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Abstract

This paper considers sequential decision making problems under uncertainty, the
tradeoff between the expected return and the risk of high loss, and methods that
use dynamic programming to find optimal policies. It is argued that using Bellman
Principle determines how risk considerations on the return can be incorporated.
The discussion centers around returns generated by Markov Decision Processes
and conclusions concern a large class of methods in Reinforcement Learning.

1 Introduction

Incorporating risk sensitivity in Reinforcement Learning (RL for short) can serve different purposes:
to balance exploration versus exploitation for fast convergence, to protect the agent during the learn-
ing process, to increase policy robustness by limiting confidence in the model, or to prevent rare
undesirable events. This paper deals with the latter aspect.

Many popular methods in RL such as Temporal Difference learning [27] or Q-learning [29] base
the selection of actions on average rewards-to-go, following principles from Monte Carlo estimation
[21] and Dynamic Programming [4].

The present paper focuses on the dynamic programming part. It discusses how the use of Bellman
Principle restrains the user from imposing arbitrary requirements on the distribution of the return
generated by a Markov Decision Process [25] (MDP).

It is assumed that the parameters of the MDP are known. Restrictions in that setup will also hold in
setups involving estimation issues, observability issues, or complexity issues.

The paper attracts the attention to limitations of dynamic programming beyond the curse of di-
mensionality, and brings insights on the structure of risk-aware policies. The second point is also
of potential interest for non dynamic-programming-based methods, such as policy search methods
[20] or scenario-tree-based methods [10].

The paper is organized as follows. Section 2 provides background material on the considered pro-
cesses, returns and objectives. Section 3 defines an abstract Bellman Principle, with the motivation
of identifying in Section 4 limitations that also hold for powerful versions of the Bellman Principle.
Section 5 considers the relaxation of clear objectives on the return distribution at the light of the
preceding discussion, and Section 6 concludes.

2 Markov Decision Process and Return Risk

2.1 MDP Formulation

The return-generating process is formalized as a finite or an infinite horizon Markov Decision Pro-
cess with a finite state space S = {1,...,|S]|}, a finite action space A = {1,...,|A|}, a transition




probability matrix P € RISIXIAIXISI with Py, = P(s’ = k|s = i,a = j), an initial distribution of
state ¢, and a reward matrix R € RISIXIAXISI with R, ;) = r(s = i,a = j,s' = k).

The return obtained during one realization of the process is (under usual measurability conditions)
the random variable

RET =" Blr(we, u, i41), (1
t=0
with 5 € (0,1) the discount factor. In finite horizon problems the sum is truncated and 8 € (0, 1].
The random variable depends on the initial distribution ¢ and on the policy 7 of the agent. The
superscripts ¢, 7 stress that dependence but are omitted in the sequel when the context is clear.

The agent applies a Stochastic Markov policy m € X. Stochastic policies are often relevant in
a risk-sensitive context: see Section 4.1. The policy may be time-varying. Even if the process
is observable, in many risk-sensitive setups, it is necessary to extend the state space and define
auxiliary variables (see Section 2.2). Therefore, let I refer to such an extended state space, and let 1
be identified to the information space of the agent. The random selection of an action in A according
to a distribution conditioned on the information state 7; € [ is written

ug ~ (). (2)
Provided I is finite and has || elements, the policy at time ¢ can be represented by a matrix TT(*) €
RIIXIAl with Hl(-;) = P(a = jli; = i). For deterministic policies, IT*) has 0’s and 1’s.

Let ® be an functional that maps random variables to R = R U {4oc}. Examples of choice for ®
are given in Section 2.2. ® can also be viewed as a mapping from return distributions to R.
The goal of the agent is the maximization of ®(R?™) over his policy space:

max ® (Rlwo ~ ¢,7). 3)

2.2 Popular Objectives in the MDP Literature

When ®(R) = E{R}, the objective reduces to the risk-neutral maximization of the expected return.

A first important choice in risk-sensitive MDP originally proposed by [17] (undiscounted case) and
further studied by [18, 8] (discounted case) is

®(R) = =7~ " log(E{exp(—R)}). )
The parameter v models a constant risk sensitivity that corresponds to risk aversion if v > 0.
Constant risk sensitivity means that the sensitivity does not vary with the current wealth of the
agent, here defined as the current partial sum of rewards. Solving methods often exploit dynamic
programming (but see [11] for a counterexample), and this explains why (4) is often investigated in
various extensions of the basic MDP setup [13, 23].

Another important choice initiated by [6] and refined by [30] is
O(R) =P(R > a) =E{I>.(R)}. &)

The parameter a is a target level for the return and I, (z) denotes the 0-1 indicator function for the
event x > a. Optimal policies have generally to take into account the agent’s wealth:

t—1
Ry = ZBTT(IﬁuﬁxTJrl) € R,
7=0
allowing the agent to convert rewards-to-go to returns.
Several variants of the setup exploit (5), e.g. optimal stopping problems [22].

Some authors have considered more complex functionals, but finding optimal policies seems chal-
lenging. For instance, [19] studies optimality conditions for the maximization of E{g(R)} subject
to E{h;(R)} < a;, where g and h;, 1 < j < k, are utility functions, and c; some thresholds. This
amounts to choose

B(R) = { Iig(R)} i)fti%lg)} <aj, 1<j<k ©



2.3 Return Distribution

The distribution function of the return R™ generated by the MDP with policy 7 and initial state s,
Fi(y) £ P(R™ < ylag = ),

can be estimated by simulating trajectories of the process and evaluating the corresponding returns.
Empirical distributions converge to the theoretical distribution as the number of samples grows to
infinity [14].
For the particular case of an infinite horizon MDP, nonnegative bounded rewards, and a stationary
policy, it holds (see [8]) that F'(-) = [F1(-), ..., Fg/(-)] is the unique fixed point of a nonexpansive
mapping M applied on distribution functions G(-) £ [G1(-), ..., G|s|(-)] and defined by

o y — Riji,

(ME)i(w) = 3 P Gu(—5)

k=1 j=m(?)
with Gi(y) £ 0if y < 0, and Gi(y) = 1if y > sup;;{Rijr}/(1 — 8). The mapping is not
contractive in general but iterative methods adapted to nonexpansive mappings are able to converge

to the fixed point (see again [8]). Obviously, in practical computations & is evaluated on a finite set
of values spanning the domain of y.

3 Bellman Principle

3.1 Formulation for the Risk-Neutral MDP

For the maximization of the expected return of an infinite horizon MDP with discount factor 3, the
dynamic programming principle (parts of an optimal path are also optimal) translates into iterations
running backwards in time with respect to the state transitions:

Q(s,a) «— E{r(s,a,s’) + BV (s')} Vs, a € Als),
V(s) « max Q(s,a) Y s.

The iterations act as a contractive mapping, the value function V' converges to its unique fixed point
[3], and an optimal policy can be derived from the Q-function: 7*(s) € arg max, Q(s,a).

For the MDP over a finite horizon 7', the value function is initialized from the terminal rewards and
indexed by time 7', and an optimal policy can be derived from time-indexed Q-functions obtained
through T iterations, using 7;(s) € argmax, Q:(s, a).

3.2 Abstract Formulation

It will be fruitful, besides the usual contraction mapping abstraction, to view the application of
the Bellman Principle as a step-by-step, recursive optimization of a function V; : I — Y with [

the information space of the agent, and Y standing for R (in the conventional setup), or I@k (in
the spirit of the multi-criterion setup of [15]), or even the infinite-dimensional space of probability
distributions (section 4.1). The space of such functions is noted Sy,.

An intermediary function Q; : I x A — T, belonging to a space Sg, is derived pointwisely from
Vi+1, using a family of operators 1; o, : Sy — T indexed by (i,a) € I x A.

Another family of operators ¢; , : So — R indexed by (i,a) € I x A is also introduced. The goal
is to induce for each state in I a complete ordering of the actions in A. Usually, ¢, , simply extracts
from Q; the value Q(i,a) € Y and maps it to a scalar score. With the more abstract domain
definition on Sg, a joint optimization over the actions a(¢) using all the values Q;(¢, a) is allowed.

After all these preliminary definitions, the Bellman iteration can now be expressed as

Qi (i,a) — Yia(Vig1) Vi, a€ A)
a* (i) « arg sup ¢;q(Q4) ) @)
acA(i)

Vi(i) — Qu(4,a*(4)).



Figure 1: Transition probabilities and returns of the finite horizon MDP of section 4.1. Plain lines
are relative to state transitions under action a = 1, dotted lines concern a = 2.

The information state ¢ = (¢) encodes information on the current history [x¢, %, 70, Z1, U1, T15- - -5
x;] of one particular realization of the decision process.

Vi+1 encodes information on the reward-to-go distribution, and thus on the return distribution, con-
ditionally to i(t + 1).

The best actions a*(7) are selected through the operators ¢; ., with ties broken arbitrarily.

A last comment concerns the actions a themselves. It is possible to redefine a as a particular assign-
ment of probabilities of actions in A. By such an extension of the action space, stochastic policies
can be derived from the Q-functions.

4 Limitation of Bellman Agents

An agent that solves the abstract recursion (7) step by step is referred to as a Bellman Agent. An
example developed in the formalism of Section 3.2 will first illustrate how arbitrary risk constraints
may prevent an agent from being a Bellman Agent. More general situations are then discussed in
Section 4.2

4.1 Toy Example

Consider the process depicted on Figure 1 with 6 states and 2 actions. The process starts from state
1 at time ¢ = 0. The agent takes decisions at times ¢ = 0, 1, and obtains a return R™ when he enters
at time ¢ = 2 one of the terminal states s = 4, 5,6 (resp. 7 = —1, 41, 410 as shown on the figure).
Let the agent maximize E{RR™ } subject to P(R™ > 0) > 0.5.

First, deterministic policies are considered. A direct policy search over the 8 possible policies (an
assignment of actions 1 or 2 to states 1,2,3) indicates that the best choice is

(1) =2,71(2) = 1,x1(3) = 2.

The policy yields E{R™ } = 1.12 with P(R™" > 0) = 0.52 > 0.5.

Next, stochastic policies are considered. An exact calculation developed below shows that an opti-
mal policy is
(1) =2,7"(2) =2,7"(3) = a3

with a3z a random action in {1,2} such that P{a3 = 1} = 5/12.
The policy yields E{R™" } = 1.32 with P(R™" > 0) = 0.5.
There is an improvement with respect to the deterministic policy.

In this example, exact optimal policies are beyond the rationality of the Bellman agent. To see this,
let Q.(j,p;) be the reward-to-go distribution from state j, computed at the iteration relative to time
t, with the “action” consisting in selecting a = 1 with probability p; and a = 2 with probability
(1 — p;). Deterministic policies have p; € {0, 1} and stochastic policies have p; € [0, 1]. Remark
that here the distributions Q (7, p,) also correspond to return distributions.



At the iteration relative to time ¢t = 1,
Q1(1,p1) =0 V p; (rewards from successor states have not been propagated yet),

—1  with probability 0.8 p2 + 0.4 (1 — p2)
Q1(2,p2) =4 +1 0.6 (1 — p2)

+10 0.2 po,

—1  with probability 0.7 p3 + 0.4 (1 — p3)
Q1(3,p3) = +1 0.5 (1 — ps)

+10 0.3 p3+ 0.1 (1 — ps).

But it is easy to realize that there is no choice for p2 and ps3, even made jointly, that can ensure
optimality independently of p;. The constrained problem has to be solved entirely at the iteration
relative to time ¢ = 0. By mixing the distributions Q;(2, p2) and Q1 (3, p3) with weights (0.6 p1 +
0.2 (1 —p1)) and (0.4 p1 + 0.8(1 — p1)) respectively, we get the return distribution conditionally to
s = 1 and the choice of parameters p;:

—1 with probability (10 4+ 2 p2 + 4 p1 p2 + 6 ps — 3 p1 p3)/25
Qo(1,{pjti<j<3) = +1 (13+p1 —3p2 — 6 p1 p2 — 10 p3 + 5 p1 p3)/25
+10 (2—p1+p2+2p1p2+4ps—2p1p3).

From Qy(s, {p;}1<;<3) and the initial state distribution concentrated on s = 1, comes the complete
program for policy search over the policy parameters p1, pa, p3:

maximize E{R} =(23 — 9 p1 + 5 p2+ 10 p1 p2 + 24 p3 — 12 p1 p3)/25
subjectto P{R > 0} =(15—2pa —4 p1 p2 — 6 p3 + 3 p1 p3)/25 > 1/2
p1,D2,p3 € {0,1} for deterministic policies
p1,D2,p3 € [0, 1] for stochastic policies.

This nonlinear program can be solved, but the purpose of Bellman principle would have been to
decompose the problem.

4.2 Discussion

The Bellman decomposition fails in the preceding example because the probability that the process
reaches the states s = 2 and s = 3 at time ¢ = 1 influences the ranking of actions.

4.2.1 Bellman Compatibility Condition

Now let P(i; = ¢’) denote the prior probability that the agent reaches some information state i’ € T
at time ¢. In general, that probability is function of the initial state distribution and of the policy at
times 0,1, ...,t — 1. Obviously, the selection of actions (represented by ¢; , in (7)) cannot depend
on IP(i; = 4’), since the Bellman iteration proceeds backwards in time to optimize the actions. The
restriction can be expressed by the compact notation

$ia LPliy=i') Vt>0,Vi el 8)

In other words the actions optimized at time ¢ can at most reflect preferences over return distributions
conditioned on i; = i. Those distributions are noted R|i; = i.

In short, the risk-sensitive objective ® in (3) must be compatible with a greedy selection of the
conditional return distributions R|i; = i.

For the objective (5) of Section 2.2, selecting the conditional return distribution R|i; = i that
maximizes P(R > a | i; = 4) will also maximize P(R > a). In contrast, for the objective (6),
having E{h;(R)|i; = i)} < «; for all 7 ensures that E{h,;(R)} < «; but in a conservative way.
Fixing for each 7 the balance between increasing E{g(R)|i; = i} and decreasing E{h;(R)|i; = i}
has a variable effect on E{h;(R)} which depends on P(i; = i), i € I. And the optimal balance
cannot be guessed using the Bellman Principle.

4.2.2 Class of Admissible Functionals

Condition (8) turns out to be highly restrictive with respect to candidate risk-averse criteria for ®.
Usual requirements against tail events, such as those introduced in [26, 1], that have been well wel-
comed by practitioners [28] and are well adapted to convex programming methods [7], are beyond
the rationality of the Bellman Agent.



Recent work [2] in the formalism of Stochastic Processes suggests that the applicability of Bellman
Principle for the risk-aware optimization of a random final value under a non-anticipative policy
is restricted to a small class of functionals ®. A final value refers in principle to a unique final
reward, but state augmentation techniques can generalize the scope of the statement. There is a set
of equivalent conditions or properties that define the class of admissible functionals: see [2]. At the
end of the day, the class mainly consists of functionals of the form

®(Rr) =/ (E{f(Rr)}) ©)
with R the random final value, f a strictly increasing function, and f 1 its reciprocal (see also
[24]).
This does not leave many degrees of freedom, besides the choice of f, to try to express risk sensi-
tivity.

4.2.3 Critique of Arbitrary Risk Criteria on the Return

On the other hand, a risk-averse criterion that ignores the condition (8) is questionable. Such a
criterion induces decisions sensitive to events {i; = '}, with ¢’ # 4, that have a null probability
(i.e. won’t happen) when the information state is . It may seem paradoxical that an agent being for
sure in some information state at time ¢ needs to consider the a priori distribution of 7; (i.e. ignoring
current information). There are in fact works in utility theory that take the recursive property of the
Bellman principle as an axiomatic time-consistency property [12]. The functional ® is not defined
explicitly; instead, it is assumed that the value V; of a reward trajectory 7, = [ro(w) r1(w) ...]
always satisfies a set of recursive relations
T—1

Vi(ry) = &%EQ{Z Bt g(ri(w)) + BT Vo (rw)ie}, VT >t (10)
s=t

with P the set of distributions for the reward process compatible with the state dynamics and the ad-
missible policies. The optimization of a policy would then take place without a clear target criterion
on the return distribution, with the utility g serving as a heuristic.

5 Bellman Decision Process

Section 4.2.2 suggests that optimizing functionals of the return distribution by dynamic program-
ming is impossible at the exception of some particular and already well-studied cases, such as the
expectation or the exponential-utility-based functional (4).

At the same time, Section 4.2.3 emphasizes that other functionals of the return distribution induce
inconsistent behaviors. The recognition of this fact is important because these functionals are com-
monly optimized in rolling horizon setups, using direct policy search or tools from convex program-
ming. The resulting situation is frustrating. In the context of portfolio management applications for
instance, [5] critics common risk measures in the name of time consistency, but ends up proposing
the well-studied criterion (5).

Yet there might still be room for alternative time-consistent risk-aware strategies if one is ready to
consider suboptimal decision processes, dropping explicit requirements on the distribution of the
return.

5.1 Proposal

Following the spirit of (10), let a Bellman Decision Process be defined as a process where the agent
optimizes in a backward fashion arbitrary functionals of the reward-to-go distributions conditioned
on the information states. If the state comprises the current wealth, rewards-to-go can be translated
to returns. The process serves as a heuristic to induce risk-aware behaviors in a more consistent way
than the direct optimization of a functional of the return distribution as in (3).

5.2 Toy Example (Continued)

Coming back to the example of Section 4.1, let us greedily maximize E{Q:(j,p;)} subject to
P(Q:1(4,p;) > 0) > 0.5 with j = 2,3. The motivation behind the conservative constraints im-
posed on every state at time ¢ = 1 is the automatic satisfaction of the constraint on the return at time



t = 0, irrespective of the probabilities of states 2 and 3. The optimal solutions are po = 1/4 and
ps = 1/3. Then let us maximize E{Qq(1,p1)} over p;. The constraint P(Qy(1,-) > 0) > 0.5 is
always satisfied. The optimal solution is p; = 0. The resulting stochastic policy is

7B (1) = 2,78(2) = ag, 75(3) = as,
with ag, a3 random actions such that P(az = 1) = 1/4 and P(ag = 1) = 1/3.
The policy yields E{R™" } = 1.29 with P(R™" > 0) = 0.5.
This performance is close to the value 1.32 of Section 4.1.
If only deterministic policies are considered, the restriction p; € {0,1} leads to p1 = p2 = p3 = 0.

The corresponding policy yields 0.92. Here the regret with respect to the deterministic policy 71 of
Section 4.1 is substantial (but recall that the optimization criterion was altered).

5.3 Approximate Distributions and Particles

The Bellman Decision Process assumes that conditional distributions can be computed by the agent
during the optimization of the policy. In a practical implementation, the distributions can be approx-
imated by a set of IV samples, with the parameter N bounding the complexity of the representation.
The same technique applied to the nonlinear filtering problem is known as particle filtering [9].

The description of the implementation is put asides due to the lack of space and for the sake of a
higher level discussion. Experiments on a capital growth problem inspired from [31] allowed us to
assess the feasibility and interest of the particle approach. Various unexpected issues were solved
by resorting to variance reduction techniques [16].

6 Conclusions

Surprisingly, there are few sound ways for optimizing returns generated by a dynamical process in
a risk-aware manner. The limitations are theoretical for the essential part.

These findings suggest that custom risk control requirements should be mostly enforced heuristi-
cally, by altering policy optimization procedures and checking the compliance of the policies with
the initial requirements. The regret caused by such a procedure is offset by the improved time
consistency properties of the policy.

Numerical experiments using the ideas developed in Section 5 appear as extremely promising. Like
the MDP, the proposed Bellman Decision Process framework has its complexity independent of the
time horizon, giving it an advantage over methods that cannot use time decomposition for optimizing
policies.
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