TNT: Technical Report

Yves Vanaubel*, Jean-Romain Luttringeri, Pascal Mérindol¥, Jean-Jacques Pansiot}, Benoit Donnet*
* Montefiore Institute, Université de Licge — Belgium
1 Icube, Université de Strasbourg — France

Abstract— Internet topology discovery has been a recurrent
research topic for nearly 20 years now. Basically, it works by
sending hop-limited probes (i.e., traceroute) towards a set of
destinations and by using collected data to build the Internet
topology. However, traceroute comes with multiple limits, in
particular with MPLS clouds that might hide their content to
traceroute exploration, leading to incomplete and inaccurate
Internet topology data and models.

In this paper, we introduce TNT (Trace the Naughty Tunnels),
an extension to Paris traceroute for revealing most (if not all) hid-
den MPLS tunnels along a path. TNT works in two steps: (i) along
with traceroute probes, it identifies evidence of a potential
tunnel presence and, (i7), launches additional dedicated probing
to reveal the content of the tunnel, if required. We validate
TNT through GNS3 emulation and tune its parameters through
dedicated measurement campaign. We also largely deploy TNT on
the Archipelago platform and provide a quantification of tunnels,
updating so state of the art vision of MPLS tunnels. Finally, TNT
is fully available, as well as data collected and scripts used for
processing data.

I. INTRODUCTION

For now twenty years, the Internet topology discovery
has attracted a lot of attention from the research commu-
nity [?], [?]. First, numerous tools have been proposed to
better capture the Internet at the IP interface level (mainly
based on traceroute) and the router level (by aggregating
IP interfaces of a router through alias resolution). Second, the
data collected has been used to model the Internet [?], but also
to have a better knowledge of the network ecosystem and how
it is organized by operators.

However, despite the work done so far, a lot of issues still
need to be fixed, specially in data collection processes based
on traceroute. For instance, collecting data about Layer-2
devices connecting routers is still an open question, although
it has been addressed previously with a, nowadays, deprecated
tool (i.e., IGMP-based probing) [?]. Another example is the
relationship between traditional network hardware and the so-
called middleboxes [?], [?]. Finally, MPLS tunnels [?]) also
have an impact on topology discovery as they allow to hide
internal hops [?], [?].

This report focuses on the interaction between
traceroute and MPLS. In a nutshell, MPLS has
been designed to reduce the time required to make forwarding
decisions thanks to the insertion of labels (called Label
Stack Entries, or LSE) before the IP header!. Indeed, in
an MPLS network, packets are forwarded using an exact
match lookup of a 20-bit value found in the LSE. At each

lAlthough MPLS can also be used with IPv6 [?], in this paper we consider
only IPv4

MPLS hop, the label of the incoming packet is replaced by
a corresponding outgoing label found in an MPLS switching
table. The MPLS forwarding engine is lighter than the IP
forwarding engine because finding an exact match for a
label is simpler than finding the longest matching prefix
for an IP address. Some MPLS tunnels may be revealed to
traceroute because MPLS routers are able to generate
ICMP time-exceeded message when the MPLS TTL
expires and the ICMP message embeds the LSE, revealing
so the presence of the tunnel [?], [?]. However the MPLS
architecture supports optional mechanisms that, in effect,
make MPLS tunnels invisible to t raceroute by modifying
the way the packets TTL is processed. A first attempt has
been made on revealing so-called invisible [?] tunnels but
this is far from being complete.

This report aims at plugging the gaps in identifying and
revealing the content of MPLS tunnels. This is done by
introducing TNT (Trace the Naughty Tunnels), an open-source
extension for Paris traceroute [?] including techniques for
inferring and revealing MPLS tunnels content. More precisely,
this report provides four contributions:

1) we complement the state of the art with traceroute-
based measurement techniques able to reveal most
(if not all) MPLS tunnels, even those that were built
for hiding their content. Those techniques work with
indicators or triggers that are used to determine the
potential presence of a tunnel. When a trigger is pulled
during a traceroute exploration, an MPLS revelation
is launched with the objective of revealing the tunnel con-
tent. We validate the indicators, triggers, and revelations
using GNS-3, an emulator running the actual IOS of real
routers in a virtualized environment.>. We also demon-
strate, through measurements, that those techniques are
efficient in terms of cost (i.e., the additional amount of
probes injected is reasonable, specially compared to the
quality of new data discovered) and errors (false positives
and false negatives);

2) we implement those techniques within Scamper [?] as a
Paris traceroute extension, called TNT, and deploy it on
the Archipelago infrastructure [?]. TNT aims at replacing
the old version of Scamper and is, thus, subject to run
every day towards millions of destinations. As such, we
believe TNT will be useful to study MPLS deployment
and usage over time, increasing so our knowledge and
culture on this technology;

2See https://gns3.com/ Note that it is also possible to emulate other
router brand, e.g., Juniper, with GNS-3.

Router Signature | Router Brand and OS
< 255,255 > Cisco (I0S, 10S XR)
< 255,64 > Juniper (Junos)

< 128,128 > Juniper (JunosE)

< 64,64 > Brocade, Alcatel, Linux

TABLE I: Summary of main router signature, the first initial
TTL of the pair corresponds to ICMP time-exceeded,
while the second is for ICMP echo-reply.

3) we analyze the data collected and report a new quan-
tification on MPLS deployment in the wild, updating so
previous results [?];

4) we work in a reproducibility perspective. As such, all
our code (TNT, GNS-3, data processing and analysis) as
well as our collected dataset is made available.’

The remainder of this report is organized as follows: Sec. ??
provides the required technical background for this report;
Sec. ?? introduces TNT, our extension to traceroute for
revealing the content of all MPLS tunnels; Sec. ?? validates
TNT through multiple GNS3 emulations; Sec. ?? calibrates
TNT parameters, while Sec. ?? provides results of TNT deploy-
ment over the Archipelago architecture; Sec. ?? position TNT
with respect to the state of the art; finally, Sec. ?? concludes
this report by symmarizing its main achievements.

II. BACKGROUND

This section discusses the technical background required
for the paper. Sec. ?? explains how hardware brand can be
inferred from collected TTLs. Sec. ?? to Sec. ?? are dedicated
to MPLS. In particular, Sec. ?? provides the basics of MPLS
labels and introduces the MPLS control plane. Sec. ?? focuses
on the MPLS data plane and MPLS TTL processing. Finally,
Sec. ?? explains the relationships between MPLS tunnels and
traceroute in light of Sec. ?? and ??.

A. Network Fingerprinting

Vanaubel et al. [?] have presented a router fingerprinting
technique that classifies networking devices based on their
hardware and operating system (OS). This method infers
initial TTL values used by a router when forging different
kinds of packets. It then builds the router signature, i.e.,
the n-tuple of n initial TTLs. A basic pair-signature (with
n = 2) simply uses the initial TTL of two different mes-
sages: an ICMP time-exceeded message elicited by a
traceroute probe, and an ICMP echo-reply message
obtained from an echo-request probe. Table ?? summa-
rizes the main router signatures, with associated router brands
and router OSes. This feature is really interesting since the two
most deployed router brands, Cisco and Juniper, have distinct
MPLS behaviors and signatures.

B. MPLS Basics and Control Plane

MPLS routers, i.e., Label Switching Routers (LSRs), ex-
change labelled packets over Label Switched Paths (LSPs). In

3See http://www.montefiore.ulg.ac.be/~bdonnet/mpls

0 19 20

Label TC (S

22 23 24 31

LSE-TTL

Fig. 1: The MPLS label stack entry (LSE) format.

practice, those packets are tagged with one or more label stack
entries (LSE) inserted between the frame header (data-link
layer) and the IP packet (network layer). Each LSE is made
of four fields as illustrated by Fig. ??: an MPLS label used
for forwarding the packet to the next router, a Traffic Class
field for quality of service, priority, and Explicit Congestion
Notification [?], a bottom of stack flag bit (to indicate whether
the current LSE is the last in the stack [?])*, and a time-to-
live (LSE-TTL) field having the same purpose as the IP-TTL
field [?] (i.e., avoiding routing loops).

Labels may be allocated through the Label Distribution
Protocol (LDP) [?]. Each LSR announces to its neighbors
the association between a prefix in its routing table and a
label it has chosen for a given Forwarding Equivalent Class (a
FEC is a destination prefix by default), populating so a Label
Forwarding Information Table (LFIB) in each LSR. With LDP,
a router advertises the same label to all its neighbors for a
given FEC. LDP is mainly used for scalability reasons (e.g.,
to limit BGP-IGP interactions to edge routers) and to avoid
anomalies for the transit traffic such as iBGP deflection issues.
Indeed, LDP deployed tunnels use the same routes computed
by the IGP (without any interest at the first, and naive, glance)
as the LFIB is built on top of the IGP FIB. Labels can also
be distributed through RSVP-TE [?], when MPLS is used for
Traffic Engineering (TE) purposes. In practice, most operators
deploying RSVP-TE tunnels use LDP [?] as a default labeling
protocol.

With LDP, MPLS has two ways of binding labels to
destination prefixes: () through ordered LSP control (default
configuration of Juniper routers [?]), or, (%), through indepen-
dent LSP control (default configuration of Cisco routers [?,
Chap. 4]). In the former mode, a LSR only binds a label to a
prefix

if this prefix is local (typically, the exit point of the LSR),
or if it has received a label binding proposal from the IGP
next hop towards this prefix. This mode is thus iterative as
each intermediate upstream LSR waits for a proposal of its
downstream LSR (to build the LSP from the exit to the entry
point). Juniper routers use this mode as default and only
propose labels for loopback IP addresses. In the second mode,
that is the Cisco default one, a LSR creates a label binding for
each prefix it has in its RIB (connected or — redistributed in
— IGP routes only) and distributes it to all its neighbors. This
mode does not require any proposal from downstream LSR.
Consequently, a label proposal is sent to all neighbors without
ensuring that the LSP is enabled up to the exit point of the
tunnel. LSP setup takes less time but may lead to uncommon
situation in which an LSP can end abruptly before reaching
the exit point (see Sec. ?? for details.)

The last LSR towards a FEC is the Egress Label Edge

4To simplify the presentation we will consider only one LSE in the
remainder of this paper

Router (the Egress LER). Depending on its configuration, two
labeling modes may be performed. The default mode [?] is
Penultimate Hop Popping (PHP), where the Egress advertises
an implicit null label (label value of 3 [?]). The previous LSR
(Penultimate Hop LSR (PH, Ps in Fig. ??) is in charge of
removing the LSE to reduce the load on the Egress. In the
Ultimate Hop Popping (UHP), the Egress LER advertises an
explicit null label (label value of 0 [?]). The PH will use this
explicit null label and the Egress LER will be responsible for
its removal. Labels assigned by LSRs other than the Egress
LER are distinct from implicit or explicit null labels. The
Ending Hop LSR (EH) is the LSR in charge of removing the
label, it can be the PH in case of PHP, the Egress LER in case
of UHP or possibly another LSR in the case of independent
LSP control.

C. MPLS Data Plane and TTL processing

Depending on its location along the LSP, a LSR applies one
of the three following operations:

e PUSH (Sec. ??). The first MPLS router, i.e., the tunnel
entry point pushes one or several LSEs in the IP packet
that turns into an MPLS one. The Ingress Label Edge
Router (Ingress LER) associates the FEC of the packet
to its LSP.

e SWAP (Sec. ??). Within the LSP, each LSR makes a label
lookup in the LFIB, swaps the incoming label with its
corresponding outgoing label and sends the MPLS packet
further along the LSP.

o POP (Sec. ??). The EH, the last LSR of the LSP, deletes
the LSE, and converts the MPLS packet back into an IP
one. The EH can be the Egress Label Edge Router (the
Egress LER) when UHP is enabled or the LH otherwise.

Fig. ?? illustrates the main vocabulary associated to MPLS
tunnels.

1) LSP Entry Behavior: When an IP packet enters an
MPLS cloud, the Ingress LER binds a label to the packet
thanks to a lookup into its LFIB, depending on the packet
FEC, e.g., its IP destination prefix. Prior to pushing the LSE
into the packet, the Ingress LER has to initialize the LSE-
TTL (see Fig. ??). Two behaviors can be configured: either
the Ingress LER resets the LSE-TTL to an arbitrary value
(255, no-ttl-propagate) or it copies the current IP-
TTL value into the LSE-TTL (tt1-propagate, the default
behavior). Operators can configure this operation using the
no-ttl-propagate option provided by the router manu-
facturer [?]. In the former case, the LSP is call a pipe LSP,
while, in the latter case, a uniform one.

Once the LSE-TTL has been initialized, the LSE is pushed
on the packet and then sent to an outgoing interface of the
Ingress LER. In most cases, except for a given Juniper OS (i.e.,
Olive), the IP-TTL is decremented before being encapsulated
into the MPLS header.

2) LSP Internal Behavior: Upon an MPLS packet arrival,
an LSR decrements its LSE-TTL. If it does not expire, the
LSR looks up the label in its LFIB. It then swaps the top LSE
with the one provided by the LFIB. The operation is actually a
swap only if the outgoing label returned by the LFIB is neither

implicit null nor empty (so the label is greater or equal than 0
including explicit null). Otherwise, it is a pop as described in
the next subsection. Finally, the packet is sent to the outgoing
interface of the LSR with a new label, both according to the
LFIB.

If the LSE-TTL expires, the LSR, in the fashion of any
IP router, forges an ICMP time-exceeded that is sent
back to the packet originator. It is worth to notice that a
LSR may implement RFC 4950 [?] (as it should be the case
in all recent OSes). If so, it means that the LSR will quote
the full MPLS LSE stack of the expired packet in the ICMP
time—-exceeded message.

ICMP processing in MPLS tunnels varies according to
the ICMP type of message. ICMP Information messages
(e.g., echo-reply) are directly sent to the destination (e.g.,
originator of the echo-request) if the IP FIB allows for it
(otherwise no replies are generated). On the contrary, ICMP
Error messages (e.g., time-exceeded) are generally for-
warded to the Egress LER that will be in charge to forward the
packet through its IP plane [?]. Differences between Juniper
and Cisco OS and configurations are discussed in detail in
Sec. ??.

3) LSP Exit Behavior: At the MPLS packet arrival, the EH
again decrements the LSE-TTL. If this TTL does not expire,
the EH then pops the LSE stack after having determined the
new IP-TTL.

Applying PHP comes with the advantage of reducing the
load on the Egress LER, especially if it is the root of a
large LSP-tree. This means that, when using PHP, the last
MPLS operation (i.e., POP) is performed one hop before the
Egress LER, on the EH. On the contrary, UHP is generally
used only when the ISP implements more sophisticated traffic
engineering operations or wants to make the tunnel content
and semantics more transparent to the customers.’

When leaving a tunnel, the router has to decide which
TTL value (IP-TTL or LSE-TTL) to copy in the IP
header. On one hand, if the Ingress LER has activated the
no-ttl-propagate option, the EH should pick the IP-
TTL of the incoming packet. On the other hand, the LSE-
TTL should be selected when the tt1-propagate option
has been activated. In order to synchronize both ends of the
tunnel without any message exchange, two mechanisms might
be used for selecting the IP-TTL at the EH: (¢) applying a
MIN(P-TTL, LSE-TTL) operation (solution implemented for
Cisco PHP configurations [?]) or, (i¢), assuming the Ingress
configuration (ttl-propagate or not) is the same as the
local configuration (solution implemented by some JunOS and
also in some Cisco UHP configuration). Applying the MIN(IP-
TTL, LSE-TTL) is the best option because it correctly supports
heterogeneous ttl-propagate configurations in any case
while, at the same time, mitigating forwarding loop without
exchanging signalization messages.

This min behavior might be used for detecting the presence
of hidden MPLS tunnels [?]. Indeed, it is likely that the EH
generating the ICMP t ime-exceeded message will use the

5The UHP feature does not seem to be available on Juniper routers when
LSPs are set with LDP. Consequently, we consider PHP as the rule on Juniper.

Ingress LER

AS,

S

Vantage Point

Egress LER
PE,
%
/ right

S~——
PH LSR ,
-

Explicit Implicit
LT Hop LT (LIELERGTTL) Hop
1. CEleft L (LLD) CE left . —
2. PE,.left 2. (2,2,1) PE, .left Opaque Invisible PHP Invisible UHP
3. Puleft— 3. (03D Py.left LT (LEE,LER) Hop LSE-TTL LT (LEPLER (JLJER)) Hop LT (LEELER) Hop
4. Pyleft — o (842) Py left T (1) CE, left L (1) CE,left| [T (1,1) CE, left]
5. Pyleft - 5. (5.5.3) Py.left 2 (22 PE; left 2. (22 PEileft| 2 (22 PE1.left
6. PE;.left 6. (6.6.1) PE; left 3. (6,6) PE;.left - MPLS 3. (6,6/3) PEq.left| (3. (4,4) CE; left
7. CEa.left 7. (7,7,1) CE.left 4. (66) CE,.left 4. (6,6/4) CE;.left| |4 (4/4) CE;.left|
8. Target 8. (8,8,1) Target 5. (6,6) Target 5. (6,6/5) Target 5 (5,5) Target
1<< < 255 frea Dup_Ip
FrPLA
TNT and triggers
Tunnels visibile to traceroute Invisible tunnels revealed with TNT
Legend
® ® O [P interface LT := traceroute hop
LLE = Return path time_exceeded length
Border Router BR
Ly = Return path echo_reply length
< LJEF = Return path echo_reply length (Juniper
Internal Router R P ply length (per)

Fig. 2: Tllustration of MPLS vocabulary and relationship between MPLS and traceroute. The figure is made of three parts.
The upper part represents the network topology we use, throughout the paper to illustrate concepts. In particular, with respect
to MPLS, P; is the LSP First Hop (FH), while P53 is the Penultimate Hop (PH). In case of PHP, P3 is the Ending Hop and
is responsible for removing the LSE. In case of UHP, the LSE is removed by the Egress LER (PE3). The middle part of the
figure presents the MPLS Tunnel classification, as observed with traceroute (this classification is an update of Donnet
et al. [?]). Finally, the bottom part of the figure provides triggers and indicators of an MPLS tunnel presence when probing
with TNT. The relationship between the trigger/indicator and the observation made with probing is provided in red. Additional
information (such as time-exceeded path length) are provided. This is used in Sec. ?? for illustrating TNT.

same MPLS cloud back to reply to the vantage point. In that
case, when the reply will leave the MPLS cloud, the returning
EH (P; in Fig. ??) will choose to copy the LSE-TTL in the
IP-TTL, as the IP-TTL has been initialized at its maximum
value on the Egress of the forward tunnel (255 for a Cisco
router — see Sec. ??). As a consequence, while the forward
path hides the MPLS cloud because the min operated on the
forward PH (Ps3) will select the IP-TTL which is lower, the
return path indicates its presence because the returning PH
(Py) will select the LSE-TTL on the contrary. In general, a
sufficient condition for this pattern to occur is if the returning
Ingress, which is the forward EH, re-uses the MPLS cloud
back.

In practice, it is interesting to mention that this MPLS
behavior is strongly dependent on the implementation and
the configuration. For instance, on some Juniper OS routers
(at least with JunOS Olive) or when the UHP option is
activated on some Cisco IOS (at least with the 15.2 ver-
sion), the MIN(IP-TTL, LSE-TTL) operation is not — sys-
tematically — applied. The EH assumes that the propaga-
tion configuration is homogeneous among LERs. When it is
not the case (ttl-propagate at one end of the tunnel
and no-ttl-propagate at the other end), the PH (for
PHP routers without MIN(IP-TTL, LSE-TTL)) or the Egress
LER (for the Cisco UHP configuration) will use the IP-
TTL instead of the LSE-TTL, leading so to a so-called jump

effect with traceroute (i.e., as many hops as the LSP
length are skipped after the tunnel). Except when implicitly
stated, we will consider homogeneous configurations (e.g.,
ttl-propagate on the whole tunnel) in the remainder
of the paper. Finally, it is worth noticing that mixing UHP
and PHP (hybrid configurations) can also result in uncommon
behaviors.®

D. MPLS Tunnels Taxonomy

According to wether LSRs implement RFC4950 or not
(Sec. ??) and wether they activate the ttl-propagate
option or not (Sec. ??), MPLS tunnels can be revealed to
traceroute following Donnet et al. [?] taxonomy.

Explicit tunnels are those with RFC4950 and the
ttl-propagate option activated (this is the default con-
figuration). As such, they are fully visible by traceroute
including labels along the LSP. Implicit tunnels activate the
ttl-propagate option but not the RFC4950. No IP in-
formation is missed but LSRs are viewed as ordinary IP
routers, leading to a lack of “semantic” in the traceroute
output. Opaque tunnels are obscured from traceroute as
the RFC4950 is implemented but not the tt1-propagate
option and moreover the EH that pops the last label has
not received an explicit or implicit null label. Consequently,

5Those behaviors are described in Appendix ??.

only the EH is revealed while the remainder of the tun-
nel is hidden. Finally, invisible tunnels are hidden as the
no-ttl-propagate option is activated (RFC4950 may or
not implemented).

As illustrated in Fig. ?? (middle part), explicit tunnels are
the ideal case as all the MPLS information comes natively with
traceroute. For implicit tunnels, Donnet et al. [?] have
proposed techniques for identifying the tunnel based on the
way LSRs process ICMP messages (see Sec. ?? — the so-called
UTURN) and the IP-TTL quoted in the time-exceeded
message (the so-called qTTL) that is increased by one at each
subsequent LSR of the LSP due to the ttl-propagate
option (ICMP time-exceeded are generated based on the
LSE-TTL while the IP-TTL of the probe is left unchanged
within the LSP and, thus, quoted as such in the ICMP
time-exceeded).

Opaque tunnels are only encountered with Cisco LSPs and
are a consequence of the way labels are distributed with LDP
(see Sec. ??). Indeed, a label proposal may be sent to all
neighbors without ensuring that the LSP is enabled up to the
Egress LER, leading so to opaque tunnels because an LSP
can end abruptly without reaching the Egress LER (where the
prefix is injected in the IGP) that should bind an explicit (UHP)
or implicit null label (PHP). As illustrated in Fig. ??, opaque
tunnels and their length can be identified thanks to the LSE-
TTL. LSPs end without a standard terminating label (implicit
or explicit null) and so they break with the last MPLS header
of the neighbor that may not be an MPLS speaker.

The traceroute behavior, for invisible tunnel, is differ-
ent according to the way the LSE is popped from the packet
(i.e., UHP or PHP), as illustrated in Fig. ??. Invisible tunnels
are problematic, as they lead to a false vision of the Internet

topology, creating false links, and spoiling graph metrics, s

such as the node degree distribution [?]. In this paper, we '

distinguish between invisible tunnels produced with PHP and
UHP. In Donnet et al. [?], only the class “Invisible PHP” was
discussed. Vanaubel et al. [?] have proposed techniques for
revealing the content of invisible MPLS tunnels only in the
case of PHP.

With Invisible UHP tunnels, the behavior is clearly different,
at least for Cisco routers using the 15.2 10S. Upon reception of
a packet with IP-TTL of 1, the Egress LER does not decrement
this TTL, but forwards the packet to the next hop (C' F» in the
example), so that the Egress does not show up in the trace. In
contrast, the next hop will appear twice: once for the probe

that should have expired at the Egress and once at the next |

6

8

9
10
11
12

14

16
1
18

19

20
21

probe. UHP indeed provokes a surprising pattern, a duplicated -

IP at two successive hops, illustrated as “Invisible UHP” in’

Fig. ??

On the contrary, PHP moves the POP function at the PH,’

one hop before the end of the tunnel. This PH does not

decrement the IP-TTL whatever its value is. Except for some
JunOS, the packet is still MPLS switched because the LSE-
TTL has not expired on it. It is somehow surprising because
for explicit and implicit tunnels, the PH replies on its own.
It is because the LSE-TTL has also expired. In Fig. ??, we
can see that there is no more asymmetry in path length for
router P3 proving so its reply does not follow a UTURN via

the Egress. On the contrary, any other LSR on the LSP builds a
time-exceeded message when the LSE-TTL expires and
then continues to MPLS switch their reply error packet to
the Egress LER unless the mpls ip ttl-expiration
pop <stack size>command has been activated for Cisco
routers. It seems to be just an option for Juniper routers with
the icmp-tunneling command.

Note that opaque and invisible UHP are Cisco tunnels
(signature < 255,255 >) due to specific implementations.
Invisible PHP are both Juniper (signature < 255,64 >), Linux
boxes (signature < 64,64 >), or Cisco tunnels but they do not
behave exactly the same as we will explain latter.

Sec. ?? extends techniques for revealing MPLS tunnels
by proposing and implementing integrated measurement tech-
niques for all tunnels (i.e., explicit, implicit, opaque, and both
UHP and PHP invisible ones) in a single tool called TNT.

III. TNT: EXPLODING MPLS TUNNELS

This section introduces our tool, TNT (Trace the Naughty
Tunnels), for revealing all MPLS tunnels along a path. TNT
is an extension to Paris Traceroute [?] so that we avoid most
of the problems related to load balancing. TNT has been
implemented within scamper [?] and is freely available.””
Sec. ?? provides an overview of TNT, while Sec. ?? and
Sec. ?? focus on techniques for revealing hidden tunnels and
how those techniques are triggered.

A. Overview

Listing 1: Pseudo-code for TNT

Codes := 0, None ; 1, LSE ; 2, qTTL ; 3, UTURN ; 4, LSE-TTL;
5, FRPLA ; 6, RTLA ; 7, Dup_IP .
trace_naughty_tunnel (target):

prev_hop = trace_hop (STARTING_TTL, target)

cur_hop = trace_hop (STARTING_TTL+1, target)

tun_code = check_indicators (prev_hop)

for (tt1=STARTING_TTL+2, !halt(ttl, target), ttl++)

state , tun_code_cur = None
#first check uniform tunnel evidence with indicators
if (tun_code None)
tun_code check_triggers (prev_hop, cur_hop)
#possibly fires TNT with triggers or opaques tunnels
if (tun_code >= LSE-TTL)
tun_code_cur check_indicators (cur_hop)
#check if cur_hop does not belong to a uniform LSP
if (tun_code_cur != None)
#potential hidden tunnel to reveal
state reveal_tunnel (prev_hop, cur_hop,
tun_code)

#hop by hop and tunnel display
dump(prev_hop, tun_code, state)

#sliding pair of IP addresses

tun_code = tun_code_cur

next_hop = trace_hop(ttl, target)
prev_hop = cur_hop #candidate ingress LER
cur_hop = next_hop #candidate egress LER

TNT is conceptually illustrated in Listing ??. At the macro-
scopic scale, the trace_naughty_tunnel () function is
a simple loop that fires probes towards each processed target.
TNT consists in collecting, in a one [JJ one ?] hop-limited
fashion, intermediate IP addresses (trace_hop () function)
between the vantage point and the target. Tracing a particular
destination ends when the halt () function returns true:

the target has been reached or a gap has been encountered
(e.g., five consecutive non-responding hops, etc.). TNT uses
a moving window of two hops such that, at each iteration,
it considers a potential Ingress LER (i.e., prev_hop) and a
potential Egress LER (i.e., cur_hop) for possibly revealing
an invisible tunnel between them. Indicators are treated for
the two consecutive candidate hops (i.e. both cur_hop at the
current iteration and prev_hop which is prepared for the
next iteration). Line 15, and 11 implicitly thanks to the copy
at line 25, in Listing ?? check if those IP addresses do not
belong to an uniform tunnel, i.e. a visible one.

For each couple of collected IP addresses with trace_hop,
TNT checks for the presence of tunnels through so called indi-
cators and triggers. The former provides reliable indications
about the presence of an MPLS tunnel without necessarily
requiring additional probing. Generally, indicators correspond
to uniform tunnels (or to the last hop of an opaque tunnel),
and are, mostly, basic evidence of visible MPLS presence such
as LSE quoted in the ICMP time-exceeded- see Sec. ??
for details. Triggers are mainly unsigned values suggesting the
potential presence of Invisible tunnels through a large shifting
in path asymmetry — see Sec. ?? for details. When exceeding
a given threshold 7, such triggers fire path revelation methods
(function reveal_tunnel ()) between the potential Ingress
and Egress LERs as developed in Sec. ??. If intermediate hops
are found, they are stored in a stack called reveal_ip (see
Listing ?7?).

STARTING_TTL is a parameter used to avoid tracing
repeatedly the nodes close to the vantage point, usually
STARTING_TTL € [3,5].

Finally, at each loop iteration, the collected data is dumped
into a warts file, the scamper file format for storing IPv4/IPv6
traceroute records. The dump () function provides po-
tential revealed hops and some code and state for determining
the nature of the tunnel if any,

B. Indicators and Triggers

Listing 2: Pseudo-code for checking indicators

code check_indicators (hop):

if (is_mpls (hop))

if (Tise 1o < hop.lse_ttl < 255)
#opaque tunnel are both indicators and triggers
return LSE-TTL

else
#explicit tunnel

return LSE

if (hop.qttl > 1)
#implicit tunnel

return qTTL

#retrieve path length from raw TTLs

L’Ir{ = path_len (hop. ttl_te)

L‘;} = path_len (hop. ttl_er)

#UTURN will be turned into RTLA for junOS signatures
if(IL-E{,:‘ - Ll;:g I > Turorn && !'signature_is_junOS (hop))
#implicit tunnel

return UTURN

return None

Tunnels indicators are evidence of MPLS tunnel presence
and concern cases where tunnels (or parts of them) can be

directly retrieved from the original traceroute. They are
used for explicit tunnels and uniform/visible tunnels in general.
Explicit tunnels are indicated through LSEs directly quoted
in the ICMP time-exceeded- See line ?? in Listing ??
and traceroute output on Fig. ??. It is worth noticing that
Fig. ?? highlights the main patterns TNT looks for firing or not
additional path revelation in a simple scenario where forward
and return paths are symmetrical.

The indicator for Opaque tunnels consists in a single hop
LSP, due to the way labels are distributed within some Cisco
routers (see Sec. ??), with the quoted LSE-TTL not being
equal to 1. This is illustrated in Fig. ?? where we get a
value of 252 because the LSP is actually 3 hops long. This
surprising quoted LSE-TTL is a piece of evidence in itself.
This is illustrated in lines 3 — 5 in Listing ??, where a hop
will be tagged as Opaque if the quoted LSE-TTL is between
a minimum threshold, 7rsg_trL(see Sec. ?? for fixing a value
for the threshold) and 254 (LSE-TTL is initialized to 255 [?]).
Note that this pattern resulting from an Opaque tunnel is
both an indicator and a trigger: TNT passively interprets the
tunnel end evidence and can complete it with new active
measurements for possibly revealing the LSP content.

Implicit tunnels are detected through qTTL and/or UTURN
indicators [?]. First, a qTTL value, the quoted IP-TTL col-
lected within an ICMP time-exceeded message, greater
than one likely reveals the tt1-propagate option at the
Ingress LER of an LSP. For each subsequent traceroute
probe within the LSP, the qTTL will be one greater, resulting
in an increasing sequence of qTTL values in traceroute.
This is considered in line ?? in Listing ??. Second, the UTURN
indicator relies on the fact that LSRs as a default behavior,
when the LSE-TTL of a packet expires, send the ICMP
time-exceeded to the Egress LER which then forwards
the packets on its own to the probing source, while an LSR
replies directly to other probes (e.g., echo-request) using
its own IP forwarding table if available resulting in general in
a shorter return path. Thereby, UTURN is the signature related
to the difference in these values. This is illustrated in Fig. ??
(Implicit and Explicit tunnels follow the same behavior except
for RFC4950 implementation). On P;, we have UTURN (P;)
= LTE- LER =9 - 3 = 6. With a symmetric example, one can
formalize the UTURN pattern for an LSR P; in an LSP of
length LL as follows:

UTURN(P;) =2 x (LL —i+1). (1)

Due to the iBGP path heterogeneity (the IGP tie-break
rule in particular), the BGP return path taken by the ICMP
echo-reply message can be different from the BGP return
path taken by the t ime-exceeded reply. This is illustrated
in Fig. ?? where the two return paths in blue and red can differ
even outside the AS (L"TF can be distinct of L"ER). As a result,
and because it can differ at each intermediate hop, the UTURN
indicator does not necessarily follow exactly Eqn. ??, leading
so to a small limitation in practice from what we expect in
theory: in particular, a value of 0 can hide a true Implicit hop.

For JunOS routers, the situation is quite different. On
one hand it turns out that, by default (ie without en-
abling the icmp-tunneling feature) , these routers send

time-exceeded replies directly, so the UTURN indicator
is useless. Moreover, for routers having the JunoOS signature,
the same computation is used as the RTLA trigger. Thus, to
avoid such a confusion, TNT introduces an exception for such
OS signatures (line ?? in Listing ??), and first considers the
difference as a trigger and then falls back to an indicator if
the revelation fails. Moreover, when icmp-tunneling is
enabled, t ime-exceeded replies start with a TTL of 254
implying a greater difference with echo-request replies as
it can be seen on Fig. ?2: UTURN(P;) =LJER-LJTE = 10-3 =
7

instead of only 6 if P; runs a Cisco IOS.

Listing 3: Pseudo-code for checking triggers

code check_triggers (prev_hop,
if (prev_hop == cur_hop)
#invisible UHP tunnel
return Dup_IpP
#retrieve path length from raw TTLs

cur_hop):

L'g = path_len(cur_hop. ttl_te)
L'Igi = path_len(cur_hop.ttl_er)
Lt = cur_hop. ttl_i

if (sign_is_junOS (cur_hop))
#for the JunOS signature
if(Ly — LF > Trna)
#invisible PHP tunnel with JunOS
return RTLA
else
#for other signatures (raw TTLs are initialized the
same)
it (L — LT > Treea)
#invisible PHP tunnel with other known OS
return FRPLA

return None

Indicators are MPLS passive evidence that can also prevent
(see Lines ?? and ?? in Listing ??) TNT from firing new probes
(with the exception of LSE-TTL which is also a trigger for
Opaque tunnels). On the contrary, triggers are active patterns
suggesting the presence of invisible tunnels (both PHP and
UHP) that could be revealed using additional probing (see
Sec. ??). Listing ?? provides the pseudo-code for checking
triggers.

First, we look for potential Invisible UHP tunnel (line ??
in Listing ??). As explained in Sec. ??, Invisible UHP tunnels
occur with Cisco routers using IOS 15.2. When receiving a
packet with IP-TTL of 1, the Egress LER does not decrement
the TTL but, rather, forwards it directly to the next hop.
Consequently, the Egress LER does not appear in the trace
while, on the contrary, the next hop (CEs in Fig. ??) appears
twice (duplicated IP address in the trace output).

The two remaining triggers, RTLA and FRPLA, work by
using 3 path lengths: LTF (the t ime-exceeded path length),
LER (the echo-reply path length) and LT (the forward
traceroute path length). More precisely, RTLA is the
difference between the echo-reply return path and the
time-exceeded return path lengths, while FRPLA is the
difference between the forward and the return path lengths.
TNT tries to capture significative differences between these
tunnel lengths to infer MPLS tunnels relying on two common
practices of LSRs, in particular the EH, developed in the
previous subsection. Both triggers are based on the idea that
replies sent back to the vantage point are likely to also cross

back the MPLS cloud which will apply the MIN(IP-TTL, LSE-
TTL) operation at the EH of the return tunnel. These triggers
respectively infer the exact (RTLA) or approximate (FRPLA)
return path length. Indeed, FRPLA is subject to BGP path
asymmetry (and so to false positive or negatives) while this
is not the case for RTLA when it applies (it may produce
some false alarms but only due to ECMP). In the absence
of invisible tunnel, we expect those triggers to have a value
equal or close to 0 because in such a case we should have
LER = TE = 'TF = 1 if BGP does not interfere. Therefore,
any significant deviation from this value is interpreted as the
potential presence of an Invisible MPLS cloud and, as such,
leads TNT to trigger additional path revelation techniques (see
Sec. ??). In practice (look at Fig. ??), we expect to have
L’%R = L’};E = 1 (due to the MIN for the echo-reply
return tunnel and the pipe mode for the forward tunnel)
while L'TF directly provides the actual return tunnel length
(with a value > 1). It is because the MIN operation applied
on the EH of the return tunnel here picks the LSE-TTL of
the t ime-exceeded reply, rather than the IP-TTL for the
echo-reply, as it has been setup with the same value as
the IP-TTL, i.e. 255 (instead of 64 for echo-reply), on
the return ingress LER (that is also the forward egress LER
as illustrated in Fig. ??). RTLA is not subject to any BGP
asymmetry because we have LER = L"TE| that is BGP return
paths have the same length. Indeed, the two return paths use
actually the same physical path but their distance differ only
because of the MIN operation applied at the EH of the return
tunnel if any.

To check for those triggers, we first extract the three key
distances thanks to the IP-TTL of replies received on the
vantage point (lines ?? — ?? in Listing ??). As explained
by Vanaubel et al. [?], RTLA only works with junOS routers,
while FRPLA is more generic. Therefore, prior to estimate
the triggers, TNT uses network fingerprinting (see Sec. ??) to
determine the router brand of the potential Egress LER (line ??
in Listing ??).

In the presence of a junOS hardware, LTF is compared
to LER in such a way that, in the presence of a tunnel,
LI is supposed to be larger than LEX by a certain thresh-
old representing the number of LSR in the return LSP
(line ?? in Listing ??). This is expected as, with junOS,
time-exceeded and echo-reply have different initial
TTL value (see Table ??) and the RTLA trigger, with the
MIN(IP-TTL, LSE-TTL) behavior at the Egress LER, exploits
the TTL gap between those two kinds of probes (the LER
appears longer than LIF as the MIN operation result in a
different pick). As a result, the threshold 7ry s(see Sec. ??
for the parameter calibration) filters all LSP shorter than the
limit it defines. On Fig. ??, one can observe on PF5 that we
have: RTLA(PE,) := LER- LIF = DER— TF =6 — 3 = 3.
It is because for the echo-reply, we have TTL_IP =
64 = min(TTL_IP = 64, TTL_MPLS = 252) instead of
TTL_IP = 252 = min(TTL_IP = 255,TTL_MPLS =
252) for the t ime—exceeded. Note that an invisible shadow
effect also applies for RTLA after the invisible tunnel.

FRPLA is more generic and applies thus to any configura-
tion. FRPLA allows for comparing, at the AS granularity, the

Vantage Point

Return Egress LER

&
&

I3
Forward(Ingress LER ~ Return Ingress LER \%«\ Forward(Ingress LER 4
MPLS cloud ", MPLS cloud s,
i i

©,

Legend %, Legend %,
Egress LER [—— i Egress LER —_—
@5 Ingress/Bgress vimo excosagd . . MPLS cloud % @ Ingres/Bgross vine oxcecdsd o . MPLS cloud %
LSk tTmeee outside Hidden LSR """ °°° » outside
—— Tmplicit tunnel scho rew mmdp MPLS cloud Tnvisible tunnel _ec}m_repf o cide MPLS cloud
Path MPLS cloud <= VP /target Path MPLS cloud <= VP/target
(a) Implicit tunnels. (b) Invisible tunnels.

Fig. 3: Indicators and triggers illustration for implicit and invisible tunnels. Notations L'} and L”} refer to a given sub-length
of an ICMP packet x on the y path (y being the forward or return path and x being a echo-reply or traceroute ICMP
packet, see Fig. ??). For example, L'} gives the return path of the t ime—exceeded within the MPLS cloud, while L}F is

the return path of the time- exceeded between the MPLS cloud and the vantage point. Consequently, we have LTF = L’TE
+LTE

length distribution of forward (i.e., LT) and return paths (i.e., I| state reveal_tunnel(ingress, egress, tun_code):
LTE). Then, we can statistically analyze whether we observe a ’ ;:tdadnyd—abri; :rgjelizute towards the candidate esress
shift (see Line ?? in Listing ??) as return paths are expected :| target = egress T
to be longer than forward ones, tunnel hops being not counted °| ~"ovte = trace (STARTING.TIL, target)
in the forward paths while they are taken into account in the 7| if (last_hop(route) != egress)
return paths. This is illustrated in Fig. ?? (“Invisible PHP”) * #the ;‘;‘)rs%iegled)o“ not respond (revelation is mnot
in which LT is 3 while L}F is equal to 6, leading so to o return TARGET NOT REACH
an estimation of the return tunnel length of 3. In general, el;eth;fr.é:;‘/iigf:gep;fhngﬁem (revelation is not
we expect that, when no IP hops are hidden, the resulting possible)
distribution will look like a normal distribution centered in el::“;rf“(%\li(:ﬁgggg?ess’ egress . route) > 1)
0 (i.e., forward and return paths have, on average, a similar #path segment revelation with DPR
length). If we observe, rather, a significant and generalized " p“Sh—)segme“t—‘o—r”ela“°"—s‘a°k(i"gress' egress ., route
shift towards positive values, it is then likely that the AS makes s return DPR
use of the no-tt1-propagate option. In order to deal with | elst‘il - ingress. ttl_i 4 1
path asymmetry, TNT uses a threshold, 7grps(see Sec. 2? for i revealed_ip = extract_hop(ttl, route)
calibrating this parameter), greater than 0 to avoid generatmg for iTR=0::
too much false positives (revelation attempt with no tunnel). »> if (revealed_ip == target)
The MIN effect also results in an invisible shadow after the * it #;;“’I‘n—ocr‘;dzr!ozgr?::i—oli i'; :’h“cddg'e—vbeifa) ion
hidden LSP: FRPLA(CE;) = 2 and FRPLA(CEs) = 1, etcs break
until the situation returns to normal. That is why TNT does ™ e';etry with the buddy for the Dup_Ip trigger
not look for consecutive invisible tunnels. Finally, for Invisible »s target = buddy(revealed_ip)
UHP, one can observe that no MIN shift applies on the return ”’ elge Adybit = True
path, only the duplicate effect applies here. 31 #a new hop has been revealed

Threshold calibration will be discussed in details in Sec. 2?. * ipTliJ: hop_ to_revelation_stack (revealed_ip)
The optimal calibration can provide a 80/20 % success/error target = revealed_ip
rates (errors being due to the BGP and ECMP noises). More- (buddy_bit = False
over, the order in which TNT considers indicators and triggers, s revealed_ip = traceHop(ttl , target)
their codes, reflects their reliability and so their respective | " it (iTR == 0)
success rates (and their resulting states): the lower the code 1« #no revelation (fail)
(i.e. the higher its priority is defined), the more reliable it | . frff}‘]gnzfolT?WG—To—REVEAL
is (and higher the revelation success rate). Thus, if a hop #single hop revealed LSP (DPR =~ BRPR)
matches simultaneously multiple triggers (RTLA and FRpLA |~ return THOPLSP
for example), we tag it with the highest priority one (i.e., RTLA s #hop by hop revelation with BRPR
on our example). 7 return BRPR

Listing ?? offers a simplified view of the TNT tunnel
revelation. The first step is to launch a standard t raceroute
towards the candidate Egress (line ?? in Listing ??). At this

C. Hidden Tunnels Revelation

Listing 4: Pseudo-code for revealing invisible tunnels

1 stage, we cannot conclude it is an actual tunnel so we use the

term ‘“candidate” and update the output thanks to the state
variable. During this first attempt, TNT may fail to reach the
candidate Egress (line ??), or any intermediary target and/or
the candidate Ingress (line ??) when collecting the active data.
Otherwise, TNT may reveal a tunnel and four additional output
states can arise:

« a tunnel of more than one hop is revealed in the first trace
towards the egress (line ?? — DPR);

« nothing is revealed, the candidate Ingress and Egress are
still consecutive IP addresses in the trace towards the
candidate Egress (line ??);

« a tunnel of only one hop is revealed (line ??) although
several iterations have been tried: DPR and BRPR cannot
be distinguished for one hop LSPs.

o a tunnel of more than one hop is revealed but using
several iterations (line ?? — BRPR).

With the default configuration on the 15.2 Cisco IOS, an
additional test, called buddy (line ??), is required to retrieve the
outgoing IP interface of the Egress LER (the right interface,
in green, on PEy in Fig. ??) and so force replies from its
incoming IP interface (the left one, in red, on PE; in Fig. ??).
The buddy () function assumes a point-to-point connection
between the Egress LER and the next hop (IP addresses on
this point-to-point link are called buddies). In most cases, the
corresponding IP addresses belong to a /31 or a /30 prefix [?].
Note that according to the IP address submitted to buddy (),
the test may require additional probing to infer the right
prefix. In particular, specific UDP probing is necessary in
order to provoke destination—-unreachable messages.
Such error messages, as time—exceeded ones, enable to
get the incoming interface of the targeted router (instead of
echo-reply that are indexed with the target IP).

DPR (Direct Path Revelation) works when there is no
MPLS tunneling for internal IGP prefixes other than loopback
addresses, i.e., the traffic destined to internal IP prefixes is
not MPLS encapsulated (default Juniper configuration but can
also be easily configured on cisco — see Sec. ??) . With PHP,
BRPR (Backward Recursive Path Revelation) works because
the target (PEs.left on Fig. ??) belongs to a prefix that is
also advertised by the PH. Thus, the probe is popped one
hop before the PH (Ps on Fig. ??) and it appears in the
trace towards the Egress incoming IP interface, e.g., PE,.left
on Fig. ?2. BRPR is then applied recursively on the newly
discovered interface until no new IP interface is revealed.
With UHP, BRPR also natively works with the 12.4 10S (i.e.,
without the buddy function), for the same reason as for PHP:
the prefix locality shifts the end of the tunnel one hop before
and, in this implementation, the EH replies directly. Vanaubel
et al. [?] provides more details on DPR and BRPR. On the
contrary, TNT needs to use the buddy function at each step for
the 15.2 I0S enabling UHP because the EH silently forwards
the packet one hop ahead.

IV. REPRODUCIBILITY AND PRACTICAL BGP
CONFIGURATIONS

We use the GNS3 emulation environment for several pur-
poses. First, we aim at verifying that the inference assumptions

we considered in the wild are correct and reproducible in a
controlled environment. Second, some of the phenomena we
exploit to reveal tunnels in the wild have been directly dis-
covered in our testbed. Indeed, using our testbed we reverse-
engineered the TTL processing (considering many MPLS
configurations, we study the POP operation in particular)
of some common OSes used by many real routers. Finally,
it is also useful for debugging TNT to test its features in
this controllable environment. Generally speaking, we aim at
reproducing with GNS3 all common behaviors observed in the
wild, and, on the opposite, we also expect to encounter in the
wild all basic behaviors (based on standard MPLS and BGP
configurations) we build and setup within GNS3.

In practice, we have considered four distinct router OSes:
two Cisco standard I0S (12.4 and 15.2), and two virtualized
versions of JunOS (Olive and VMX, the only Juniper OS
we succeeded to emulate within GNS3). We envision in a
near future to also test the IOS XR and some other Juniper
OSes, if possible, but we believe that our tests are already
representative enough of most behaviors existing in the wild.

In our emulations, topologies (see Fig. ??) are configured as
follows. We assumed that LERs are AS Provider-Edge (PE)
routers, i.e., AS border routers of the ISP running (e)BGP
sessions. Two main configurations are then possible to enable
transit tunneling at the edges. Either the BGP next-hop can
be the loopback IP address of the PE itself (with next hop
self command), or it belongs to the eBGP neighbor — and
in that case the connected subnet or the IP address should
be redistributed in the ISP. In both cases, there exists a LDP
mapping, at each Ingress LER and for any transit forwarding
equivalent class (FEC) between the BGP next-hop, the IGP
next-hop, and the local MPLS label to be pushed. According
to the configuration at the Egress LER, when the Ingress LER
is in pipe mode (see Sec. ??), distinct kinds of tunnels emerge:
Opaque, UHP Invisible, or PHP Invisible.

We consider the simplest possible configurations, i.e., homo-
geneous in terms of OS and MPLS+BGP configurations. They
are consistent and symmetric MPLS configurations both in
terms of signaling (LDP with the independent model using all
IGP connected prefix — Cisco default mode — xor the ordered
model using only loopback addresses — Juniper default mode)’
and the propagation operation in use (pipe xor uniform)® at
the domain scale. Using heterogeneous configurations, we
discovered many intriguing corner cases that are discussed
in Appendix ??. Some of them may result in incorrect TTL
processing and other in hiding even more the tunnel to TNT.
In some rare cases, only the Brute Force option of TNT is able
to fire the path revelation that exposes tunnels.

The BGP configuration is also standard: the Egress LER
enables the next-hop-self feature and so the transit traffic is
tunneled via this IP address. All LSR also have a global IGP
routing table thanks to a route reflector (they can answer
natively to ping requests) or a redistribution in the IGP routing
control plane. The AS scale BGP prefix is advertised using a
global aggregation and the BGP inter-domain link is addressed

7See Sec. ??
8See Sec. 2?

by the neighbor but can be redistributed in the IGP as a
connected one.

Opaque tunnels show up when enabling the neighbor
<IP> ebgp-multihop <#hops> command towards
the BGP neighbor whose IP address is redistributed
statically in the IGP. DPR works also with Cisco IOS when
enabling the mpls 1ldp label allocate global
host-routes command. Eventually, the command mpls
1dp explicit-null [for prefix-acl] allows for
revealing UHP tunnels without the use of the buddy.

Appendix ?? provides all the details of our emulations for
both Cisco and Juniper configurations. All configurations were
run on the topology provided by Fig. ??. The TNT running
version is the one implemented in Python, available with GNS-
3 scripts.”?

V. TNT CALIBRATION AND PROBING COST

Sec. ?? shows that TNT relies mainly on four parameters
when looking for tunnels indicators or triggers: Tpsg_rrifor
opaque tunnels, Tyryryfor implicit tunnels, and Tgrp ,and
Trreuafor invisible tunnels. This section aims at calibrating
those parameters (Sec. 2?), as well as evaluating the probing
cost associated to TNT (Sec. ??).

A. Measurement Setup

We deployed TNT on three vantage points (VPs) in the
Archipelago infrastructure [?]. VPs were located in Europe
(Belgium), North America (San Diego), and Asia (Tokyo).

TNT was run on April 6™, 2018 towards a set of 10,000
destinations (randomly chosen among the whole set of
Archipelago destinations list). Each VP had its own list of
destinations, without any overlapping.

From indicators and triggers described in Sec. ?? (see
Listing ?? and ??), it is obvious that UTURN is equivalent
to RTLA. Consequently, the TyryrnyWill have the same value
than Tryia-

For our tests, we varied Trraand Tegrpabetween 0 and 4. A
full measurement campaign was launched for each parameter
value (thus, a total of 25 measurement runs).

B. Calibration

In our results, we have observed that abnormal® LSE-
TTL values values oscillate between 236 and 254, the main
proportion being located between 250 and 254. It suggests
thus that, in the majority of the cases, opaque tunnels are
rather short. Consequently, a value of 236 for 7 sg_rrLwould
be enough for detecting the presence of an opaque tunnel and
launching additional measurements for revealing its content.

In some sense, the results associated to FRPLA and RTLA
triggers can be seen as a binary classification. Triggers provide
a prediction, while the results of additional probing gives the
condition results. With that in mind, one can assess the per-
formance of FRPLA and RTLA triggers through True Positive

9 Abnormal here is to understand as “different from 1 which is the LSE-
TTL value that should be obtained in ICMP time-exceeded messages.
More details can be found in our technical report [?].

10—
= u
=l
08 F
¢
o 067
o ;
. (Tro.Tro) ¥(Tro.Tra) B(Tro.Tre) (Tro.Trs) @(Tro,Trs)
(Tr1.Tro) v(Ter. Tr1) B(Tr1 Tre) %8(Tr1Trs) @(Tre1,Tra)
0.2 (Tr2.Tro) ¥(Tr2.Tr1) B(Tr2.Tro) 8(Tr2.Trs) @(Tr2,Tri)
(Tr3:Tro) © (Tr3. Try) 0(Tr3,Tr2) 9%(Tr3.Trs) @(Tr3,Tr1)
(TraTro) v (TeaTr) 0(TraTre) 3#(TeaTrs) @(TraTri)
().8' :
0O 02 04 06 08 1.0
FPR

Fig. 4: Receiver operating characteristic (ROC) curve provid-
ing the efficiency of TNT according to values for invisible
tunnels parameters. T, refers to TrroaWith the value x, while
Tr, 0 TerpLaWwith the value y.

g Trrera=" TPrpra=! TPrrLa=2 TFreLa=3 TPrpLa=1
—

% 100

S~—

-
Ut

Raw nb. of probes
g

Original B8 B. Force Revelation
25 I Revelation W4 B. Force No Revelation
I No Revelation M8 B. Force Inconclusive
B [nconclusive
0
02 02 02 02 02
RrLA

Fig. 5: Probing cost associated to TNT according to Tggp sand
Trrathresholds.

Rate (TPR - it triggers TNT for additional probing and it
reveals invisible tunnels) and False Positive Rate (FPR — it trig-
gers TNT for additional probing without revealing anything)
and plot the results on a Receiver Operating Characteristic
(ROC) curve. This is illustrated in Fig. ??. The ROC curve is
obtained by varying the Trr sand Tggpaparameters between 0
and 4. The red dotted diagonal provides the separation between
positive results for TNT (above part of the graph) and negative
results (below part of the graph). Finally, the black dotted line
is the interpolation of measurement results (at the exception
of ry values which appear as being outliers).

We observe that the results are essentially positive for TNT.
Some results, between (Tr,, Tr,) and (Tg,, Tr,), are even
reasonably close to the perfect classification (upper left corner)
and, thus, are considered as the best choice for fixing Trr,,and

7—FRPLA .

C. Probing Cost

Fig. ?? illustrates the probing cost associated to TNT. In
particular, it focuses on additional measurements triggered
by RTLA or FRPLA for revealing invisible tunnels. The light
grey zone (labeled as “Original” on Fig. ??) corresponds to
probes associated to traceroute. The green, orange, and

dark grey zones correspond to probes sent when additional
measurements are triggered by RTLA or FRPLA. In particular,
the green zone corresponds to additional measurements that
were able to reveal the content of an invisible tunnel. On the
contrary, the orange zone refers to additional measurements
that failed, i.e., no invisible tunnel content was revealed.
Finally, the dark grey zone refers to inconclusive revelation:
the trigger has led to additional measurements but TNT was
unable to reach the potential Egress LER (i.e., the IP address
that engaged the trigger — cur_hop in Listing ?? — generally
due to unresponsive IP interface) or TNT was unable to reach
the potential Ingress LER (i.e., prev_hop in Listing ??).

If the amount of probes sent having revealed the content
of an invisible tunnel remains globally stable whatever the
values for Tggpaand Trroa, the additional traffic generated
by erroneous trigger (orange) or by uncertain revelation (dark
grey) decreases while Tgrpaincreases. This results is aligned
with Sec. ?? in which the best values for Tgrp s Were between 2
and 3. Also, TrrLaseems to have a minor effect on the amount
of probes sent.

Hatched zones (orange, dark grey, and green) corresponds
to the amount of probes sent when a revealation is attempted
for any IP address collected. Said otherwise, it is a brute
force approach in which BRPR, DPR, or the buddy discovery
are always started. First, on the contrary to normal behavior
(i.e., revealation launched according to triggers), the amount of
probes sent increases with TggpA(the impact of Trypis quite
negligible), as well as the amount of inconclusive revelation.
Second, the amount of probes having revealed an invisible
tunnel is low compared to standard behavior.

VI. TNT TUNNELS QUANTIFICATION

This section aims at discussing how TNT behaves in the
wild. In particular, it compares the performance of each indi-
cator and trigger with respect to possible revelation techniques.
Sec. ?? explains how measurements were, while Sec. ??
discusses the results obtained.

A. Measurement Setup

We deployed TNT on the Archipelago infrastructure [?]
on April 232018 with parameters Trgpafixed to three and
TrrLato one, according to results discussed in Sec. ??.

TNT has been deployed over 28 vantage points, scattered
all around the world: 9 were in Europe, 11 in North America,
1 in South America, 4 in Asia, and 3 in Australia. The overall
set of destinations, nearly 2,800,000 IP addresses, is inherited
from the Archipelago dataset and spread over the set of 28
vantage points (to speed up the probing process).

TNT is based on Paris traceroute [?] and sends ICMP
probes. A total of 522,049 distinct IP addresses (excluding
traceroute targets) has been collected, with 28,350 being
non publicly routable addresses (and thus excluded from our
dataset). Each routable collected IP address has been pinged.
More precisely, an IP address encountered multiple times by
a given vantage point has been pinged only once, allowing us
to collect additional data for fingerprinting (see Sec. ??). Our
dataset and our processing scripts are freely available.””

B. Results

Table ?? provides the amount of probes sent by
traceroute-like probing in TNT, ping, and buddy bit ex-
ploration. The row “original” refers to standard t raceroute
based revelation (i.e., nothing to reveal, explicit or implicit
tunnels).

The main results from Table ?? is the amount of probes
involved in inconclusive revelation, split between “target not
reached” (TNT was unable to reach the potential Egress LER)
and “ingress not found” (TNT was unable to reach the potential
Ingress LER). In particular, “target not reached” involved twice
more probes than revealed tunnels. Those particular incon-
clusive revelations might be explained by ICMP rate limiting
between the t raceroute probe and additional probing (both
ping and BRPR/DPR). Another explanation is that those
potential Egress LER responds to initial t raceroute with
an IP address that is not announced (i.e., it does not belong
to the IP plane). As such, additional probing following the
traceroute will fail as not route are available to reach
them.

Table ?? provides the number of MPLS tunnels discovered
by TNT, per tunnel type (Explicit, Implicit, Opaque, PHP
Invisible, UHP Invisible). The indicators/triggers are provided,
as well as the additional revelation technique used. Without
any surprise, Explicit tunnels are the most present category
(76% of tunnels discovered).

Implicit tunnels represent 5% of the whole dataset, with the
UTURN indicator providing more results than qTTL. However,
those results must be taken with care as UTURN has been
proven to be inaccurate, while qTTL is much more reliable [?].

Opaque tunnels are less prevalent (1.7% of tunnels discov-
ered). This is somewhat expected as opaque tunnels are the
results of particular label distribution without Cisco MPLS
clouds. It is also worth noticing that additional revelation
technique (DPR or BRPR) does not really work with opaque
tunnels (content of 98% of opaque tunnels cannot be revealed).
This confirms previous results [?, Sec. 7.2].

The proportion of Invisible tunnels is not negligible (16%
of tunnels in our dataset). Those measurements clearly contra-
dicts previous suggestions stating that Invisible tunnels were
probably 40 to 50 times less numerous than Explicit ones [?,
Sec. 8] More precisely, Invisible PHP is the most prominent
configuration (87% of invisible tunnels belongs to the Invisible
PHP category), confirming so our past survey [?]. RTLA
appears as being the most efficient trigger. This is probably
due to the order of triggers in the TNT code. As indicated
in Listing ?? (Sec. ??), we first check for RTLA as it is
proven to be more reliable than FRPLA. DPR works better than
BRPR, which is obvious as it is indicated for RTLA trigger.
For Invisible UHP, it is worth noticing that the buddy bit, prior
to BRPR or DPR revelation, was required in nearly 25% of
the cases. In other cases, a simple BRPR or DPR revelation
was enough to get the content of the tunnel.

The column labeled “mix” corresponds to tunnels partially
revealed thanks to BRPR and partially with DPR. Typically,
it comes from heterogeneous tunnels. For instance, opera-
tors may deploy both Juniper and Cisco hardwares without
any homogeneous prefixes distribution (i.e., local prefix for

. Revelation Technique
Tunnel Type /Trigger DPR BRPR 1HOP_LSP Mix # Tunnels
Explicit - - - - 150,036
. - N N N 2,680
Implicit g
Status traceroute# pm}la)eian buddy i . . . - 7,216
— 22 1 7 - 34
original 63559385 | 7100075 | - —opaque ! 3 3346
Ted 3.190275 | 206842 | 19,181 Invisible PHP | 114 11,268 1,191 2,595 219 | 15333
B o valation 64020 S Sse FRPLA 5903 2555 3260 1,012 | 12,730
S target not reached | 4,174,404 B gggg _Invisible UHP | DUP_IP 1,609 1,531 636 296 7,122
« Ingress not found 1,790,900 _ 7.326 Total 18,802 5,294 6,584 1,587 195,525

TABLE II: Raw number of probes sent by TNT over /ABLE III: Raw number of tunnels discovered by TNT over the

the set of 28 vantage points.

set of 28 vantage points, per tunnel type (see Sec. ??). Color

code for indicators/triggers is identical to Fig. ??. By definition,
no additional revelation techniques to t raceroute is required
for Explicit and Implicit tunnels.

Juniper, all prefixes for Cisco — See Sec. ?? for details).
Another possibility is that the tunnel is configured in such
a way that two label popping techniques (PHP and UHP)
co-exist. While not explained in Sec. ??, TNT can deal with
those heterogeneous situations, making the tool quite robust to
dangers encountered in the wild Internet (5% of the Invisible
tunnels encountered).

Finally, the column labeled “1HOP_LSP” corresponds to
tunnels that are too short (i.e., the LSP is made of a single
LSR) to discriminate the revelation techniques used (both
DPR and BRPR work). The proportion of very short invisible
tunnels is quite large (20%) is aligned with previous works that
already noticed the proportion of short Explicit tunnels [?], [?],

[?].

VII. RELATED WORK

For years now, traceroute has been used as the main
tool for discovering the Internet topology [?]. Multiple exten-
sions have been provided to circumvent t raceroute limits.

Doubletree [?], [?] has been proposed for improving the
cooperation between scattered t raceroute vantage points,
reducing so the probing redudancy. Paris traceroute [?] has
been developped for fixing issues related to IP load balancing,
avoiding so false links between IP interfaces. t racebox [?]
extends traceroute for revealing the presence of mid-
dleboxes along a path. YARRP [?] provides techniques for
speeding up the traceroute probing process. Reverse
traceroute [?] is able to provide the reverse path (i.e., from
the target back to the vantage point). Passanger [?] and Dis-
carte [?] extend t raceroute with the IP record route option.
Marchetta et al. [?] have proposed to use the ICMP Parameter
Problem in addition to Record Route option in traceroute.
Finally, t racenet [?] mimics t raceroute for discovering
subnetworks.

TNT is also in the scope of the hidden router issue, i.e.,
any device that does not decrement the TTL causing the
device to be transparent to traceroute probing. Discarte
and Passanger, through the use of IP Record Route Option,
allows, to some extend, to reveal hidden router along a path.
DRAGO [?] considers the ICMP Timestamp for also detecting
hidden routers. TNT goes beyond those solutions as it does
not rely on ICMP messages and IP option that are, generally,

filtered by operators either locally (i.e., the option/message
is turned off on the router) or for transit packets (i.e., edge
routers do not forward those particular packets). TNT only
relies on standard messages (echo-request/echo-reply
and t ime-exceeded) that are implemented and used by the
vast majority of routers and, as such, has the potential to reveal
much more information.

VIII. CONCLUSION

This paper is in the scope of Internet topology discovery
at the IP interface level. In particular, we introduce TNT
(Trace the Naughty Tunnels is Not Traceroute) that is an
extension to Paris traceroute for revealing all MPLS tunnels
along a path. As such, TNT has the potential to reveal more
accurate information on Internet topology, leading so to more
accurate Internet models (it has been shown, for instance,
that Invisible tunnels have an impact on Internet models [?]).
Also, TNT has the potential to provide information about
the MPLS ecosystem of operators. Recent works on MPLS
tunnels discovery have revealed that MPLS is well deployed
by operators [?], [?], [?]. By running TNT on a daily (or
nearly daily) basis from the Archipelago platform, we expect
to see more researchers being aware of the impact MPLS can
have on the Internet topology and its implications in network
architecture deployed by operators.

This paper has been written with a reproducibility perspec-
tive. As such, TNT is freely available, as well as our collecte
dataset and scripts used for processing data.”’

ACKNOWLEDGMENTS

Authors would like to thank kc claffy and her team at
CAIDA for letting them deploying TNT on the Archipelago
infrastructure. In addition, part of Mr. Vanaubel’s work was
supported by an internship at CAIDA, under the direction of
Young Hyun.

RRF
I00: 10.12.0.1

10.11.0.2

PE2

PE1
l00: 10.9.0.1

|00i 10.5.0.1 147 0.1

P2 P3

P1
lo0: 10.8.0.1

100 10.6.0.1 Ino:/ 10.7.0.1 192.168.2.1

192.168.8.2

10.1.0.2 10.2.0.1 10.2.0.2 10.3.0.1 10.3.0.2 10.4.0.1

cE2| 192.168.2.2

CE1 192.168.8.1
= lo0: 192.168.6.1

lo0: 192.168.5.1
192.168.4.1

192.168.3.2

CE3 | 192.168.4.2

lo0: 192.168.7.1
Cloud1 192.168.3.1

<

Fig. 6: Cisco topology used for GNS-3 tests. PE1 is the Ingress LER, PE2 the Egress LER, the LSP is set up between P1 and
P3. The TNT target (i.e., the argument of trace_naughty_tunnel () function — See Listing ??) is the loopback address

of CE3.

IX. APPENDIX

This appendix illustrates TNT validation through GNS-3 emulation. Multiple cases are proposed (more are proposed on the website’”).

TNT is able to deal with all those configurations, making it a pretty robust tool.
For our purposes during the validation, we implemented a TNT version in Python. This version is available with all GNS-3 scripts.”

A. Explicit Tunnels Validation

We first review Explicit tunnels, i.e., tunnels with RFC4950 and tt1-propagate enabled (see Sec. ??).
We do a distinction between Cisco (Appendix ??) and Juniper configurations (Appendix ??). PHP (LSE popped by P3) is also distinguished

from UHP (LSE popped by Egress LER).
For each case, we provide the configuration of routers as well as the TNT output. Indicators and triggers (see Sec. ??) are provided, as

well as ICMP time-exceeded and ICMP echo-reply TTLs.
1) Cisco Configurations: All configurations presented here were run on the topology provided by Fig. ??.
The first example configures an Explicit tunnel with PHP, under Cisco IOS 15.2. The TNT behavior is the one expected.

IOS 15.2 Configuration — PHP

1| PL

2| version 15.2

3l mpls label protocol 1ldp

| router bgp 3333

neighbor 10.12.0.1 remote-as 3333

71 P2

8| version 15.2

9| mpls label protocol ldp

10| router bgp 3333

11| neighbor 10.12.0.1 remote-as 3333

13| P3

14| version 15.2

15| mpls label protocol ldp

16| router bgp 3333

17| neighbor 10.12.0.1 remote-as 3333

19| PE1

20| version 15.2

21| mpls label protocol ldp

22| router bgp 3333

23| redistribute connected

24| redistribute ospf 10

25| neighbor 10.12.0.1 remote-as 3333
26| neighbor 10.12.0.1 next-hop-self

27| neighbor 192.168.8.1 remote-as 1024
28| neighbor 192.168.8.1 next-hop-self

30| PE2

31| version 15.2

32| mpls label protocol ldp

33 router bgp 3333

34| redistribute connected

35| redistribute ospf 10

36| neighbor 10.12.0.1 remote-as 3333

37(neighbor 10.12.0.1 next-hop-self

38| neighbor 192.168.2.2 remote-as 2048
39| neighbor 192.168.2.2 next-hop-self

TNT running over Explicit tunnels with IOS 15.2 — PHP

I| Launching TNT: 192.168.7.1 (192.168.7.1)

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][gttl = 1][uturn = 0] 27.083 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla = 0][gqttl =1][uturn = 0] 19.895 ms

5 3 left.Pl (10.1.0.2) <247,253> [frpla = 6][gttl = 1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 80.598 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][gttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 69.875 ms
7 5 left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl 1][uturn = 0] [MPLS LSE | Label : 20 | LSE-TTL : 1] 68.98 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0 J[gttl =1][uturn = 0] 78.17 ms

9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][gttl = 1][uturn = 0] 78.957 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][gttl = 1][uturn = 0] 110.598 ms

The next two configurations illustrates UHP with both IOS 12.4 and IOS 15.2. TNT works as expected.
IOS 12.4 Configuration — UHP

1| PL
version 12.4
3|l mpls label protocol 1ldp
mpls ldp explicit-null
router bgp 3333
neighbor 10.12.0.1 remote-as 3333

o

EYRZEES

P2

9| version 12.4

10[mpls label protocol ldp

11|mpls 1ldp explicit-null

12| router bgp 3333

13| neighbor 10.12.0.1 remote-as 3333
14
15| P3

16| version 12.4

17| mpls label protocol ldp

18l mpls ldp explicit-null

19| router bgp 3333

20 neighbor 10.12.0.1 remote-as 3333

oo

2| PEL

23| version 12.4

24| mpls label protocol ldp

25| mpls 1ldp explicit-null

26| router bgp 3333

27| redistribute connected

28| redistribute ospf 10

29| neighbor 10.12.0.1 remote-as 3333
30] neighbor 10.12.0.1 next-hop-self

31| neighbor 192.168.8.1 remote-as 1024
32 neighbor 192.168.8.1 next-hop-self

34| PE2

35 version 12.4

36| mpls label protocol 1ldp

37| mpls ldp explicit-null

38| router bgp 3333

39 redistribute connected

10| redistribute ospf 10

41| neighbor 10.12.0.1 remote-as 3333
42| neighbor 10.12.0.1 next-hop-self
43| neighbor 192.168.2.2 remote-—as 2048
14| neighbor 192.168.2.2 next-hop-self

running over Explicit tunnels with 10S 12.4 — UHP

1| Launching TNT: 192.168.7.1 (192.168.7.1

3 1 1left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl = 1][uturn = 0] 22.651 ms

4 2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][gttl =1][uturn = 0] 230.326 ms

5 3 left.Pl (10.1.0.2) <247,253> [frpla = 6][gttl =1][uturn = 6][MPLS LSE | Label : 22 | LSE-TTL : 1] 263.686
ms

6 4 left.P2 (10.2.0.2) <248,252> [frpla =4][gttl = 2][uturn = 4][MPLS LSE | Label : 22 | LSE-TTL : 1] 358.238
ms

7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][gttl = 3][uturn = 2][MPLS LSE | Label : 16 | LSE-TTL : 1] 374.214
ms

8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][gttl =1][uturn = 0][MPLS LSE | Label : 0

LSE-TTL : 1] 418.696

ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla =0][gttl = 1][uturn = 0] 655.848 ms
10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla =0][gttl =1][uturn = 0] 513.054 ms

IOS 15.2 Configuration — UHP

1| PL

2| version 15.2

3l mpls label protocol 1ldp

4| mpls 1ldp explicit-null

5| router bgp 3333

6| neighbor 10.12.0.1 remote-as 3333

8| P2

9| version 15.2

10{ mpls label protocol ldp

11|mpls ldp explicit-null

12| router bgp 3333

13| neighbor 10.12.0.1 remote-as 3333

15| P3

16| version 15.2

17| mpls label protocol ldp

18l mpls ldp explicit-null

19[router bgp 3333

20 neighbor 10.12.0.1 remote-as 3333

22| PE1

23| version 15.2

24 mpls label protocol ldp

25| mpls ldp explicit-null

26| router bgp 3333

27| redistribute connected

28| redistribute ospf 10

29| neighbor 10.12.0.1 remote-as 3333
30| neighbor 10.12.0.1 next-hop-self

31| neighbor 192.168.8.1 remote-as 1024
32| neighbor 192.168.8.1 next-hop-self

34 PE2

35| version 15.2

36| mpls label protocol ldp

37| mpls 1ldp explicit-null

38 router bgp 3333

39| redistribute connected

40| redistribute ospf 10

41| neighbor 10.12.0.1 remote-as 3333
42 neighbor 10.12.0.1 next-hop-self

13| neighbor 192.168.2.2 remote-as 2048
44| neighbor 192.168.2.2 next-hop-self

TNT running over Explicit tunnels with IOS 15.2 — UHP

1| Launching TNT: 192.168.7.1 (192.168.7.1

3 1 left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl =1][uturn = 0] 7.64 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla = 0][gttl = 1][uturn = 0] 39.87 ms

5 3 left.Pl (10.1.0.2) <247,253> [frpla = 6][gttl =1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 100.632
ms

6 4 left.P2 (10.2.0.2) <248,252> [frpla =4][gttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 80.453 ms

7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][gttl = 3][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL : 1] 100.815
ms

8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][gqttl = 1][uturn = 0] 109.089 ms

9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][gttl = 1][uturn = 0] 98.817 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][gttl = 1][uturn = 0] 119.842 ms

2) Juniper Configurations: For Explicit tunnels, Juniper Olive and VMX behave the same. We first provide the configuration and TNT
output for Explicit tunnels without UTURN effect.

VMX configuration without UTURN effect.

1| P1
2| propagate ttl

4| P2
5| propagate ttl

71 P3
8| propagate ttl

10| PE1
11| propagate ttl

13| PE2
14| propagate ttl

1| Launching TNT: 192.168.2.102 (192.168.2.102)

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][gttl = 1][uturn = 0] 2.682 ms

4 2 PEl (172.16.0.2) <254,63> [frpla = 0][gqttl =1][uturn = 0] 4.603 ms

5 3 left.Pl (192.168.1.2) <253,62> [frpla = 0][gttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1]
6.362 ms

6 4 left.P2 (192.168.1.6) <252,61> [frpla = 0][gttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1]
8.451 ms

7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][gttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1]
8.557 ms

8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][gttl = 1][uturn = 0] 8.285 ms

9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][gttl = 1][uturn = 0] 8.09 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][gttl = 1][uturn = 0] 8.142 ms

On the contrary to Cisco configuration, Juniper allows the UTURN effect, i.e., LSRs as a default behavior, when the LSE-TTL of a packet
expires, send the ICMP time-exceeded to the Egress LER which then forwards the packets on its own to the probing source, while an
LSR replies directly to other probes (e.g., echo-request) using its own IP forwarding table if available resulting in general in a shorter
return path (see Sec. ??). This must be explicitly stated with the icmp-tunneling as provided below.

VMX configuration with UTURN effect.

1| PL
2| propagate ttl
icmp-tunneling

5| P2
6| propagate ttl
7| icmp-tunneling

9| P3
10| propagate ttl
11| icmp-tunneling

13 PE1
14| propagate ttl
15| icmp-tunneling

17| PE2
18| propagate ttl
19[icmp-tunneling

TNT running over Explicit tunnels witg UTURN effect.

I| Launching TNT: 192.168.2.102 (192.168.2.102)

3 1 CE1 (172.16.0.5) <255,64> [frpla =0][gttl =1][uturn = 0] 2.034 ms

4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][gttl = 1][uturn = 0] 4.646 ms

5 3 left.Pl (192.168.1.2) <246,62> [frpla = 7][rtla = 7(7) 1[gttl = 1][uturn = 7][MPLS LSE | Label : 299824
LSE-TTL : 1] 11.424 ms

6 4 left.P2 (192.168.1.6) <247,61> [frpla = 5][rtla = 5(-2)][gttl =1][uturn = 5][MPLS LSE | Label : 299824 |
LSE-TTL : 1] 7.994 ms

7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][gttl =1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1]
6.252 ms

8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][gttl = 1][uturn = 0] 8.585 ms

9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][gttl = 1][uturn = 0] 9.369 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][gttl = 1][uturn = 0] 9.232 ms

B. Opaque Tunnels Validation

Opaque tunnels only occur with Cisco routers, in some particular configuration (see Sec. ?? for details). The topology used for GNS-3
emulation is the one provided by Fig. ??. We only show tests for IOS 15.2 as the situation is the same with IOS 12.4. In our example, we
were able to reveal the content of the Opaque tunnel through BRPR, on the contrary to in the wild TNT deployment where Opaque tunnels
revelation did not work that much (see Sec. ??). We see thus here a difference between theory and practice.

IOS 15.2 Configuration — PHP

1| PL

2| version 15.2

3l mpls label protocol 1ldp

4l no propagate-ttl

5| router bgp 3333

6| neighbor 10.12.0.1 remote-as 3333

8| P2

9| version 15.2

10| mpls label protocol 1ldp

11| no propagate-ttl

12| router bgp 3333

neighbor 10.12.0.1 remote-as 3333

15[P3

16 version 15.2

17| mpls label protocol ldp

18] no propagate-ttl

19| router bgp 3333

20 neighbor 10.12.0.1 remote-as 3333

22| PE1

23| version 15.2

24| mpls label protocol ldp

25| no propagate-ttl

26| router bgp 3333

27| redistribute connected

28| redistribute ospf 10

29| neighbor 10.12.0.1 remote-as 3333
30] neighbor 192.168.8.1 remote-as 1024

32| PE2

33| version 15.2

34| mpls label protocol ldp

35| no propagate-ttl

36| router bgp 3333

37| redistribute connected

38| redistribute ospf 10

39 neighbor 10.12.0.1 remote-as 3333

10| neighbor 192.168.6.1 remote-as 2048
41| neighbor 192.168.6.1 ebgp-multihop 2

TNT running over Explicit tunnels with IOS 15 — PHP

I| Launching TNT: 192.168.7.1 (192.168.7.1)

3 1 1left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl = 1][uturn = 0] 25.164 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla = 0][gqttl =1][uturn = 0] 40.06 ms

6 OPAQUE Length estimation : 3 | Revealed : 3 (difference 0)

7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][gttl =1][uturn = 0] 40.008 ms - step 2

8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla = 0][gttl = 1][uturn = 0] 40.058 ms - step 1

9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0][gttl = 1][uturn = 0] 90.301 ms - step O

10

11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][gttl =1][uturn = 0][MPLS LSE Label : 16 | LSE-TTL : 252]
110.408 ms

12 4 left.CE2 (192.168.2.2) <250,250> [frpla = 2][gttl =1][uturn = 0] 80.195 ms

13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla =1][gttl = 1][uturn = 0] 132.331 ms

C. Invisible Tunnels Validation

This section discusses Invisible tunnels, i.e., tunnels without RFC4950 and with no-ttl-propagate (see Sec. ??).

We do a distinction between Cisco (Appendix ??) and Juniper configurations (Appendix ??). PHP (LSE popped by P3) is also distinguished
from UHP (LSE popped by Egress LER).

For each case, we provide the configuration of routers as well as the TNT output. Indicators and triggers (see Sec. ??) are provided, as
well as ICMP time-exceeded and ICMP echo-reply TTLs.

1) Cisco Configurations: All configurations presented here were run on the topology provided by Fig. ??. The TNT running version
is the one implemented in Python, available with GNS-3 scripts.”

IOS 15.2 Configuration — PHP

1| PL

2| version 15.2

3l mpls label protocol ldp

il no propagate-ttl

5| router bgp 3333

6| neighbor 10.12.0.1 remote-as 3333

8| P2

9| version 15.2

10| mpls label protocol ldp

11| no propagate-ttl

12| router bgp 3333

13| neighbor 10.12.0.1 remote-as 3333

15| P3

16| version 15.2

17| mpls label protocol ldp

18| no propagate-ttl

19| router bgp 3333

20 neighbor 10.12.0.1 remote-as 3333

2 PE1

23| version 15.2

24| mpls label protocol ldp
25| no propagate-ttl

26| router bgp 3333

2 redistribute connected

28| redistribute ospf 10

29| neighbor 10.12.0.1 remote-as 3333
30| neighbor 10.12.0.1 next-hop-self

31| neighbor 192.168.8.1 remote-as 1024
32[neighbor 192.168.8.1 next-hop-self

34| PE2

35| version 15.2

36| mpls label protocol ldp

37 no propagate-ttl

38| router bgp 3333

39] redistribute connected

40| redistribute ospf 10

41| neighbor 10.12.0.1 remote-as 3333
12 neighbor 10.12.0.1 next-hop-self
43| neighbor 192.168.2.2 remote-as 2048
44| neighbor 192.168.2.2 next-hop-self

running over Invisible tunnels with IOS 15.2 — PHP. BRPR revelation launched through FRPLA

I| Launching TNT: 192.168.7.1 (192.168.7.1)

1 left.CE1 (192.168.3.2) <255,255> [frpla =0][gttl =1][uturn = 0] 7.52 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][gttl = 1][uturn 0] 29.927 ms
6 FRPLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][gttl = 1][uturn = 0] 50.051 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla =0][gttl =1][uturn = 0] 60.102 ms - step 1
9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0 J[gttl = 1][uturn = 0] 59.876 ms - step O
10
11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][gttl =1][uturn = 0] 80.38 ms
12 4 1left.CE2 (192.168.2.2) <250,250> [frpla = 2][gttl =1][uturn = 0] 69.89 ms
13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla =1][gttl =1][uturn = 0] 99.833 ms

The configuration for running standard Cisco Invisible UHP tunnels is provided below. Such a configuration might be revealed through
BRPR thanks to the DUP_IP trigger.

IOS 15.2 Configuration — Standard Cisco UHP configuration

1| P1

2| version 15.2

3| mpls label protocol ldp

il no propagate-ttl

5s|mpls ldp explicit-null

6| router bgp 3333

7| neighbor 10.12.0.1 remote-as 3333

9| P2

10| version 15.2

11| mpls label protocol ldp

12| no propagate-ttl

13l mpls ldp explicit-null

14| router bgp 3333

15| neighbor 10.12.0.1 remote-as 3333
16
17| P3

18| version 15.2

19l mpls label protocol ldp

20| no propagate-ttl

21| mpls ldp explicit-null

22| router bgp 3333

23| neighbor 10.12.0.1 remote-as 3333

25| PEL

26| version 15.2

27\ mpls label protocol ldp

28| no propagate-ttl

29| mpls ldp explicit-null

30| router bgp 3333

31| redistribute connected

32| redistribute ospf 10

33| neighbor 10.12.0.1 remote-as 3333
34| neighbor 10.12.0.1 next-hop-self

35| neighbor 192.168.8.1 remote-as 1024
36| neighbor 192.168.8.1 next-hop-self

38 PE2

9| version 15.2

40| mpls label protocol 1ldp
41| no propagate-ttl

2| mpls ldp explicit-null
43| router bgp 3333

44| redistribute connected

45| redistribute ospf 10

46| neighbor 10.12.0.1 remote-as 3333

17| neighbor 10.12.0.1 next-hop-self

48| neighbor 192.168.2.2 remote-as 2048
49| neighbor 192.168.2.2 next-hop-self

running over Invisible tunnels with IOS 15.2 — UHP. BRPR revelation launched through Dup_Ip

1| Launching TNT: 192.168.7.1 (192.168.7.1

3 1 left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl =1][uturn = 0] 3.157 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla =0][gttl =1][uturn = 0] 29.92 ms

6 Duplicate IP (Egress : 10.1.0.2) | Length estimation : 1 | Revealed : 4 (difference : 3)

7 2.1 [REVEALED] left.Pl (10.1.0.2) <253,253> [frpla = 0][gttl =1][uturn = 0] 50.043 ms - step 7 (Buddy
used)

8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla =0][gttl =1][uturn = 0] 49.778 ms - step 5 (Buddy
used)

9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla = 0][gttl =1][uturn = 0] 69.834 ms - step 3 (Buddy
used)

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla =0][gttl =1][uturn = 0] 80.594 ms - step 1 (Buddy
used)

11
12 3 left.CE2 (192.168.2.2) <252,252> [frpla =1][gttl =
13 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][gttl =
14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla = 0][gttl =

][uturn = 0] 80.08 ms
][uturn = 0] 89.891 ms
1][uturn = 0] 107.579 ms

1
1

With Cisco routers, it is possible to mimic an Invisible UHP tunnel with a Juniper configuration, meaning that the tunnel content might
be revealed through DPR, thanks to the DUP_IP trigger. Such a configuration is achieved with the allocate global host-routes
command.

Configuration — UHP Juniper-like

2| version 15.2

3l mpls label protocol 1ldp

4l no propagate-ttl

mpls ldp explicit-null

6l mpls ldp label

7] allocate global host-routes

8| router bgp 3333

9| neighbor 10.12.0.1 remote-as 3333

w

11| P2

12| version 15.2

13l mpls label protocol ldp

14| no propagate-ttl

15| mpls ldp explicit-null

16| mpls ldp label

17| allocate global host-routes

18| router bgp 3333

19| neighbor 10.12.0.1 remote-as 3333
20
21| P3

22| version 15.2

23| mpls label protocol ldp

24| no propagate-ttl

25| mpls ldp explicit-null

26| mpls ldp label

271 allocate global host-routes

28| router bgp 3333

29| neighbor 10.12.0.1 remote-as 3333

31| PE1

2| version 15.2

33l mpls label protocol ldp

34| no propagate-ttl

35| mpls ldp explicit-null

36| mpls 1ldp label

37/ allocate global host-routes

38| router bgp 3333

39| redistribute connected

10| redistribute ospf 10

11| neighbor 10.12.0.1 remote-as 3333
42| neighbor 10.12.0.1 next-hop-self
43| neighbor 192.168.8.1 remote-as 1024
44| neighbor 192.168.8.1 next-hop-self

16| PE2

47| version 15.2

48| mpls label protocol 1ldp

49| no propagate-ttl

solmpls ldp explicit-null
51lmpls ldp label

52| allocate global host-routes

20

53| router bgp 3333

54| redistribute connected

55] redistribute ospf 10

56| neighbor 10.12.0.1 remote-as 3333
571 neighbor 10.12.0.1 next-hop-self

s¢| neighbor 192.168.2.2 remote-as 2048
59| neighbor 192.168.2.2 next-hop-self

— UHP. DPR revelation launched through Dup_Ip

TNT running over Invisible tunnels with IOS 1

1| Launching TNT: 192.168.7.1 (192.168.7.1)

3 1 left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl =1][uturn = 0] 8.091 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla = 0][gttl =1][uturn = 0] 39.867 ms

6 Duplicate IP (Egress : 10.1.0.2) | Length estimation : 1 | Revealed : 4 (difference 3)

7 2.1 [REVEALED] left.Pl (10.1.0.2) <253,253> [frpla = 0 J[gttl =1][uturn = 0] 39.788 ms - step 2

8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla = 0][gttl = 1][uturn = 0] 49.573 ms - step 2

9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla =0][gttl =1][uturn = 0] 70.094 ms - step 2

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla =0][gttl =1][uturn = 0] 89.171 ms - step 1 (Buddy
used)

1

12 3 left.CE2 (192.168.2.2) <252,252> [frpla =1 1[gttl =1][uturn = 0] 120.546 ms

1 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][gttl =1][uturn = 0] 89.892 ms

14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla =0][gttl =1][uturn = 0] 117.301 ms

It is also possible to build Invisible UHP tunnel in which the buddy mechanism will not work. But running BRPR will make the tunnel
content visible. This configuration might be achieved with the ip access-1ist command, as follows:

IOS 15.2 Configuration — UHP without buddy

1| PL

2| version 15.2

3l mpls label protocol
4] no propagate-ttl

5| router bgp 3333

6| neighbor 10.12.0.1

1ldp

remote—-as 3333

8| P2

9| version 15.2

10[mpls label protocol
11| no propagate-ttl

12| router bgp 3333

13| neighbor 10.12.0.1

1dp

remote-as 3333

15| P3

16 version 15.2

17| mpls label protocol
18| no propagate-ttl

19| router bgp 3333

20| neighbor 10.12.0.1

1ldp

remote—as 3333

2| PEL

23| version 15.2

24 mpls label protocol
>5| no propagate-ttl
26| router bgp 3333

271 redistribute connected
28| redistribute ospf 10

1dp

29| neighbor
30| neighbor
31/ neighbor
2| neighbor

10.12.0.1 remote-as 3333
10.12.0.1 next-hop-self
192.168.8.1 remote-as 1024
192.168.8.1 next-hop-self

34| PE2

35| version 15.2

36| mpls label protocol ldp

37/ no propagate-ttl

38| mpls ldp explicit-null for BRPR-wo-buddy
39| router bgp 3333

40| redistribute connected

11| redistribute ospf 10

42| neighbor 10.12.0.1 remote-as 3333
43| neighbor 10.12.0.1 next-hop-self

44| neighbor 192.168.2.2 remote-as 2048
45 neighbor 192.168.2.2 next-hop-self

47| ip access-1list standard BRPR-wo-buddy
48| permit 10.9.0.1
49 deny any

21

o

2w

w

o

TR

w [CR

® -

Launching TNT: 192.168.7.1 (192.168.7.1)

1 192.168.3.2 (192.168.3.2) <255,255> [frpla =0][gttl =1][uturn = 0] 7.299 ms
2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][gttl = 1][uturn = 0] 14.921 ms
Duplicate IP (Egress : 10.4.0.2) | Length estimation : 3 | Revealed : 4 (difference 1)
2.1 [REVEALED] 10.1.0.2 (10.1.0.2) <253,253> [frpla =0][gttl =1][uturn = 0] 36.443 ms - step 3
2.2 [REVEALED] 10.2.0.2 (10.2.0.2) <252,252> [frpla =0][gttl =1][uturn = 0] 35.879 ms - step 2
2.3 [REVEALED] 10.3.0.2 (10.3.0.2) <251,251> [frpla =0][gttl =1][uturn = 0] 66.288 ms - step 1
2.4 [REVEALED] 10.4.0.2 (10.4.0.2) <250,250> [frpla =0][gttl =1][uturn = 0] 64.19 ms - step O
3 CE2 (192.168.2.2) <250,250> [frpla = 3][gttl = 1][uturn = 0] 116.643 ms
4 CE2 (192.168.2.2) <250,250> [frpla = 2][gttl =1][uturn = 0] 99.93 ms
5 192.168.4.2 (192.168.4.2) <250,250> [frpla =1][gttl =1][uturn = 0] 94.185 ms

2) Juniper Configurations: Juniper, with Olive OS, does not apply the MIN(IP-TTL, LSE-TTL) at the exist of the MPLS cloud. As
such, the FRPLA trigger is equal to 1. Invisible UHP tunnel can, then, be revealed through DPR. Juniper routers can be configured as
followed:

Juniper Olive Configuration

lae]
[y

no-propagate—-ttl

P2
no-propagate-ttl

P3
no-propagate-ttl

PE1
no-propagate-ttl

PE2
no-propagate-ttl

TNT running over Juniper Olive
Launching TNT: 192.168.2.102 (192.168.2.102)

0.638 ms
1.898 ms

][uturn =
][uturn =

1 CE1l (172.16.0.5) <255,64> [frpla = 0][gqttl =
0

1
2 PEl (172.16.0.2) <254,63> [frpla = 1[gttl =1

o o

FRPLA | Length estimation : 1 | Revealed : 3 (difference : 2)
2.1 [REVEALED] left.Pl (192.168.1.2) <253,62> [frpla = 0][gttl =1 J[uturn = 0] 3.039 ms - step O
2.2 [REVEALED] left.P2 (192.168.1.6) <252,61> [frpla = 0][gqttl =1][uturn = 0] 3.951 ms - step O
2.3 [REVEALED] left.P3 (192.168.1.10) <252,61> [frpla = 0][gttl =1][uturn = 0] 4.906 ms - step O
3 left.PE2 (192.168.1.14) <252,61> [frpla =1][gttl =1][uturn = 0] 7.043 ms
4 CE2 (192.168.2.2) <252,61> [frpla =0][gttl =1][uturn = 0] 6.891 ms
5 CE3 (192.168.2.102) <251,60> [frpla = 0][gttl = 1][uturn = 0] 8.978 ms

On the contrary to Olive, VMX applies the MIN(IP-TTL, LSE-TTL) function. As such, the behavior observed is the theoretical one. It
is worth noting that configuring Juniper VMX for Invisible MPLS tunnels is identical than with Olive. Invisible tunnels are, now, revealed
through DPR, with the RTLA trigger.

Juniper VMX Configuration

lae]
[y

no-propagate-ttl

P2
no-propagate-ttl

P3
no-propagate—-ttl

PE1
no-propagate-ttl

PE2
no-propagate-ttl

TNT running over Juniper VMX
Launching TNT: 192.168.2.102 (192.168.2.102)

1 CE1 (172.16.0.5) <255,64> [frpla =0][gttl =1][uturn = 0] 0.96 ms
2 PE1 (172.16.0.2) <254,63> [frpla = 0][gttl = 1][uturn = 0

RTLA | Length estimation : 3 | Revealed : 3 (difference : 0)
2.1 [REVEALED] left.P1l (192.168.1.2) <253,62> [frpla = 1 =0
2.2 [REVEALED] left.P2 (192.168.1.6) <252,62> [frpla = 0][gttl = 1][uturn = 0

I
o
Q
al
o
[
[

] 8.8 ms - step O
] 2.134 ms - step O

=}

o

o

al

o}
I

22

9 2.3 [REVEALED] left.P3 (192.168.1.10) <251,62> [frpla = 0][gttl =1][uturn = 0] 3.352 ms - step O
10

1 3 left.PE2 (192.168.1.14) <250,62> [frpla = 3][rtl = 3(3) 1[gqttl =1][uturn = 3] 4.569 ms

12 4 CE2 (192.168.2.2) <250,61> [frpla =2][rtl = 2(-1)][gttl =1][uturn = 2] 4.625 ms

13 5 CE3 (192.168.2.102) <250,60> [frpla =1][rtl = 1(-1)][gttl =1][uturn =1] 4.355 ms

D. Corner Cases

This section discusses corner cases, i.e., unlikely configurations that may arise when MPLS is not homogeneously configured throughout
the tunnel. TNT cannot deal with those situations, but they have not been encountered in practice.

1) Cisco: The following Cisco configuration (for IOS 15.2) is supposed to build an UHP Invisible tunnel. However, on the contrary to
configuration provided in Appendix ??, the management of LSE-TTL is heterogeneous over the tunnel. Indeed, in this case, the Ingress LER
is not configured with the no-ttl-propagate (on the contrary to other routers in the tunnel). As such, the the MIN(IP-TTL, LSE-TTL)
operation is not — systematically — applied. The EH assumes that the propagation configuration is homogeneous among LERs, which is not
the caes here. Therefore, the Egress LER will use the IP-TTL instead of the LSE-TTL when popping the LSE. As consequence, and as
shown by the TNT output, we observe that

1) the MPLS tunnel is actually Explicit;

2) a certain number of hops (here, CE2 is missing — see Fig. ?? for the Cisco topology we use) after the MPLS tunnel are missing,

leading to a so-called jump effect.

We call such a configuration Explicit Jump.

Cisco 15.2 Explicit Jump configuration

1| PL

version 15.2

3|l mpls label protocol 1ldp

4l no propagate-ttl

mpls ldp explicit-null

6| router bgp 3333

7| neighbor 10.12.0.1 remote-as 3333

o

o

9| P2

10[version 15.2

11| mpls label protocol ldp

12|l no propagate-ttl

13 mpls ldp explicit-null

14| router bgp 3333

15| neighbor 10.12.0.1 remote-as 3333
16
17| P3

18| version 15.2

19| mpls label protocol ldp

20l no propagate-ttl

21| mpls 1ldp explicit-null

22| router bgp 3333

23| neighbor 10.12.0.1 remote-as 3333

25| PEL

26| version 15.2

27| mpls label protocol ldp

28 mpls ldp explicit-null

29| router bgp 3333

30] redistribute connected

31| redistribute ospf 10

2] neighbor 10.12.0.1 remote-as 3333
33| neighbor 10.12.0.1 next-hop-self

34| neighbor 192.168.8.1 remote-as 1024
35| neighbor 192.168.8.1 next-hop-self

37| PE2

38| version 15.2

39 mpls label protocol 1ldp

0| no propagate-ttl

41|mpls 1ldp explicit-null

42| router bgp 3333

43| redistribute connected

14| redistribute ospf 10

15| neighbor 10.12.0.1 remote-as 3333
46| neighbor 10.12.0.1 next-hop-self
47| neighbor 192.168.2.2 remote-—as 2048
48| neighbor 192.168.2.2 next-hop-self

TNT running over Cisco Explicit Jump

1| Launching TNT: 192.168.7.1 (192.168.7.1)

3 1 left.CE1l (192.168.3.2) <255,255> [frpla = 0][gttl = 1][uturn = 0] 8.407 ms

4 2 left.PE1l (192.168.8.2) <254,254> [frpla = 0][gttl =1][uturn = 0] 29.477 ms

5 3 left.Pl (10.1.0.2) <250,253> [frpla = 3][gttl =1][uturn = 3][MPLS LSE | Label : 19 | LSE-TTL 1] 79.929 ms
6 4 left.P2 (10.2.0.2) <250,252> [frpla = 2][gttl = 2][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL 1] 80.573 ms
7 5 left.P3 (10.3.0.2) <250,251> [frpla =1][gttl = 3][uturn = 1][MPLS LSE | Label : 20 | LSE-TTL 1] 109.577

=

w

23

ms
6 left.PE2 (10.4.0.2) <250,250> [frpla = 0]J[gttl = 1][uturn = 0] 79.766 ms
7 192.168.4.2 (192.168.4.2) <250,250> [frpla = -1][gttl = 2][uturn = 0] 109.357 ms

2) Juniper: In the fashion of Cisco, Juniper with the Olive OS (this is not possible with VMX) allows to configure an Explicit Jump
tunnel. The configuration provided below shows an MPLS tunnel with PHP. The EH is configured with the no-ttl-propagate option,
while other routers are configured with tt1-propagate. As such, P3 will not apply the MIN(IP-TTL, LSE-TTL) when popping the label,
leading so to a jump effect that is nearly as long as the tunnel itself (the Egress LER and CE2 are missing).

Olive Explicit Jump configuration

o]
[y

propagate ttl

P2
propagate-ttl

P3
no-propagate-ttl

PE1
propagate ttl

PE2
propagate ttl

TINT running over Olive Explicit Jump
Launching TNT: 192.168.2.102 (192.168.2.102)

1 CE1 (172.16.0.5) <255,64> [frpla =0][gttl =1][uturn = 0] 0.622 ms

2 PEl1 (172.16.0.2) <254,63> [frpla = 0][gttl = 1][uturn = 0] 1.749 ms

3 left.Pl (192.168.1.2) <253,62> [frpla = 0][gttl =1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1]
2.799 ms

4 left.P2 (192.168.1.6) <252,252> [frpla = 0 J[gttl =1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1]
3.725 ms

5 left.P3 (192.168.1.10) <251,251> [frpla = 0][gttl = 1][uturn = 0][MPLS LSE | Label : 299776 | LSE-TTL : 1]
7.784 ms

6 CE3 (192.168.2.102) <248,57> [frpla = 2][gqttl = 2][uturn = 0] 8.884 ms

The last configuration is Juniper Olive with an Invisible Jump configuration. This is somewhat equivalent to the Explicit Jump but for
Invisible tunnels. In that case, when P3 (PHP is configured) will pop the LSE, it will not apply the MIN(IP-TTL, LSE-TTL). As a result,
TNT will see the Ingress LER (PE1) and several hops after P3 will be missed (Egress LER and CE2). The tunnel is invisible and triggers
do not work.

Olive Invisible Jump configuration

Pl
no-propagate ttl

P2
no-propagate-ttl

P3
propagate—-ttl

PE1l
no-propagate ttl

PE2
propagate ttl

TNT running over Olive Invisible Jump

Launching TNT: 192.168.2.102 (192.168.2.102)

1 CE1 (172.16.0.5) <255,64> [frpla =0][gttl =1][uturn = 0] 0.515 ms
2 PE1 (172.16.0.2) <254,63> [frpla = 0][gttl = 1][uturn = 0] 1.712 ms
3 CE3 (192.168.2.102) <251,60> [frpla = 2][gttl = 250][uturn = 0] 8.553 ms

