. Given
the total number of 2n possible configurations of our n random variables, we
thus look at rather small datasets.

Learning of mixtures For a given dataset and for a given variant of the
mixture learning algorithm we generate ensemble models of growing sizes, re-
spectively m = 1, m = 10, and then up to m = 500 by increments of 10. This
allows us to appraise the effect of the ensemble size on the quality of the resulting
model.

Accuracy evaluation The quality of any density inferred from a dataset is
evaluated by the (asymmetric) Kullback-Leibler divergence [16] between this
density and the data-generating density PG(X) used to generate the dataset.
This is exactly computed by

KL(PG,PM )=
∑
X∈X

PG(X) ln
PG(X)
PM (X)

, (9)

where PM (X) denotes the density that is evaluated, and X denotes the set of
all possible configurations of the random variables in X.



Reference methods We also provide comparative accuracy values obtained
in the same fashion with five different reference methods, namely (i) a golden
standard denoted by GO which is obtained by using the data-generating struc-
ture and reestimating its parameters from the dataset D, (ii) a series of Naive
Bayes models with growing number of hidden classes denoted by NBE∗ and
built according to the Expectation-Maximization (EM) algorithm [17] as pro-
posed in [18] but without pruning, (iii) a series of Optimal Tree Mixtures with
growing number of terms denoted by MixTree and built according to the algo-
rithm proposed by Meila-Predoviciu which combines the Chow and Liu MWST
algorithm with the EM algorithm for parameter estimation [13], (iv) a baseline
method denoted by BL which uses a complete (fully connected) DAG structure
whose parameters are estimated from the dataset D, and (v) a single Markov
tree built using the Chow and Liu algorithm on the whole dataset (denoted by
CL, below).

Software implementation Our various algorithms were implemented in C++
with the Boost library (http://www.boost.org/) and APIs provided by the
ProBT c© platform (http://bayesian-programming.org).

4.2 Results

Fig. 1 (resp. Fig. 2, Fig. 3 and Fig. 4) provides a representative set of learn-
ing curves for a target density corresponding to a poly-tree distribution (resp.
DAG distribution). The horizontal axis corresponds to the number m of mixture
terms, whereas the vertical axis corresponds to the KL measures with respect
to the target density. All the curves represent average results obtained over ten
different datasets of 250 learning samples (2000 in Fig. 4) and five target dis-
tributions (only four target distributions in Fig. 3 and Fig. 4). Before analyzing
these curves, let us first remind that in our first experiments reported in [5],
which compared mixtures of fully randomly generated poly-trees with mixtures
of fully randomly generated Markov trees, we found that general poly-tree mix-
tures were not significantly different from Markov tree mixtures in terms of their
accuracies. Thus we have decided to report in the present paper only results ob-
tained with our Markov tree mixtures (MTU , MTBDeu, MBTU , MBTBDeu)
and a broader set of reference methods (BL, GO, MixTree, CL, NBE∗).

MTU corresponds to uniform mixtures of totally randomly generated
trees, while MTBDeu corresponds to the same mixtures when the terms are
weighted according to their posterior probabilities given the dataset. MBTU
and MBTBDeu correspond to mixtures of bagged trees with respectively uni-
form and posterior probability weighting.

We thus observe in Fig. 1 that our four random Markov tree mixture methods
are clearly outperforming the baseline BL in terms of accuracy, and some of
them are already quite close to the golden standard GO. For this reason, BL
results are not reported in all other figures. All four variants also nicely behave
in a monotonic fashion: the more terms in the mixture the more accurate the
resulting model.
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Fig. 1. Mixtures of trees for density estimation with a poly-tree target distribution. 10
experiments with a sample size of 250 for 5 random target distributions of 8 variables.
(lower is better).

Concerning the totally randomly generated tree mixtures, we also observe
that when they are weighted proportionally to their posterior probability given
the dataset they provide much better performances as compared to a uniform
weighting procedure. Concerning the mixtures of bagged trees we observe from
all figures that they both outperform the mixtures of randomly generated trees
in terms of asymptotic (with respect to the number of mixture terms) accuracy
and even more in terms of speed of convergence. With this bagging approach, we
also notice that the uniform weighting procedure is actually slightly better than
the one using weights based on the posterior probabilities given the dataset. We
believe that non-uniform weighting is counterproductive in the case of bagged
ensembles because it increases the variance of the ensemble model without de-
creasing its bias. Finally, we note that both bagging methods provide slightly
better results than single CL trees built on the whole dataset, as soon as the
number mixture terms is larger than about ten.

The NBE∗ algorithm obtains results very close but slightly less good than
those of bagged tree mixtures for a very small number of components (hidden
classes). However, contrary to random trees or bagged trees, in the Naive Bayes
method one clearly observes the fact that adding new components in the mixture
eventually, and rather quickly, leads to overfitting which is stronger when the
sample size is smaller (Fig. 1, Fig. 2, Fig. 3 and Fig. 4).

All in all, the consistently best method in these trials is the method which
uses bagging of tree structures combined with a uniform weighting scheme.

To further illustrate our results, we plot in Fig. 1 and Fig. 2 curves corre-
sponding to the MixTree algorithm. We observe that the MixTree algorithm
provides similar results (although better) than those of Naive Bayes, namely for
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Fig. 2. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 250 for 5 random target distributions of 8 variables.
(lower is better).

a small number of terms it yields accuracies close but slightly less good to those
of the bagged tree mixtures, but then when the number mixture terms increases
it also leads to overfitting.

5 Discussion

Our simulation results showed that in small sample conditions the mixtures
of Markov trees turned out to be in general largely superior to the complete
structure baseline BL.

Bagged ensembles of Markov trees significantly outperform totally random-
ized ensembles of Markov trees, both in terms of accuracy and in terms of speed
of convergence when the number of mixture components is increased. Contrary
to the more sophisticated EM-based Naive Bayes and Mixtree methods, our
methods do not lead to overfitting when the number of mixture terms is in-
creased.

From a computational point of view, bagging which uses the Chow Liu
MWST algorithm as baselearner is quadratic in the number of variables while
the generation of random tree structures may be done in linear time (see [5]).
Bagged ensembles of Markov trees slightly outperform the CL method, which is
also quadratic in the number of variables, in terms of accuracy.

In case a linear complexity is needed, random mixtures of Markov trees,
namely MTBDeu, give acceptable results. When a quadratic complexity can be
accepted, CL remains slightly preferable to our methods with bagging.

In between these two extreme randomization schemes, one can imagine a
whole range of methods based on the combination of bootstrap resampling and
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Fig. 3. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 250 for 4 random target distributions of 16 variables.
(lower is better).

more or less strong randomizations of the generation of the Markov trees leading
to different computational trade-offs. Our methods with bagging can be improved
to supply algorithms with same accuracy and complexity better than quadratic.
Also, out-of-bag estimates may be exploited to compute unbiased accuracies of
the ensemble models [4].

6 Summary and future works

We have investigated in this paper the transposition of the “Perturb and Com-
bine” idea celebrated in supervised learning to the context of unsupervised
density estimation with graphical probabilistic models. We have presented a
generic framework for doing this, based on randomized mixtures of tree struc-
tured Markov networks, where the perturbation was done by generating in a
totally random fashion the structure component, or by bootstrapping data be-
fore optimizing this structure component.

The first results obtained in the context of a simple test protocol are already
very promising, while they also highlight a certain number of immediate future
research directions.

Thus, a first line of research will be to apply our experimental protocol to
a larger set of problems including high-dimensional ones and a larger range of
sample sizes. We believe also that a more in depth analysis of the accuracy
results with respect to the basic properties of the target distributions as well
as sample sizes would be of interest, in particular with the aim of characteriz-
ing more precisely under which conditions our methods are more effective than
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Fig. 4. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 2000 for 4 random target distributions of 16 variables.
(lower is better).

state-of-the-art ones. Of course, these investigations should also aim at system-
atically comparing all these algorithm variants from the point of view of their
computational complexity.

Another more generic direction of research, is to adapt importance sampling
approaches (e.g. the cross-entropy method [19]) in order to generate randomized
ensembles of simple structures (chains, trees, poly-trees, etc.) that fit well the
given dataset.

A more simple direction is to improve our methods of bagged ensembles of
Markov trees by forcing the complexity of the optimization level in the Chow
Liu MWST algorithm to come down below the quadratic.

While the class of methods investigated in this paper is based on generating
an ensemble by drawing its terms from a same distribution (which could be done
in parallel), we believe that the combination of these methods with sequential
methods such as Boosting or Markov-Chain Monte-Carlo which have already
been applied in the context of graphical probabilistic models (see e.g. [20]), might
provide a very rich avenue for the design of novel density estimation algorithms.
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