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Abstract. We propose a generic method for obtaining quickly good
upper bounds on the minimal value of a multistage stochastic program.
The method is based on the simulation of a feasible decision policy,
synthesized by a strategy relying on any scenario tree approximation
from stochastic programming and on supervised learning techniques from
machine learning.

1 Context

Let Ω denote a measurable space equipped with a sigma algebra B of subsets
of Ω, defined as follows. For t = 0, 1, . . . , T − 1, we let ξt be a random variable
valued in a subset of an Euclidian space Ξt, and let Bt denote the sigma algebra
generated by the collection of random variables ξ[0: t−1]

def= {ξ0, . . . , ξt−1}, with
B0 = {∅, Ω} corresponding to the trivial sigma algebra. Then we set BT−1 = B.
Note that B0 ⊂ B1 ⊂ · · · ⊂ BT−1 form a filtration; without loss of generality, we
can assume that the inclusions are proper — that is, ξt cannot be reduced to a
function of ξ[0: t−1].

Let πt : Ξ → Ut denote a Bt-measurable mapping from the product space
Ξ = Ξ0 × · · · × ΞT−1 to an Euclidian space Ut, and let Πt denote the class of
such mappings. Of course Π0 is a class of real-valued constant functions.

We equip the measurable space (Ω,B) with the probability measure P and
consider the following optimization program, which is a multistage stochastic
program put in abstract form:

S : min
π∈Π

E {f(ξ, π(ξ))} subject to πt(ξ) ∈ Ut(ξ) almost surely. (1)

Here ξ denotes the random vector [ξ0 . . . ξT−1] valued in Ξ, and π is the map-
ping from Ξ to the product space U = U0 × · · · × UT−1 defined by π(ξ) =
[π0(ξ) . . . πT−1(ξ)] with πt ∈ Πt. We call such π an implementable policy and
let Π denote the class of implementable policies.

The function f : Ξ × U → R ∪ {±∞} is B-measurable and such that f(·, ξ)
is convex for each ξ. It can be interpreted as a multi-period cost function.

The sets Ut(ξ) are defined as Bt-measurable closed convex subsets of Ut. A
set Ut(ξ) may implicitly depend on π0(ξ), . . . , πt−1(ξ) viewed as Bt-measurable
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random variables; in that context we let U0 be nonempty, and Ut(ξ) be nonempty
whenever πτ (ξ) ∈ Uτ (ξ) for each τ < t — these conditions correspond to a
relatively complete recourse assumption.

The interpretation of the measurability restrictions put on the class Π is that
the sequence {ut} def= {πt(ξ)} depends on information on ξ gradually revealed.
Note the impact of these restrictions: should the mappings πt be B-measurable,
and then an optimal solution would simply be given by u = π(ξ) with u =
[u0 . . . uT−1] a real vector minimizing f(ξ, u) subject to constraints ut ∈ Ut(ξ)
and optimized separately for each ξ.

A usual approximation for estimating the optimal value of programs of the
form (1) consists in replacing the probability space (Ω,B,P) by a simpler one, so
as to replace the expectation by a finite sum and make the optimization program
tractable. One then ends up with a finite number of possible realizations ξ(k)

of ξ — called scenarios — and a probability measure P′ induced by probability
masses p(k) = P′(ξ = ξ(k)) > 0 satisfying

∑n
k=1 p(k) = 1. The program (1) then

becomes

S ′ : min
π∈Π′

n∑

k=1

p(k)f(ξ(k), π(ξ(k))) subject to πt(ξ(k)) ∈ Ut(ξ(k)) ∀k . (2)

It has a finite number of optimization variables u
(k)
t

def= πt(ξ(k)). Remark that
the random variables ξt have actually been replaced by other random variables
ξ′t, and the sigma subalgebras Bt actually replaced by those B′t generated by the
collection ξ′[0: t−1] = {ξ′0, . . . , ξ′t−1}. In particular, B is now identified to B′T−1,
and the class Π ′

t is such that πt is B′t-measurable.
This paper is interested in the following question. We want to generalize a

solution for (2) — that is, values of πt(ξ) on a finite subset of points of Ξ —
to a good candidate solution π̂ for (1), of course in such a way that π̂ ∈ Π and
π̂t(ξ) ∈ Ut (implementability and feasibility). Moreover, we want that π̂(ξ)
be easy to evaluate (low complexity), so that we can, considering a test sam-
ple TS of m independent and identically distributed (i.i.d.) new scenarios ξ(j),
compute efficiently an unbiased estimator of E{f(ξ, π̂(ξ))} by

RTS(π̂) =
1
m

m∑

j=1

f(ξ(j), π̂(ξ(j))) , (3)

which provides, up to the standard error of (3), and given that π̂ is feasible but
possibly suboptimal, an upper bound on the optimal value of (1).

The rest of the paper is organized as follows. Section 2 motivates the ques-
tion. Section 3 describes properties of the data extracted from approximate pro-
grams (2). Section 4 casts the generalization problem within a standard super-
vised learning framework and discusses the possible adaptations to the present
context. Section 5 proposes learning algorithms. Section 6 points to related work
and Section 7 concludes.
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2 Motivation

Coming back to the transition from (1) to (2), we observe that there exist, in
the stochastic programming literature, algorithms A(Θ), with Θ any algorithm-
dependent parameters, that take as input (Ω,B,P), possibly under the form of
the conditional distributions of ξt given ξ[0: t−1], and return an approximation
(Ω′,B′,P′) under the form of n scenario-probability pairs. These pairs are gen-
erally arranged under the form of a scenario tree [1–9], from which a version
of (2) can be formulated and solved. But this approach raises several concerns,
in particular on the good choices for the parameters Θ.

– It has been shown in [10] for a particular randomized algorithm A1(Θ1)
relying on Monte Carlo sampling — the Sample Average Approximation
(SAA) [5] — that it is necessary, for guaranteeing with a certain probability
1−α that an optimal value of (2) is ε-close to that of (1), to have a number
of scenarios n that grows with T exponentially. Thus in practice, one might
have to use unreliable approximations built with a small fraction of this
number n. What happens then is not clear. It has also been shown in [11]
that it is not possible to obtain an upper bound on the optimal value of (1)
using statistical estimates based on A1(Θ1) when T > 2.

– It has been shown in [8] that there exists a particular derandomized algo-
rithm A2(Θ2) relying on Quasi-Monte Carlo sampling and valid for a certain
class of models for ξ, such that the optimal value and solution set of (2) con-
verge to those of (1) asymptotically. What happens in the non-asymptotical
case is not clear.

– It has been shown in [9] that there exist two polynomial-time deterministic
heuristics A3(Θ3) — the backward and forward tree constructions — that
approximate the solution to a combinatorial problem, ideal in a certain sense,
which is NP-hard. However, the choice of Θ3 is left as largely open.

There actually exists a generic method for computing upper bounds on the
value of (1) using any particular algorithm A(Θ). This method has been used
by authors studying the value of stochastic programming models [12] or the
performance of particular algorithms A(Θ) [13, 14]. It relies on an estimate of
the form (3) with π̂ replaced by a certain policy π̃ defined implicitly. It has
computational requirements which turn out to be extreme. To see this, we
describe the procedure used to compute the sequence {π̃t(ξ(j))} corresponding
to a particular scenario ξ(j).

Assuming that the solution to the A(Θ)-approximation (2) of a problem S of
the form (1) is available, in particular u

(1)
0 ∈ Π0 ∩ U0, one begins by setting

π̃0(ξ(j)) = u
(1)
0 . Then, one considers a new problem, say S(ξ(j)

0 ), derived from
S by replacing the random variable ξ0 by its realization ξ

(j)
0 — and possibly tak-

ing account of π̃0(ξ(j)) for simplifying the formulation. This makes the sigma
algebra B1 in (1) trivial and Π1 a class of constant functions. One uses again
the algorithm A(Θ), possibly with an updated Θ, to obtain an approximate ver-
sion (2) of S(ξ(j)

0 ). One computes its solution, extracts u
(1)
1 ∈ Π1 ∩ U1 from
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it, and sets π̃1(ξ(j)) = u
(1)
1 . The procedure is repeated for each t = 2, . . . , T − 1,

on the sequence of problems S(ξ(j)
[0: t−1]) formed by using the growing collection

of observations ξ
(j)
[0: t−1] extracted from ξ(j).

It is not hard to see that the resulting sequence π̃t(ξ(j)) forming π̃(ξ(j)) meets
the implementability and feasibility conditions. But repeating the full evaluation
process on a sufficient number m of scenarios is particularly cumbersome. The
bottleneck may come from the complexity of the programs to solve, from the
running time of the algorithm A(Θ) itself, or, if A(Θ) is a randomized algorithm,
from the new source of variance it adds to the Monte-Carlo estimate (3).

Now an upper bound on the value of (1) computed quickly and reflecting
the quality of A(Θ) would allow a more systematic exploration of the space of
parameters Θ. In the case of a randomized algorithm such as A1(Θ1), it may
allow to rank candidate solutions obtained through several runs of the algorithm.

3 Datasets

We consider a problem S and the approximate version (2) obtained through
an algorithm A(θ). Let (p(i), ξ(i), u(i)) denote a probability-scenario-decision
triplet formed by extracting from an optimal solution to (2) the sequence u(i) =
[u(i)

0 . . . u
(i)
T−1] that corresponds to the scenario ξ(i) = [ξ(i)

0 . . . ξ
(i)
T−1] of proba-

bility p(i). There are n of such triplets; let us collect them into a dataset Dn.

Definition 1 (Regular datasets).
In this paper, a dataset is said to be S−regular, or simply regular, if the de-
cisions u(i) of its triplets (p(i), ξ(i), u(i)) are jointly optimal with respect to a
program (2) over the complete set of probability-scenario pairs (p(i), ξ(i)).

Normal datasets have two immediate but important properties.

Proposition 1 (Properties of regular datasets).

1. For any pair i, j of triplets (p(i), ξ(i), u(i)) and (p(j), ξ(j), u(j)) in Dn, the non-
anticipativity property holds: for t = 0, u

(i)
t = u

(j)
t and for 1 ≤ t ≤ T − 1,

if ξ
(i)
[0: t−1] = ξ

(j)
[0: t−1] then u

(i)
t = u

(j)
t .

2. For any triplet (p(i), ξ(i), u(i)), the feasibility property holds: for all t ≥ 0,
u

(i)
t ∈ Ut(ξ(i)).

The interpretation of these properties may be better perceived through the proof.

Proof. Property 1 results from the measurability restriction put on the classes Πt.
Since the sigma algebras Bt are generated by the random variables ξ[0: t−1], the
decisions ut = πt(ξ) are Bt-measurable if and only if there exists a measurable
map gt : Ξ0 × · · · × Ξt−1 → Ut such that ut = gt(ξ0, . . . , ξt−1) in any event
(Theorem 20.1 in [15]). The latter set of conditions is enforced in (2) either by
imposing explicit equality constraints u

(i)
t = u

(j)
t whenever ξ

(i)
[0: t−1] = ξ

(j)
[0: t−1], or

by merging those equal optimization variables into a single one.
Property 2 is directly enforced by the constraint u

(i)
t

def= πt(ξ(i)) ∈ Ut(ξ(i)) in (2).
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Definition 2 (NAF property). In this paper, a dataset is said to have the
NAF property if its triplets mutually satisfy the Non-Anticipativity properties,
and if each triplet satisfies the Feasibility properties relative to S.

Remark 1. Let Dn+1 be a regular dataset with triplets having the same proba-
bility p(i) = (n + 1)−1. Let Dn be the dataset obtained by deleting one triplet
from Dn+1 and setting p(i) = n−1 for each remaining triplet. Then Dn has still
the NAF property but is not necessarily regular.

Any dataset with the NAF property induces a set of compatible policies, in
the following sense.

Proposition 2 (Compatible policies).
Let Dn be a dataset of triplets (p(k), ξ(k), u(k)) with the NAF property. Let P(S)
denote the set of implementable and feasible policies for S. We assume that
P(S) is nonempty. We define P(Dn) as the set of policies π ∈ Π such that
π(ξ(k)) = u(k), 1 ≤ k ≤ n. Then it holds that P(S) ∩ P(Dn) is nonempty. In
particular, each policy π in P(S)∩P(Dn) satisfies π0(ξ) = u

(1)
0 , and πt(ξ) = u

(i)
t

whenever ξ[0: t−1] = ξ
(i)
[0: t−1] for some 1 ≤ i ≤ n and 0 < t < T−1. These policies

are said to be compatible with the dataset.

Proof. We recall that π ∈ P(S) iff π ∈ Π and πt(ξ) ∈ Ut(ξ) almost surely. If
there exists a policy π in P(S) ∩ P(Dn), it is clear, by the feasibility prop-
erty of the triplets in Dn, that πt(ξ(k)) = u

(k)
t is in Ut(ξ(k)) for each k, t.

The properties stated in the proposition then follow from the Bt-measurability
of πt. It remains to show that given the value of the mapping π over the points
ΞDn

def= {ξ(1), . . . , ξ(n)}, it is still possible to specify π(ξ) for any ξ ∈ Ξ \ ΞDn

such that πt(ξ) ∈ Ut(ξ). But this follows from the relatively complete recourse
assumption: for any scenario ξ such that ξ[0: t−1] = ξ

(i)
[0: t−1] for some i, t, setting

πτ (ξ) = u
(i)
τ for each τ ≤ t cannot make the sets Ut+1(ξ), . . . ,UT−1(ξ) empty.

4 Generalization Strategies

Proposition 2 suggests to view each pair (ξ(k), u(k)) of a dataset Dn with the
NAF property as being generated by a single implementable and feasible policy
π ∈ P(Dn). One can thus try to predict the output π(ξ) of that policy on any
new scenario, on the basis of the triplets of Dn. However, the problem is not
well-posed if we cannot discriminate among the policies compatible with the
dataset. There exists two classical approaches to further specify the problem:

1. Choose a class of models on which the search for π can be restricted;
2. Put a prior probability over every possible function for π, compute posterior

probabilities using the observations provided by the dataset, and then make
a prediction for the policy.

It turns out that the two approaches raise similar issues regarding their adapta-
tion to the context of this paper; we pursue the discussion using the first one.
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Definition 3 (Training sets).
Starting from the triplets of a dataset Dn, for each t > 0, let St be a set made
of the pairs (x(k), y(k)) with x(k) def

= (ξ(k)
0 , . . . , ξ

(k)
t−1) and y(k) def

= u
(k)
t .

Definition 4 (Supervised Learning — Hypothesis Class View).
Consider a training set St of m pairs (x(k), y(k)) ∈ Xt × Yt. Assume that these
pairs are i.i.d. samples drawn from a fixed but unknown distribution Pt over
Xt × Yt. Consider a hypothesis class Ht of mappings ht : Xt → Yt. The goal of
a supervised learning algorithm L : [Xt × Yt]m → Ht is to select a hypothesis
ht ∈ Ht such that ht(x) approximates y in the best possible way on new samples
(x, y) drawn from the distribution Pt.

In many approaches to supervised learning, the selection of the hypothesis ht

is done by first specifying a loss function ` : X ×Y ×Y → R+ for penalizing
the error between the prediction ht(x) and the target y, and a complexity
measure C : H → R+ for penalizing the complexity of the hypothesis [16,
17]. Defining the empirical risk of a hypothesis ht ∈ Ht as

R`,St(ht) = m−1
m∑

k=1

`(x(k), y(k), ht(x(k))) ,

one selects the hypothesis ht by minimizing a weighted sum of the empirical
risk and the complexity measure (we use λ ≥ 0):

h∗t (λ) = arg min
ht∈Ht

R`,St(ht) + λ C(ht) . (4)

Choosing the right value for λ is essentially a model selection issue. One seeks
to choose λ such that h∗t (λ) would also minimize the generalization error

R`(ht) = E(x,y)∼Pt
{`(x, y, ht(x))} . (5)

Ideally, the dataset is large, and we can partition the samples into a training
set, a validation set, and a test set. Hypotheses h∗t (λ) are optimized on the
training set, and then ranked on the basis of their risk on the validation
set. The best hypothesis h∗t (λ

∗) is retained and its generalization error is
estimated on the test set. Otherwise, when the dataset is small, there exist
computationally-intensive techniques to estimate the generalization error by
working on several random partitions of the dataset [18, 19].

To actually produce an upper bound in (3), the prediction of the output of
π(ξ) must be implementable and feasible. While it is not hard to decompose the
learning of π into a sequence of learning tasks for π0, π1(ξ1), . . . , πT−1(ξ[0: T−2]),
more care is needed for enforcing the feasibility of a prediction.

Let Ξ[0: t] be a shorthand for Ξ0 × · · · × Ξt and U[0: t] be a shorthand for
U0 × · · · × Ut.

Definition 5 (Feasibility mappings).
We call Mt : Ξ[0: t−1]×U[0: t] → Ut a Ut-feasibility mapping if its range is always
contained in the feasible set Ut(ξ) whenever Ut(ξ) is nonempty.
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Example 1 (Projections).
Let || · || denote a strictly convex norm on Ut. For the sake of concreteness, let
Ut(ξ) be represented as {ut ∈ Ut : gk(ξ0, . . . , ξt−1, u0, . . . , ut) ≤ 0, 1 ≤ k ≤ m}
with gk jointly convex in u0, . . . , ut. The mapping Mt defined by

Mt(ξ[0: t−1], u[0: t]) = arg min
z∈Ut

||z − ut||
subject to gk(ξ0, . . . , ξt−1, u0, . . . , ut−1, z) ≤ 0 , 1 ≤ k ≤ m

is a Ut-feasibility mapping.

Proposition 3 (Representation of implementable and feasible policies).

Let Mt be feasibility mappings for the sets Ut, t = 0, . . . , T − 1. Let h0 denote a
constant, and let ht : Ξ[0: t−1] → Ut be some mappings, t = 1, . . . , T − 1. Then
the mapping π̂ : Ξ → U defined by

π̂(ξ) = [π̂0, . . . , π̂T−1] ,

π̂0 = M0(h0) , π̂t = Mt(ξ0, . . . , ξt−1, π̂0, π̂1, . . . , π̂t−1, ht(ξ0, . . . , ξt−1))

corresponds to an implementable and feasible policy π̂ for S. It can be used in (3).
The computational complexity of π̂t depends on the complexity of evaluating ht

and then Mt.

The mappings ht of Prop. 3 can be defined as the best hypothesis of a stan-
dard supervised learning algorithm for the learning set St. The model selection
can be performed in two ways (referred in the sequel as M1 and M2):

1. We follow the classical approach of supervised learning outlined above, and
keep some triplets of the dataset Dn apart for testing purpose;

2. Instead of using the loss function of the supervised learning algorithm in (5),
we look for good choices of the parameters λ of the learning problems by
directly computing (3) for each candidate set of parameters. (It is also pos-
sible to perform the model selection on (3) on a large validation set of new
scenarios, and then recompute (3) on a large test set of new scenarios.)

Remark 2. It is possible to combine the two model selection approaches in a same
policy π̂. More generally, it is also possible to form π̂ by combining learned models
π̂t on t = 0, 1, . . . , t0, and implementing on t = t0 +1, . . . , T −1 the models π̃t of
Section 2 based on standard stochastic programming. The two classes of models
are complementary: as t increases, the learning problems for ht become harder
(larger input space, fewer samples), but the optimization problems S(ξ[0:t−1])
for π̃t become easier.

Up to now, we have viewed the generalization problem as the one of selecting
a good model π that explains the generation of a regular dataset Dn, and yields
good predictions on new scenarios ξ in terms of a loss function from supervised
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learning (if we know the desired output) or in terms of the objective function of
the problem (1).

Nevertheless, at the same time there is no guarantee that any policy π com-
patible with a dataset Dn having the NAF property was optimal for the original
program S. We could then interpret u(k) as a noisy observation of the output
π∗(ξ(k)) of an optimal policy π∗ for S. In this respect, we could still use the
supervised learning approach of Prop. 3. We could even legitimately try to work
with learning sets St formed from a dataset without the NAF property, for ex-
ample a dataset obtained by merging the solution to several approximations (2).

We can also view the generalization problem differently. Proper algorithms
A(θ) come with the guarantee that the solution set of (2) converges to the
solution set of (1). Thus, we could consider two regular datasets Dn and D′q, with
n < q, and learn hypotheses ht from Dn that generalize well to the examples
from D′q. We will refer to this generalization approach as M3.

5 Learning Algorithms

In this section, we develop algorithms for learning the hypotheses ht ∈ Ht of
Prop. 3. We start by noting that if ut ∈ Ut is vector-valued with components
[ut]1, . . . , [ut]d, the hypothesis ht must be vector-valued as well. Of course,

Proposition 4. Any standard regression algorithm suitable for one-dimensional
outputs can be extended to multi-dimensional outputs.

Proof. A training set St = {(x(i), y(i))}1≤i≤n can be split into d training sets
[St]j = {(x(i), [y(i)]j)}1≤i≤n, j = 1, . . . , d, from which hypotheses [ht]1, . . . , [ht]d
can be learned. The components [ht]j can then be concatenated into a single
vector-valued hypothesis ht.

The following algorithm implements the approach M2 of Section 4.

Algorithm 1 (Joint selection approach).
Let S ′0 be an approximation of the form (2) to a problem (1). Let St denote the
training sets built from a solution to S ′0. Assume that the model selection in (4)
is parameterized by a single parameter λ common to every component j of ht

and every index t. Assume that the feasibility mappings Mt are fixed a priori.
Then, for each λ in some finite set Λ,

1. Learn [ht]j(λ) using training sets [St]j and the λ-dependent criterion (4).
2. From [ht]j(λ) form a policy π̂(λ) (Proposition 3).
3. Evaluate the score of π̂(λ) with (3) on m scenarios. Let v(λ) be that score.

Select λ∗ = arg minλ∈Λ v(λ) and return the hypotheses h0(λ∗), . . . , hT−1(λ∗).

Remark 3. For datasets with the NAF property, h0(λ∗) = M0(h0(λ∗)) = u
(1)
0 .
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The purpose of the assumptions of Algorithm 1 is to reduce the complexity of
the search in the parameter space Λ. To see this, let cA(Θ0) denote the expected
time for forming the approximation S ′0 to S using algorithm A(Θ0), and let cS(0)
denote the expected time for solving S ′0. Let |Λ| denote the cardinality of Λ,
cL(t) the expected running time of the learning algorithm on a dataset St, and
cE(t) the expected running time of the combined computation of Mt and ht.

Proposition 5. Algorithm 1 runs in expected time

|Λ| ·
[

T−1∑
t=1

cL(t) + m ·
T−1∑
t=1

cE(t)

]
=

T−1∑
t=1

|Λ| · [cL(t) + m cE(t)] ,

starting from data obtained in expected time cA(Θ0) + cS(0).

In general cL(t) and cE(t) grow with the dimensions of Ξ0:t−1 and Ut, and
with the cardinality of the dataset St. These dependences, and the ratio be-
tween cL(t) and cE(t), depend largely on the algorithms associated with the
hypothesis spaces Ht and the feasibility mappings Mt. The value of λ ∈ Λ may
actually also influence cL(t) and cE(t) but we neglect this dependence in first
approximation. Clearly Algorithm 1 can be run on N parallel processes, so as
to replace |Λ| in Prop. 5 by |Λ|/N .

Relaxing in Algorithm 1 the assumption of a single λ and considering param-
eters λt ∈ Λt proper to each t could improve the quality of the learned policy π̂
but would also imply an expected running time proportional to

∏T−1
t=1 |Λt| in-

stead of |Λ| in Prop. 5, if one attempts a systematic search over all possible
values of [λ1 . . . λT−1] in Λ1 × · · · × ΛT−1. In that context it might be better to
switch to another model selection strategy (compare to remark 2 and M3):

Algorithm 2 (Sequential selection approach).
Let S ′0, . . . , S ′T−1 be T approximations of the form (2) to a problem (1), with S ′0
being the only solved one.

1. From the solution to S ′0, extract h0 = u
(1)
0 and the training set S1. Set t = 1.

2. Assume that the model selection for ht is parameterized by a single λt com-
mon to every component [ht]j of ht. For each value of λt in a finite set Λt,
learn from the training set St the hypothesis ht(λt).

3. Consider the optimal values v(λt) of programs S ′t(λt) derived from S ′t as
follows. For each τ = 1, . . . , t and each realization ξ

(k)
[0: τ−1] in S ′t, compute

successively, using û
(k)
0

def= h0,

û(k)
τ

def= Mt(ξ
(k)
0 , . . . , ξ

(k)
τ−1, û

(k)
0 , . . . , û

(k)
τ−1, hτ (ξ(k)

0 , . . . , ξ
(k)
τ−1))

where hτ depends on λt when τ = t. Then define S ′t(λt) as the program S ′t
to which is added the whole set of equality constraints u

(k)
τ = û

(k)
τ .

4. Select λ∗t = arg minλt∈Λt v(λt) and set ht = ht(λ∗t ).
5. If t < T − 1, extract from the solution to S ′t(λ∗t ) the training set St+1, set t

to t + 1, and go to step 2.
Otherwise, return the hypotheses h0(λ∗0), . . . , hT−1(λ∗T−1).
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Given π̂0, . . . , π̂t−1, the impact of π̂t on the generalization abilities of π̂ is
evaluated on an approximation S ′t to S distinct from those on which π̂1, . . . , π̂t−1

have been determined. The program S ′t(λt) acts as a proxy for a test, on an
independent set of scenarios, of a hybrid policy π† such that (i) π†τ = π̂τ for
τ ≤ t, with π̂t depending on λt, and (ii) π†τ = π∗τ for τ > t with π∗ an optimal
policy for S. Optimizing S ′t(λt) yields the decisions of a policy for ut+1, . . . , uT−1

perfectly adapted to the scenarios of S ′t — a source of bias with respect to π∗ —
and to the possibly suboptimal decisions u0, . . . , ut imposed on these scenarios
by π̂0, . . . , π̂t. Whether v(λt) is lower or higher than the value of π† on a large
test sample cannot be predicted, but the ranking among the values v(λt) should
be fairly representative of the relative merits of the various models for π̂t.

The complexity of Algorithm 2 is expressed as follows. Let cA(Θj) denote the
expected time for forming the approximation S ′j to S using algorithm A(Θj).

Let m(t, τ) denote the number of distinct realizations ξ
(k)
[0: τ−1] of ξ[0: τ−1] in S ′t.

Let cS′(t) denote the expected running time for solving a program S ′t(λt).

Proposition 6. Algorithm 2 runs in expected time

T−1∑
t=1

|Λt| ·
[
cL(t) +

(
t∑

τ=1

m(t, τ) cE(τ)

)
+ cS′(t)

]
,

starting from data obtained in expected time
[∑T−1

j=0 cA(Θj)
]

+ cS(0).

The term cS′(t) is usually large but decreases with t, since the step 3 of Algo-
rithm 2 sets decisions up to time t and thus reduces S ′t(λt) to m(t, t) problems
over disjoint subsets of the optimization variables u

(k)
t+1, . . . , u

(k)
T−1 of S ′t. The val-

ues m(t, τ) are typically far smaller than m in Prop. 5. The term cS′(t) is thus
essentially the price paid for estimating the generalization abilities of a policy π̂
that leaves π̂t+1, . . . , π̂T−1 still unspecified.

For the sake of comparison, we express the expected running time of the
generic upper bounding technique of Section 2. Let cS(t) denote the expected
time for solving the approximation to the program S(ξ(j)

[0: t−1]) of Section 2 ob-
tained through A(Θt). Let cA(Θt) denote the expected running time of the
algorithm A(Θt). Note that here Θt for t > 0 is such that there is in S(ξ(j)

[0: t−1])

a single realization of ξ[0: t−1] corresponding to the actual observation ξ
(j)
[0: t−1]

of ξ[0: t−1].

Proposition 7. The bounding scheme of Section 2 runs in expected time

T−1∑
t=1

m · [cA(Θt) + cS(t)] ,

starting from data obtained in expected time cA(Θ0) + cS(0).

Of course using N parallel processes allows to replace m by m/N .
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6 Related Work

The need for generalizing decisions on a subset of scenarios to an admissible pol-
icy is well recognized in the stochastic programming literature [11]. Some authors
addressing this question propose to assign to a new scenario the decisions associ-
ated to the nearest scenario of the approximate solution [20, 21], thus essentially
reducing the generalization problem to the one of defining a priori a measurable
similarity metric in the scenario space (we note that [21] also proposes several
variants for a projection step restoring the feasibility of the decisions). Put in
perspective of the present framework, this amounts to adopt, without model
selection, the nearest neighbor approach to regression [22] — arguably one of
the most unstable prediction algorithm [17]. Our work differs in that it is con-
cerned with the complexity of exploiting the induced policies, seeks to identify
the nature of the generalization problem, and makes the connection with model
selection issues well studied in statistics [23–26] and statistical learning [16, 27].
As a result, guidance is provided on how to improve over heuristical methods,
and on which tools to use [28–33]. The model selection techniques developed in
this paper are proper to the stochastic programming context.

There is a large body of work applying supervised learning techniques to the
context of Markov Decision Processes (MDP) [34] and Reinforcement Learning
problems (RL) [35, 36]. In these problems, one seeks to maximize an expected
sum of rewards by finding a policy that maps states to decisions. The state
space is often large, but the decision space is often reduced to a finite number of
possible actions. Supervised learning is used to represent the value function of
dynamic programming, or to represent the policy directly [37–41]. We observe
however that the hypothesis spaces relevant for representing policies adapted to
multistage stochastic programs differ from those used in the context of Markov
Decision Processes, and that the datasets are obtained in a very different way.

7 Conclusion

This paper has proposed to compute bounds on the optimal value of a multi-
stage stochastic program by generalizing to an admissible policy the solution
to a scenario-tree approximation of the program. Such bounds could be helpful
to select the parameters of the algorithm that generates the scenario tree, an
important aspect in practical applications. We have aimed to adapt to this task
the concepts and model selection techniques from machine learning and statis-
tical learning theory. We have outlined the special structure of the data and of
the output of admissible policies. The results established in this paper have also
shed light on the type of feasibility constraints with which our approach can be
expected to be sound. Learning algorithms for the policies have been proposed,
offering various quality-complexity tradeoffs.
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