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Abstract. This paper addresses the problem of solving discrete-time
optimal sequential decision making problems having a disturbance space
W composed of a finite number of elements. In this context, the problem
of finding from an initial state x0 an optimal decision strategy can be
stated as an optimization problem which aims at finding an optimal com-
bination of decisions attached to the nodes of a disturbance tree modeling
all possible sequences of disturbances w0, w1, . . ., wT−1 ∈ W T over the
optimization horizon T . A significant drawback of this approach is that
the resulting optimization problem has a search space which is the Carte-
sian product of O(|W |T−1) decision spaces U , which makes the approach
computationally impractical as soon as the optimization horizon grows,
even if W has just a handful of elements. To circumvent this difficulty, we
propose to exploit an ensemble of randomly generated incomplete distur-
bance trees of controlled complexity, to solve their induced optimization
problems in parallel, and to combine their predictions at time t = 0
to obtain a (near-)optimal first-stage decision. Because this approach
postpones the determination of the decisions for subsequent stages un-
til additional information about the realization of the uncertain process
becomes available, we call it lazy. Simulations carried out on a robot
corridor navigation problem show that even for small incomplete trees,
this approach can lead to near-optimal decisions.
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1 Introduction

The discrete-time optimal control paradigm can be used to formalize a broad
class of problems arising in a variety of fields such as finance, automatic control,
robotics, or operations research. In this paradigm, at each time step t, the deci-
sion maker measures the state xt ∈ X of the environment and takes a decision
ut ∈ U according to his decision rule. As a result of his decision, the environment
transits to a new state xt+1 and the decision maker observes a scalar reward sig-
nal rt which reflects in some way the impact of his decision on his performance
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criterion. The environment behavior as perceived by the decision maker can be
in general nonlinear and stochastic.

In this paper, we assume that the stochastic nature of the environment is
modeled by an exogenous disturbance process (wt ∈ W ) which acts as an addi-
tional input on the state transitions. We also assume that this process is memo-
ryless and that the optimality criterion J of the decision maker is the expected
value of the sum of rewards rt over a finite number T of stages. Within this con-
text, we focus on the computation of decisions that maximize J when a model
of the environment is provided to the decision maker in terms of the initial
condition x0, a full specification of the stochastic process wt, and the functions
ft(·, ·, ·) and rt(·, ·, ·) allowing to compute xt+1 and rt from xt, ut and wt.

Different strategies can be thought of for computing decisions in such a con-
text. One of them would be to compute a fixed sequence of decisions u0, u1,
. . ., uT−1 from the available information. Solving the problem in this manner is
equivalent to searching in the space UT = ×T−1

t=0 U an element that maximizes
the optimality criterion. This approach, also known as the open-loop approach, is
very convenient for solving problems for which the dynamics of the environment
is linear and deterministic, and the optimality criterion J convex. Indeed, under
these conditions, efficient algorithms for searching for the best element in UT

exist, and it can be shown that among the set of all plausible decision rules, the
one deduced by such an approach is optimal within this restricted context [1, 2].

Putting aside the difficulty of solving this optimization problem for more gen-
eral classes of problems, the open-loop approach is intrinsically less attractive
for stochastic problems since the sequence of decisions so obtained is generally
quite suboptimal with respect to the use of optimal closed-loop decision rules,
i.e. decision rules which determine the current action from the current time and
current information available about the state of the environment. While the sub-
optimality of the open-loop approach could to some extent be decreased if at
time t > 0, the last remaining T − t decisions were reoptimized by taking into
account that the system is in state xt at time t, something it was impossible to
predict at times 0, 1, . . . , t − 1 due to the stochasticity of the system, the inher-
ent suboptimality of such a time receding open-loop approach remains because
the stochastic nature of the problem is not explicitly taken into account when
computing the sequence of decisions.

Actually, some approaches exist to extend in an optimal way the open-loop
philosophy to stochastic problems [3]. For easing subsequent discussions, we will
suppose that the disturbance space W of the stochastic optimal control problem
is finite. The main philosophy behind these approaches is the following. First,
they generate all the |W |T possible T -stage disturbance scenarios w0, w1, . . .,
wT−1. Secondly, they associate to each one of these scenarios and each possible
sequence of decisions a return. Then they determine by solving in one single opti-
mization problem |W |T sequences of decisions of length T , one for each scenario,
such that the expected return over all the scenarios is maximized. By imposing
the constraint that the first t decisions of two such sequences corresponding to
two scenarios having the same t − 1 first elements w are the same, these tech-
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niques can be used to determine optimal decision rules which associate a decision
to each time step t and any partial sequence of disturbances w0, . . . , wt−1. An
immediate variant of this approach which represents implicitly the equality con-
straints over the decisions (called non-anticipativity constraints) is obtained by
reformulating the optimization problem on a disturbance tree.

One main drawback of these disturbance tree approaches for solving stochas-
tic optimal control problems is related to the size of the optimization problem
they require to solve. Indeed, the search space for these optimization problems
is the Cartesian product of n decision spaces U where n is O(|W |T−1). This
exponential growth makes the approach rapidly computationally impractical as
soon as T grows, even if W has only a few elements.

In order to circumvent this difficulty, we propose in this paper an alternative
approach exploiting an ensemble of randomly generated incomplete disturbance
trees of controlled complexity. In this approach, the incomplete disturbance trees
are built by developing each node only partially, that is by not necessarily associ-
ating to a non-terminal node |W | children nodes. More specifically, our strategy
for selecting the disturbances for developing a node is nondeterministic and tends
to develop less the nodes as the tree depth increases. This strategy depends on pa-
rameters that control the expected number of nodes of a tree, and, consequently,
which influence the size of the search space for the optimization problem since it
is equal to the Cartesian product of n decision spaces U , where n is the number
of nonterminal nodes of the tree. The optimization problems induced by these
trees can be solved in parallel. Their predictions at time t = 0 are combined in
order to compute a (near-)optimal first-stage decision for the problem at hand.
We call this approach lazy, in order to stress the fact that it postpones the de-
termination of the decisions for subsequent stages until additional information
about the realization of the uncertain process becomes available1. We provide
simulation results carried out on a robot navigation problem which suggest that
the proposed framework can strongly improve the computational performances
of the original disturbance tree approach for planning under uncertainty while
being only slightly suboptimal.

The rest of the paper is structured as follows. Section 2 discusses our “ensem-
ble of incomplete disturbance trees” approach with respect to different works in
planning under uncertainty and machine learning. In Section 3, we specify the
type of planning under uncertainty problem considered in this paper and show
how the problem of finding an optimal decision strategy can be reformulated as
an optimization problem on a disturbance tree. This section also describes an
example of application of this technique to a robot navigation problem when
solving the optimization problem by using a Cross-Entropy based algorithm.
Section 4 describes our ensemble of incomplete disturbance trees approach for
deriving the first-stage decision and evaluates its performances on the robot
navigation benchmark problem. Finally, Section 5 concludes.

1 The term “lazy” is used in compiler theory and machine learning in order to qualify
algorithms which delay computations until enough information is available to decide
that they indeed need to be carried out [4, 5].
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2 Related Work

The paradigm of optimizing decisions on a disturbance tree has already been
studied by several authors. Most of their works have been carried out by assum-
ing that the system dynamics is linear and by supposing as disturbance spaces
compact subsets of Rn. One central theoretical result in this field is that as the
discretization of the disturbance space becomes finer, the suboptimality of the
approach decreases to zero [6, 7]. Approaches proposed for building the distur-
bance trees have been diverse but the central motivation behind them is always
the same: having a small disturbance tree which leads to a near-optimal decision
rule. As different strategies used for building these trees, one can mention those
which interlace the building of the tree with the optimization process [8] or those
which optimize decision variables once the tree is built. For these latter ones, one
distinguishes methods based on Monte Carlo sampling [9], on the preservation
of the statistical properties [10], and on the minimization of probability metrics
between the target and the approximate distribution [11, 12].

When the disturbance space is composed of a single element (deterministic
environment), these disturbance tree approaches degenerate into the computa-
tion of an open-loop sequence of decisions. The computation of such sequences
of decisions is at the heart of the vastly successful Model Predictive Control
techniques which combine their computation with some time receding horizon
strategies [13, 1, 2]. These techniques have also been extended to stochastic en-
vironments but rather by using some min-max approaches aimed at finding a
solution which is optimal with respect to the worst-case “disturbance sequence”
[14], rather than by trying to maximize a compound return function J .

The approach proposed in this paper for alleviating the computational bur-
dens related to the disturbance tree paradigm is the first one which proposes to
build an ensemble of models and to aggregate their solution, with the exception
perhaps of the work of Nesterov and Vial, who develop in [15] similar ideas for
highly structured environments. However, the idea of aggregating the individual
outputs of an ensemble of models has already been vastly exploited in machine
learning, and especially in supervised learning (classification and regression). As
way of example, one can mention the boosting method [16] which builds models
sequentially and refines the output regions where the errors are important or the
bagging method which builds the models in parallel from some randomized sets
of data [17]. These ideas of aggregating the predictions of an ensemble of models
have also already been used for planning under uncertainty but in the context
where closed-loop decision rules are computed [18, 19].

Finally, we mention the work of Kearns et al. [20] who propose to solve
stochastic planning problems by developing a tree where each branch corresponds
to a decision-disturbance pair. They apply the dynamic programming principle
on the tree to compute decisions and show under some particular conditions that
sparse sampling of the disturbances suffices to compute near-optimal decisions.
As in our approach, the complexity of their tree does not depend on the number
of states. However, and contrary to the disturbance tree approach, their tree size
grows (rapidly) with the cardinality of the set of possible actions U .
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3 Planning over a Disturbance Tree

3.1 Formalization

Our first task will be to formulate a sequential decision problem over a time
horizon T , and to explain how a decision making strategy can be evaluated on
a complete disturbance tree of depth T .

We consider a system that evolves according to a state transition function
xt+1 = ft(xt, ut, wt) starting from a fixed initial state x0. Its trajectories are
controlled by the decisions ut ∈ U and perturbed by disturbances wt ∈ W , which
are drawn independently from a finite time-invariant probability distribution
Pw

2. A reward process r0, r1, . . . , rT is defined by rt = rt(xt, ut, wt) for 0 ≤ t < T
and rT = rT (xT ). The goal is to find a strategy µ maximizing the expectation
of a discounted sum of the rewards, with 0 < γ ≤ 1 the discount factor3:

J∗(x0) = max
µ

E{
T−1
∑

t=0

γtrt(xt, ut, wt) + γT rT (xT )}. (1)

In the disturbance tree framework, the strategy µ for selecting a decision ut at
time 0 ≤ t < T consists in deterministic mappings µt from current histories
ht = [w0, w1, . . . , wt−1] of the disturbance process to decisions ut at time t. The
mapping at time 0 degenerates into a fixed decision u0, the history at time 0
being empty. This class of strategies is in principle more general than the class of
time-dependent strategies mapping the state xt to a decision ut, since the state
xt can always be recovered by the procedure described in Table 1. However,
when the disturbance process is memoryless, these two classes of strategies are
equivalent in terms of optimality.

Table 1. How to recover states from disturbance histories.

Input: An initial state x0, a history of the disturbance process ht = [w0, w1, . . . , wt−1],
a strategy µ0, µ1, . . . , µt−1 for computing decisions up to time t − 1.
Output: The state xt.

1. Initialization: Set x to x0 and τ to 0.
2. While τ < t, set u to µτ (w0, w1, . . . , wτ−1), set x to fτ (x, u, wτ ), and increment τ .
3. Return x.

The complete disturbance tree represents all the possible outcomes of the
process w0, w1, . . . , wT−1. Its construction is given in Table 2. To each node n
of depth 0 < t ≤ T in the tree corresponds a history hn = [w0, . . . , wt−1]n of the
process, through the unique path from the root to the node n. The disturbance

2 Independence of the wt is imposed only to simplify the presentation and facilitate
the parallel with the dynamic programming framework.

3 More general objective functions could also be considered in this framework.
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(wt−1)n is directly associated to node n, while [w0, . . . , wt−2]n can be collected
from the disturbances associated to the nodes in the path. The root, at t = 0,
has an empty history. The strategy µ can thus be represented on the tree by
associating to each node n of depth 0 ≤ t < T the value un = µ(hn).

Table 2. How to build a complete disturbance tree.

Input: The horizon T , the disturbance space W = {W1, . . . , Wm}, the probabilities
Pj = P(wt = Wj).
Output: A complete disturbance tree over the finite horizon T .

1. Initialization : Create a root node of depth 0.
Associate the probability 1 to the root. Set t = 0.

2. While t < T :
For each node n of depth t, create m successor nodes (of depth t+1) with associated
values W1, . . . , Wm and probabilities P1, . . . , Pm.
Increment t.

3. Return the tree structure and the values wn and probabilities pn associated to its
nodes n. (Now wn denotes a value of wt, where t is the depth of node n.)

Table 3. Evaluation of the expected value of a strategy on a disturbance tree.

Input: A disturbance tree, an initial state x0, a strategy µ represented by decisions un

associated to the nodes n of depth 0 ≤ t < T .
Output: The expected value of the decision making strategy.

1. (Computation of the rewards rn associated to the nodes of the tree.)
Associate the initial state x0 to the root node. Set t to 1.
While t ≤ T :
For each node n of depth t: Identify the parent node n′ and associate
xn = ft−1(xn′ , un′ , wn) and rn = rt−1(xn′ , un′ , wn) to node n.
Increment t.

2. (Computation of the expected discounted sum of rewards by backpropagation.)
Associate Jn = rT (xn) to each node n of depth T . Set t to T − 1.
While t ≥ 0:
For each node n of depth t: Identify the set of successor nodes S(n), and associate
Jn =

P

n′∈S(n) pn′ · (rn′ + γJn′ ) to node n.
Decrement t.

3. Return the value Jn associated to the root node.
Clearly, this value is equal to E{

PT−1
t=0 γtrt(xt, ut, wt) + γT rT (xT )}

where ut = µt(w0, . . . , wt−1).

Alternatively, searching for an optimal strategy becomes equivalent to opti-
mizing the values un. To this end, states xn, rewards rn and partial sums Jn are
associated to nodes n. This helps to compute the expected value of an arbitrary
strategy µ represented by particular values for un. Table 3 describes the full
process. The optimization itself is done directly over the node variables un. The
algorithm of Table 3 will serve as an oracle for scoring the strategy.
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3.2 Illustration

The following corridor navigation problem illustrates the search for an optimal
strategy on a complete disturbance tree.
Let X = {1, 2, . . . , S − 1} ∪ Xterm, where Xterm = {0, S} is a set of terminal
states. Let W = {−1, 0, 1}, with probabilities Pw = {0.25, 0.50, 0.25}.
If xt /∈ Xterm, then U = {−1, +1} and







xt+1 = xt + ut + wt, rt = 0 if 0 < xt + ut + wt < S
xt+1 = 0, rt = 1 if xt + ut + wt ≤ 0
xt+1 = S, rt = 5 if xt + ut + wt ≥ S.

If xt ∈ Xterm, then xt+1 = xt, rt = 0, and U is irrelevant.
The terminal rewards of equation (1) are set to rT (·) = 0.
In this section, T = 3, S = 6, γ = 0.9, and x0 = 2.

The complete disturbance tree is represented on Fig. 1, along with the op-
timized decisions un and the corresponding states xn, rewards rn, and partial
sums Jn. The Cross-Entropy method was used to find a global optimal solu-
tion for un. The reader may refer to [21] for more details on the Cross-Entropy
method, which was well adapted for the particular problem at hand. Simply
put, the Cross-Entropy method samples candidate solutions, using importance
sampling oriented towards candidate solutions with the highest scores. If the
method succeeds, then the output of Table 3 corresponds to (1). Otherwise, the
suboptimal solution that has been found may still be acceptable.

The decision making strategy reported on the figure is indeed optimal. The
value J = 1.502 corresponds to the value returned by the well-known value
iteration algorithm from dynamic programming, stopped after T = 3 iterations.

One can check on Fig. 1 that the mapping from states xt to decisions ut

(which is the kind of mapping considered in the value iteration algorithm) cor-
responding to the history-to-decision mapping found on the disturbance tree is
time-variant4.

4 Lazy Approach Using an Ensemble of Incomplete

Disturbance Trees to Derive a First-Stage Decision

4.1 Principle

Our second task will be to explain how we can advantageously work on an
ensemble of incomplete disturbance trees to determine an optimal first-stage
decision.

The representation of a strategy µ by decisions un defined on the nodes of
the complete disturbance tree shows that an incomplete disturbance tree will
only permit an incomplete description of a strategy. However, we restrict our
attention to the first-stage decision u0, and assume that the optimization of

4 For instance the nodes N1 (t = 0) and N4 (t = 1) share the state x = 2 but differ in
the decision.
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t=0 1 2 t=T

N1: u=1
x=2, J=1.502

N2: u=1
x=4, J=3.219

N3: u=1
x=3, J=1.406

N4: u=−1
x=2, J=0.644

N5
x=6, r=5

N6: u=1
x=5, J=3.750

N7: u=1
x=4, J=1.250

N8: u=1
x=5, J=3.750

N9: u=1
x=4, J=1.250

N10: u=1
x=3, J=0.000

N11: u=−1
x=2, J=0.250

N12: u=−1
x=1, J=0.750

N13
x=0, r=1

N14
N15
N16
N17, x=6, r=5
N18, x=6, r=5
N19, x=5
N20, x=6, r=5
N21, x=5
N22, x=4
N23, x=6, r=5
N24, x=6, r=5
N25, x=5
N26, x=6, r=5
N27, x=5
N28, x=4
N29, x=5
N30, x=4
N31, x=3
N32, x=2
N33, x=1
N34, x=0, r=1
N35, x=1
N36, x=0, r=1
N37, x=0, r=1
N38
N39
N40

1

0

−1

1

0

−1

1

0

−1

1

0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

Fig. 1. A toy corridor problem on T = 3 with terminal states {0, 6}, starting from
x0 = 2, solved on a complete disturbance tree. The node disturbances wn are written
on the branches and the corresponding node probabilities (pn = 0.25 for wn = ±1,
pn = 0.5 for wn = 0) are omitted. The values un have been optimized, and this fully
specifies an optimal strategy µ. For instance, u = −1 at node N11 means that µ2(w0 =
−1, w1 = +1) = −1. A terminal state is reached at node N5, among other cases. This
makes the subtree beyond N5 useless, but only once the decisions are optimized. The
expected value of the strategy, J = 1.502, is read from the root node N1. Reported
values for xn, rn, Jn are those obtained with the last invocation of the algorithm of
Table 3, which served to score decisions un’s generated by the Cross-Entropy method.
For instance, the value J = 0.75 at node N12 comes from pN36rN36 + pN37rN37, in
accordance with the step 2 of Table 3.
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Table 4. Computing a decision at time t = 0 with an ensemble of M incomplete trees.

Input: The initial state x0, the optimization horizon T , the desired number M of trees,
a specification of the disturbance process wT−1

t=0 .
Output: A decision u0 to be applied at time 0.

1. Build in parallel M incomplete disturbance trees of depth T .
2. Optimize in parallel a decision making strategy on each tree.
3. Return the decision obtained by a majority vote over the M first-stage decisions

u0 gathered from the roots of the M trees.

incomplete strategies will give some valuable information on u0. We thus pro-
pose to aggregate several first-stage decisions obtained from several incomplete
strategies optimized on several incomplete disturbance trees. The full process,
based on a majority vote for the decision u0 and described in Table 4, can be
restarted at each time step, with the current state as the initial condition.

An incomplete disturbance tree can be built using the randomized algorithm
given in Table 5. Starting from the root, the algorithm creates for each node a set
of successor nodes by sampling disturbances. Distinct samples form the successor
nodes, while the sample multiplicities serve to define node probabilities. The
growth of the tree is controlled by choosing a random number m of samples to
draw.

The probability distribution of m is an input for the algorithm. For building
deeper trees while preserving the branching structure allowed on shorter time
horizons, it might be advantageous to let the distribution of m evolve with the
depth of the tree. A simple way to do that consists in mixing 2 probability
distributions QA and QB with relative weights depending on the depth. More
specifically, the probability that m = j for a node of depth t is set to

Qt(m = j) = αQA(m = j) + (1 − α)QB(m = j) (2)

with α , 1/(1 + t) moving progressively from 1 to 0 as the depth t increases.
Trees are likely to feature sequences of disturbances with few branchings beyond
a certain depth when QB is concentrated on small values of m such as 1 or 2. Of
course, the algorithm can be run with fixed branching probabilities by setting
QA ≡ QB . However, if QB has its mass concentrated on 1, the expected number
of nodes is asymptotically linear with the depth T of the tree. This strongly
contrasts with the exponential growth of the size of the complete tree with T .

It is easy to estimate by Monte Carlo simulation the expected size of an
incomplete tree for given depth T , number of disturbances |W | and probabilities
QA, QB . Therefore, it is possible to choose QA and QB so that the expected size
of a tree is in line with the size of the optimization problem one is able to deal
with.

4.2 Illustration

The corridor navigation problem of Section 3 will illustrate the clear benefit
in terms of computational complexity of working on an ensemble of incomplete
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Table 5. How to build an incomplete disturbance tree for a discrete, time-invariant,
and memoryless disturbance process.

Input: The disturbance space W , the probabilities Pw, the tree depth T .
Parameters: Probability distributions QA, QB , both of support in {1, 2, . . . , q}

where q is the maximal allowed number of samples.
Output: An incomplete disturbance tree over the horizon T .

1. Initialization : Create a root node of depth 0.
Associate the probability 1 to the root. Set t = 0.

2. While t < T :
Set α to 1/(1 + t). Set Qt to αQA + (1 − α)QB .
For each node n of depth t:
Draw a random number m according to Qt. Draw m samples in W according to Pw.
Obtain m′ ≤ m distinct samples [w(1), . . . , w(m′)] of multiplicity [k(1), . . . , k(m′)].

Create m′ successor nodes (of depth t + 1) with associated values w(1), . . . , w(m′)

and probabilities k(1)/m, . . . , k(m′)/m.
Increment t.

3. Output the incidence structure of the tree, and the values wn and probabilities pn

associated to each one of its nodes n.

disturbance trees instead of a unique complete tree. A set of simulations is run
with S = 10, T = 6, γ = 0.7, on different initial conditions x0.

5

The problem is solved for x0 = 3 on a complete tree (composed of 1093
nodes) in a reasonable time. This permits to report relative time savings for
the solution on incomplete trees. A majority vote over M = 100 incomplete
trees gives the first decision u0. Subsequent decisions are ignored, assuming that
simpler problems on shorter time horizons will be solved to obtain u1, u2, . . . as
soon as x1, x2, . . . are known.

Table 6 gives the 4 representative choices for the distributions QA and QB

that have been considered as parameters of the tree generation algorithm, along
with their macroscopic effect on the size of a tree of depth T = 6.

Table 7 shows that with the first choice (Test I), the trees reduce to T -length
sequences of disturbances. Wrong decisions for x0 = 4 and x0 = 5 indicate that
this structure is too weak. Test IV leads to moderately dense trees and right
decisions. Beside these two extremes, Test II uses fixed probabilities for the
number of disturbances to sample and Test III use decaying probabilities. The
setting for Test III dominates the one for Test II, because it produces smaller
trees while these trees prove more reliable on the initial condition x0 = 4: they
advocate the optimal decision more often.

Beyond the huge time savings, the tests have also revealed an unexpected
advantage of using the Cross-Entropy method on incomplete trees. Suboptimal

5 We used a larger optimization horizon T than in Section 3 to better highlight the
performances of our approach. The value of γ differs also from the one previously
chosen (now 0.7 rather than 0.9) to have an optimal first-stage decision that varies
with the initial state, so as to make the example more interesting.
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Table 6. Representative settings for the probability distributions of the number of
samples per node, and their effect on the size of the incomplete trees.

QA
† QB Short description Number of nodes ‡

Mean Std dev.

I [1 0 0] [1 0 0] Always draw 1 sample. 7 0
II [1 1 1]/3 [1 1 1]/3 1,2,3 samples with prob. 1/3. 39.31 22.31
III [0 0 1] [1 0 0] Deeper, draw 1 instead of 3. 29.87 13.10
IV [0 0 1] [0 0 1] Always draw 3 samples. 136.25 53.28

† QA = [1 0 0] means that the probability of drawing 1, 2, 3 samples is respectively
1, 0, 0 under the distribution QA that parameterizes the algorithm of Table 5. The
number of children nodes may be less, depending on the number of distinct samples.
‡ Estimated by building 400 trees of depth T = 6. A complete tree has 1093 nodes.

Table 7. Decisions obtained with incomplete trees on the corridor problem with ter-
minal states {0, 10}, T = 6, and γ = 0.7. The 4 settings of Table 6 are tested. Basically,
decisions are correct when the trees are not too small.

Decision u†
0 Time‡ Typical tree

x0 = 2 x0 = 3 x0 = 4 x0 = 5

Optimal: -1 -1 +1 +1

Test I
-1

(93%)
-1

(78%)
-1

(66%)
-1

(51%)
0.04%

0 1 2 3 4 5 6

Test II
-1

(96%)
-1

(82%)
+1

(54%)
+1

(81%)
0.42%

0 1 2 3 4 5 6

Test III
-1

(95%)
-1

(80%)
+1

(63%)
+1

(88%)
0.15%

0 1 2 3 4 5 6

Test IV
-1

(98%)
-1

(91%)
+1

(71%)
+1

(100%)
2.41%

0 1 2 3 4 5 6

† Initial decision obtained by a majority vote on M = 100 trees, with the share in
parenthesis. Separate tests are conducted for the 4 mentioned initial states x0.
‡ Mean computation time for solving 1 incomplete tree (case x0 = 3), in percentage of
the time required to solve the complete disturbance tree for the same problem. Time
savings are huge.
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solutions indeed arise more frequently on the complete tree than on the smaller
incomplete ones, by a simple scale effect. A wrong decision can thus be inferred
from a suboptimal solution on the complete tree, while the majority vote from
solutions on incomplete trees yields a correct decision in a more reliable way.

5 Conclusions

This paper has proposed an approach for alleviating the computational burdens
of the original disturbance tree paradigm for planning under uncertainty. The
approach builds an ensemble of small trees, solves in parallel the small size
optimization problems which correspond to these trees and aggregates their first-
stage decisions. Applying this algorithm in a time receding fashion results in a
lazy decision making strategy which computes at each time step the decision to
apply given all the available information, thereby focusing only on the particular
subproblem to solve rather than trying to pre-compile once and for all a decision
strategy that would be applicable to all kinds of realizations of the environment
under control. This approach has been evaluated on a robot navigation problem
and the results obtained are encouraging. Indeed, with an ensemble of small
trees (especially with respect to the fully developed one), it has been possible to
obtain in a reliable way accurate predictions of the optimal first-stage decision.

While the strategy adopted in this paper for building the incomplete trees is
giving good results, we do not exclude that it could still be significantly improved
by for example relying on other sampling procedures than a pure Monte Carlo
one for developing a disturbance tree node. It would also be interesting to study
to which extent some specific optimization tools could be customized to the
structure of the optimization problem defined by a disturbance tree for leverag-
ing their performances. Besides the study of the algorithmic improvements that
could be brought to our multi-tree framework, it would also be interesting to
establish its theoretical properties. For example, it would be informative to know
(even under some highly restrictive assumptions on the environment structure)
some upper bounds (in probability) on the suboptimality of the decision rules
with respect to the size of the ensemble, the variance of the computed decisions
or the computational complexity of these multi-tree based algorithms.

Also, while we have in this paper worked out the approach in the context
of a memoryless disturbance process, in which case the state of the system un-
der control is a sufficient statistic to take decisions, our approach extends in a
straightforward way to general disturbance processes, or in other words to par-
tially observable environments. Further work should thus be carried out to study
in more depth the pros and cons of this approach with respect to the literature
on partially observable Markov decision processes [22, 23].

Another important direction of research concerns the extension of this ap-
proach to continuous disturbance processes. Some preliminary work [24, 25] along
these lines shows that in this context it is important to properly choose the way
in which the continuous disturbance process is discretized in order to generate
the disturbance trees.
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Overall, the approach presented in this paper adds to the arsenal of methods
for planning under uncertainty. However, it is not yet clear how it would compete
for some specific classes of problems with algorithms exploiting other paradigms,
such as the dynamic programming paradigm [26] or the direct closed-loop pol-
icy search one [27]. All these paradigms have pros and cons, and establishing
which one, or which combination of paradigms, to exploit for a specific problem
certainly deserves further research.
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