
1

TNT: Technical Report
Yves Vanaubel∗, Jean-Romain Luttringer‡, Pascal Mérindol‡, Jean-Jacques Pansiot‡, Benoit Donnet∗

∗ Montefiore Institute, Université de Liège – Belgium
‡ Icube, Université de Strasbourg – France

June 7, 2018

Abstract— Internet topology discovery has been a recurrent
research topic for nearly 20 years now. Usually, it works by
sending hop-limited probes (i.e., traceroute) towards a set
of destinations to collect topological data in order to infer the
Internet topology at a given scale (e.g., at the router or the AS
level). However, traceroute comes with multiple limitations, in
particular with layer-2 clouds such as MPLS that might hide their
content to traceroute exploration. Thus, the resulting Internet
topology data and models are incomplete and inaccurate.

In this report, we introduce TNT (Trace the Naughty Tunnels),
an extension to Paris traceroute for revealing most (if not all)
MPLS tunnels along a path. TNT works in two basic stages.
First, along with traceroute probes, it looks for evidences of
the potential presence of hidden tunnels. Those evidences are
surprising patterns in the traceroute output, e.g., abrupt and
significant TTL shifts. Second, if alarms are triggered due to
the presence of such evidences, TNT launches additional and
dedicated probing for possibly revealing the content of the hidden
tunnel. We validate TNT through emulation with GNS3 and tune
its parameters through a dedicated measurement campaign. We
also largely deploy TNT on the Archipelago platform and provide
a quantification of tunnels, updating so the state of the art vision
of MPLS tunnels. Finally, TNT is fully and publicly available, as
well as the collected data and scripts used for processing data.

I. INTRODUCTION

For now twenty years, the Internet topology discovery
has attracted a lot of attention from the research commu-
nity [1], [2]. First, numerous tools have been proposed to
better capture the Internet at the IP interface level (mainly
based on traceroute) and the router level (by aggregating
IP interfaces of a router through alias resolution). Second, the
data collected has been used to model the Internet [3], but also
to have a better knowledge of the network ecosystem and how
it is organized by operators.

However, despite the work done so far, a lot of issues still
need to be fixed, specially in data collection processes based
on traceroute. For instance, collecting data about Layer-2
devices connecting routers is still an open question, although
it has been addressed previously with a, nowadays, deprecated
tool (i.e., IGMP-based probing) [4]. Another example is the
relationship between traditional network hardware and the so-
called middleboxes [5], [6]. Finally, MPLS tunnels [7]) also
have an impact on topology discovery as they allow to hide
internal hops [8], [9].

This report focuses on the interaction between
traceroute and MPLS. In a nutshell, MPLS has
been designed to reduce the time required to make forwarding
decisions thanks to the insertion of labels (called Label

Stack Entries, or LSE) before the IP header1. Indeed, in
an MPLS network, packets are forwarded using an exact
match lookup of a 20-bit value found in the LSE. At each
MPLS hop, the label of the incoming packet is replaced by
a corresponding outgoing label found in an MPLS switching
table. The MPLS forwarding engine is lighter than the IP
forwarding engine because finding an exact match for a
label is simpler than finding the longest matching prefix
for an IP address. Some MPLS tunnels may be revealed to
traceroute because MPLS routers are able to generate
ICMP time-exceeded message when the MPLS TTL
expires and the ICMP message embeds the LSE, revealing
so the presence of the tunnel [11], [8]. However the MPLS
architecture supports optional mechanisms that, in effect,
make MPLS tunnels invisible to traceroute by modifying
the way the packets TTL is processed. A first attempt has
been made on revealing so-called invisible [9] tunnels but
this is far from being complete.

This report aims at plugging the gaps in identifying and
revealing the content of MPLS tunnels. This is done by
introducing TNT (Trace the Naughty Tunnels), an open-source
extension for Paris traceroute [12] including techniques for
inferring and revealing MPLS tunnels content. More precisely,
this report provides four contributions:

1) we complement the state of the art with traceroute-
based measurement techniques able to reveal most
(if not all) MPLS tunnels, even those that were built
for hiding their content. Those techniques work with
indicators or triggers that are used to determine the
potential presence of a tunnel. When a trigger is pulled
during a traceroute exploration, an MPLS revelation
is launched with the objective of revealing the tunnel con-
tent. We validate the indicators, triggers, and revelations
using GNS-3, an emulator running the actual IOS of real
routers in a virtualized environment.2. We also demon-
strate, through measurements, that those techniques are
efficient in terms of cost (i.e., the additional amount of
probes injected is reasonable, specially compared to the
quality of new data discovered) and errors (false positives
and false negatives);

2) we implement those techniques within Scamper [13] as
a Paris traceroute extension, called TNT, and deploy it on
the Archipelago infrastructure [14]. TNT aims at replac-

1Although MPLS can also be used with IPv6 [10], in this paper we consider
only IPv4

2See https://gns3.com/ Note that it is also possible to emulate other
router brand, e.g., Juniper, with GNS-3.

2

Router Signature Router Brand and OS
< 255, 255 > Cisco (IOS, IOS XR)
< 255, 64 > Juniper (Junos)
< 128, 128 > Juniper (JunosE)
< 64, 64 > Brocade, Alcatel, Linux

TABLE I: Summary of main router signature, the first initial
TTL of the pair corresponds to ICMP time-exceeded,
while the second is for ICMP echo-reply.

ing the old version of Scamper and is, thus, subject to run
every day towards millions of destinations. As such, we
believe TNT will be useful to study MPLS deployment
and usage over time, increasing so our knowledge and
culture on this technology;

3) we analyze the data collected and report a new quan-
tification on MPLS deployment in the wild, updating so
previous results [8];

4) we work in a reproducibility perspective. As such, all
our code (TNT, GNS-3, data processing and analysis) as
well as our collected dataset are made available.3

The remainder of this report is organized as follows: Sec. II
provides the required technical background for this report;
Sec. III introduces TNT, our extension to traceroute for
revealing the content of all MPLS tunnels; Sec. IV validates
TNT through multiple GNS3 emulations; Sec. V calibrates
TNT parameters, while Sec. VI provides results of TNT de-
ployment over the Archipelago architecture; Sec. VII position
TNT with respect to the state of the art; finally, Sec. VIII
concludes this report by symmarizing its main achievements.

II. BACKGROUND

This section discusses the technical background required
for the paper. Sec. II-A explains how hardware brand can
be inferred from collected TTLs. Sec. II-B to Sec. II-D are
dedicated to MPLS. In particular, Sec. II-B provides the
basics of MPLS labels and introduces the MPLS control
plane. Sec. II-C focuses on the MPLS data plane and MPLS
TTL processing. Finally, Sec. II-D explains the relationships
between MPLS tunnels and traceroute in light of Sec. II-
B and II-C.

A. Network Fingerprinting

Vanaubel et al. [15] have presented a router fingerprinting
technique that classifies networking devices based on their
hardware and operating system (OS). This method infers
initial TTL values used by a router when forging different
kinds of packets. It then builds the router signature, i.e.,
the n-tuple of n initial TTLs. A basic pair-signature (with
n = 2) simply uses the initial TTL of two different mes-
sages: an ICMP time-exceeded message elicited by a
traceroute probe, and an ICMP echo-reply message
obtained from an echo-request probe. Table I summarizes
the main router signatures, with associated router brands and
router OSes. This feature is really interesting since the two

3See http://www.montefiore.ulg.ac.be/~bdonnet/mpls

0 19 20 22 23 24 31

Label TC S LSE-TTL

Fig. 1: The MPLS label stack entry (LSE) format.

most deployed router brands, Cisco and Juniper, have distinct
MPLS behaviors and signatures.

B. MPLS Basics and Control Plane

MPLS routers, i.e., Label Switching Routers (LSRs), ex-
change labelled packets over Label Switched Paths (LSPs).
In practice, those packets are tagged with one or more label
stack entries (LSE) inserted between the frame header (data-
link layer) and the IP packet (network layer). Each LSE
is made of four fields as illustrated by Fig. 1: an MPLS
label used for forwarding the packet to the next router, a
Traffic Class field for quality of service, priority, and Explicit
Congestion Notification [16], a bottom of stack flag bit (to
indicate whether the current LSE is the last in the stack [17])4,
and a time-to-live (LSE-TTL) field having the same purpose
as the IP-TTL field [18] (i.e., avoiding routing loops).

Labels may be allocated through the Label Distribution
Protocol (LDP) [19]. Each LSR announces to its neighbors
the association between a prefix in its routing table and a
label it has chosen for a given Forwarding Equivalent Class (a
FEC is a destination prefix by default), populating so a Label
Forwarding Information Table (LFIB) in each LSR. With LDP,
a router advertises the same label to all its neighbors for a
given FEC. LDP is mainly used for scalability reasons (e.g.,
to limit BGP-IGP interactions to edge routers) and to avoid
anomalies for the transit traffic such as iBGP deflection issues.
Indeed, LDP deployed tunnels use the same routes computed
by the IGP (without any interest at the first, and naive, glance)
as the LFIB is built on top of the IGP FIB. Labels can also be
distributed through RSVP-TE [20], when MPLS is used for
Traffic Engineering (TE) purposes. In practice, most operators
deploying RSVP-TE tunnels use LDP [9] as a default labeling
protocol.

With LDP, MPLS has two ways of binding labels to destina-
tion prefixes: (i) through ordered LSP control (default config-
uration of Juniper routers [21]), or, (ii), through independent
LSP control (default configuration of Cisco routers [22, Chap.
4]). In the former mode, a LSR only binds a label to a prefix

if this prefix is local (typically, the exit point of the LSR),
or if it has received a label binding proposal from the IGP
next hop towards this prefix. This mode is thus iterative as
each intermediate upstream LSR waits for a proposal of its
downstream LSR (to build the LSP from the exit to the entry
point). Juniper routers use this mode as default and only
propose labels for loopback IP addresses. In the second mode,
that is the Cisco default one, a LSR creates a label binding for
each prefix it has in its RIB (connected or – redistributed in
– IGP routes only) and distributes it to all its neighbors. This
mode does not require any proposal from downstream LSR.

4To simplify the presentation we will consider only one LSE in the
remainder of this paper

3

Consequently, a label proposal is sent to all neighbors without
ensuring that the LSP is enabled up to the exit point of the
tunnel. LSP setup takes less time but may lead to uncommon
situation in which an LSP can end abruptly before reaching
the exit point (see Sec. II-D for details.)

The last LSR towards a FEC is the Egress Label Edge
Router (the Egress LER). Depending on its configuration, two
labeling modes may be performed. The default mode [9] is
Penultimate Hop Popping (PHP), where the Egress advertises
an implicit null label (label value of 3 [17]). The previous
LSR (Penultimate Hop LSR (PH, P3 in Fig. 2) is in charge
of removing the LSE to reduce the load on the Egress. In the
Ultimate Hop Popping (UHP), the Egress LER advertises an
explicit null label (label value of 0 [17]). The PH will use this
explicit null label and the Egress LER will be responsible for
its removal. Labels assigned by LSRs other than the Egress
LER are distinct from implicit or explicit null labels. The
Ending Hop LSR (EH) is the LSR in charge of removing the
label, it can be the PH in case of PHP, the Egress LER in case
of UHP or possibly another LSR in the case of independent
LSP control.

C. MPLS Data Plane and TTL processing

Depending on its location along the LSP, a LSR applies one
of the three following operations:
• PUSH (Sec. II-C.1). The first MPLS router, i.e., the tunnel

entry point pushes one or several LSEs in the IP packet
that turns into an MPLS one. The Ingress Label Edge
Router (Ingress LER) associates the FEC of the packet
to its LSP.

• SWAP (Sec. II-C.2). Within the LSP, each LSR makes a
label lookup in the LFIB, swaps the incoming label with
its corresponding outgoing label and sends the MPLS
packet further along the LSP.

• POP (Sec. II-C.3). The EH, the last LSR of the LSP,
deletes the LSE, and converts the MPLS packet back
into an IP one. The EH can be the Egress Label Edge
Router (the Egress LER) when UHP is enabled or the
LH otherwise.

Fig. 2 illustrates the main vocabulary associated to MPLS
tunnels.

1) LSP Entry Behavior: When an IP packet enters an
MPLS cloud, the Ingress LER binds a label to the packet
thanks to a lookup into its LFIB, depending on the packet
FEC, e.g., its IP destination prefix. Prior to pushing the LSE
into the packet, the Ingress LER has to initialize the LSE-
TTL (see Fig. 1). Two behaviors can be configured: either
the Ingress LER resets the LSE-TTL to an arbitrary value
(255, no-ttl-propagate) or it copies the current IP-
TTL value into the LSE-TTL (ttl-propagate, the default
behavior). Operators can configure this operation using the
no-ttl-propagate option provided by the router manu-
facturer [18]. In the former case, the LSP is call a pipe LSP,
while, in the latter case, a uniform one.

Once the LSE-TTL has been initialized, the LSE is pushed
on the packet and then sent to an outgoing interface of the
Ingress LER. In most cases, except for a given Juniper OS (i.e.,

Olive), the IP-TTL is decremented before being encapsulated
into the MPLS header.

2) LSP Internal Behavior: Upon an MPLS packet arrival,
an LSR decrements its LSE-TTL. If it does not expire, the
LSR looks up the label in its LFIB. It then swaps the top LSE
with the one provided by the LFIB. The operation is actually a
swap only if the outgoing label returned by the LFIB is neither
implicit null nor empty (so the label is greater or equal than 0
including explicit null). Otherwise, it is a pop as described in
the next subsection. Finally, the packet is sent to the outgoing
interface of the LSR with a new label, both according to the
LFIB.

If the LSE-TTL expires, the LSR, in the fashion of any IP
router, forges an ICMP time-exceeded that is sent back
to the packet originator. It is worth to notice that a LSR may
implement RFC 4950 [23] (as it should be the case in all
recent OSes). If so, it means that the LSR will quote the
full MPLS LSE stack of the expired packet in the ICMP
time-exceeded message.

ICMP processing in MPLS tunnels varies according to
the ICMP type of message. ICMP Information messages
(e.g., echo-reply) are directly sent to the destination (e.g.,
originator of the echo-request) if the IP FIB allows for it
(otherwise no replies are generated). On the contrary, ICMP
Error messages (e.g., time-exceeded) are generally for-
warded to the Egress LER that will be in charge to forward the
packet through its IP plane [8]. Differences between Juniper
and Cisco OS and configurations are discussed in detail in
Sec. ??.

3) LSP Exit Behavior: At the MPLS packet arrival, the EH
again decrements the LSE-TTL. If this TTL does not expire,
the EH then pops the LSE stack after having determined the
new IP-TTL.

Applying PHP comes with the advantage of reducing the
load on the Egress LER, especially if it is the root of a
large LSP-tree. This means that, when using PHP, the last
MPLS operation (i.e., POP) is performed one hop before the
Egress LER, on the EH. On the contrary, UHP is generally
used only when the ISP implements more sophisticated traffic
engineering operations or wants to make the tunnel content
and semantics more transparent to the customers.5

When leaving a tunnel, the router has to decide which
TTL value (IP-TTL or LSE-TTL) to copy in the IP
header. On one hand, if the Ingress LER has activated the
no-ttl-propagate option, the EH should pick the IP-
TTL of the incoming packet. On the other hand, the LSE-
TTL should be selected when the ttl-propagate option
has been activated. In order to synchronize both ends of the
tunnel without any message exchange, two mechanisms might
be used for selecting the IP-TTL at the EH: (i) applying a
MIN(IP-TTL, LSE-TTL) operation (solution implemented for
Cisco PHP configurations [22]) or, (ii), assuming the Ingress
configuration (ttl-propagate or not) is the same as the
local configuration (solution implemented by some JunOS and
also in some Cisco UHP configuration). Applying the MIN(IP-
TTL, LSE-TTL) is the best option because it correctly supports

5The UHP feature does not seem to be available on Juniper routers when
LSPs are set with LDP. Consequently, we consider PHP as the rule on Juniper.

4

P1
<latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit><latexit sha1_base64="ZNxetEvmXRKaIRaAGu/7XI6RrGw=">AAADLHicjVLLSsRAEKyN7/WtRy/BVfC0JIKotwUvHlcwKqyLJNlZHcwmIZmIsvgNXvUr/BoPIl5F/8KaMYIPfExI0lPdVT3d00EayVw5zn3FGhgcGh4ZHauOT0xOTc/Mzu3lSZGFwguTKMkOAj8XkYyFp6SKxEGaCb8XRGI/ON3S/v0zkeUyiXfVRSraPf84ll0Z+oqQ11w6cpeOZmpO3THL/m64pVFDuZrJbGUMh+ggQYgCPQjEULQj+Mj5tODCQUqsjT6xjJY0foFLVMktGCUY4RM95feYu1aJxtxrzdywQ2aJ+GZk2lgmJ2FcRltns42/MMoa/Um7bzT12S74D0qtHlGFE6J/8d4j/8vTtSh0sWFqkKwpNYiuLixVCtMVfXL7Q1WKCikxbXfoz2iHhvneZ9twclO77q1v/M8mUqN6H5axBV5+rS5gP7R2l5kEdTu/3o8+W2Cy66rOP91NlVPkfp2Z74a3Wt+suzurtcZaOU6jWMAiVjgy62hgG014FJa4wjVurFvrznqwHt9CrUrJmcenZT29AheQpUQ=</latexit>

LSP
<latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit><latexit sha1_base64="0/GmCo+DoY+h/91tHLLlSOWbp/Q=">AAADVnicjVLLbtpAFD1A84CmCbTLbqyiSlmkyI6UttlF6qaLLqgSEiRAyDYDsWJsazyughBfka/ptv0K/qD9ivbMxI7yUEjGsn3n3HvOnXvnekkYpMq2l6Vy5cXa+sZmtfZy69X2Tr3x+jSNM+mLjh+Hsex6birCIBIdFahQdBMp3KkXijPv4ov2n/0QMg3i6ETNEjGYupMoGAe+qwgN6x/mfSPSkxNvMLdbtll7duvAdg4/OnsFsrC+HbcXw3qzAKwixLpBnNxoIl/tuFGqoo8RYvjIMIVABEU7hIuUTw8ObCTEBpgTk7QC4xdYoEZuxijBCJfoBb8T7no5GnGvNVPD9pkl5CvJtPCenJhxkrbOZhl/ZpQ1+pj23Gjqs83493KtKVGFc6JP8YrI5/J0LQpjfDY1BKwpMYiuzs9VMtMVfXLrVlWKCgkxbY/ol7R9wyz6bBlOamrXvXWN/4+J1Kje+3lshr8rq/PYD609ZiZB3dHK+9Fn80x2XdXlnbupcYqc+zPz0Ojstw5bzvf95tFBPk6beIt32OXIfMIRvqKNDoWv8BO/8Lu8LP+rrFU2rkPLpZzzBndWpf4fwayvSw==</latexit>

Invisible UHP

Explicit Implicit

Invisible PHP

Fig. 2: Illustration of MPLS vocabulary and relationship between MPLS and traceroute. The figure is made of three parts.
The upper part represents the network topology we use, throughout the paper to illustrate concepts. In particular, with respect
to MPLS, P1 is the LSP First Hop (FH), while P3 is the Penultimate Hop (PH). In case of PHP, P3 is the Ending Hop and
is responsible for removing the LSE. In case of UHP, the LSE is removed by the Egress LER (PE2). The middle part of the
figure presents the MPLS Tunnel classification, as observed with traceroute (this classification is an update of Donnet
et al. [8]). Finally, the bottom part of the figure provides triggers and indicators of an MPLS tunnel presence when probing
with TNT. The relationship between the trigger/indicator and the observation made with probing is provided in red. Additional
information (such as time-exceeded path length) are provided. This is used in Sec. III for illustrating TNT.

heterogeneous ttl-propagate configurations in any case
while, at the same time, mitigating forwarding loop without
exchanging signalization messages.

This min behavior might be used for detecting the presence
of hidden MPLS tunnels [9]. Indeed, it is likely that the EH
generating the ICMP time-exceeded message will use the
same MPLS cloud back to reply to the vantage point. In that
case, when the reply will leave the MPLS cloud, the returning
EH (P1 in Fig. 2) will choose to copy the LSE-TTL in the
IP-TTL, as the IP-TTL has been initialized at its maximum
value on the Egress of the forward tunnel (255 for a Cisco
router – see Sec. II-A). As a consequence, while the forward
path hides the MPLS cloud because the min operated on the
forward PH (P3) will select the IP-TTL which is lower, the
return path indicates its presence because the returning PH
(P1) will select the LSE-TTL on the contrary. In general, a
sufficient condition for this pattern to occur is if the returning
Ingress, which is the forward EH, re-uses the MPLS cloud
back.

In practice, it is interesting to mention that this MPLS
behavior is strongly dependent on the implementation and
the configuration. For instance, on some Juniper OS routers
(at least with JunOS Olive) or when the UHP option is
activated on some Cisco IOS (at least with the 15.2 ver-
sion), the MIN(IP-TTL, LSE-TTL) operation is not – sys-
tematically – applied. The EH assumes that the propaga-

tion configuration is homogeneous among LERs. When it is
not the case (ttl-propagate at one end of the tunnel
and no-ttl-propagate at the other end), the PH (for
PHP routers without MIN(IP-TTL, LSE-TTL)) or the Egress
LER (for the Cisco UHP configuration) will use the IP-
TTL instead of the LSE-TTL, leading so to a so-called jump
effect with traceroute (i.e., as many hops as the LSP
length are skipped after the tunnel). Except when implicitly
stated, we will consider homogeneous configurations (e.g.,
ttl-propagate on the whole tunnel) in the remainder
of the paper. Finally, it is worth noticing that mixing UHP
and PHP (hybrid configurations) can also result in uncommon
behaviors.6

D. MPLS Tunnels Taxonomy
According to wether LSRs implement RFC4950 or not

(Sec. II-C.2) and wether they activate the ttl-propagate
option or not (Sec. II-C.1), MPLS tunnels can be revealed to
traceroute following Donnet et al. [8] taxonomy.

Explicit tunnels are those with RFC4950 and the
ttl-propagate option activated (this is the default con-
figuration). As such, they are fully visible by traceroute
including labels along the LSP. Implicit tunnels activate the
ttl-propagate option but not the RFC4950. No IP in-
formation is missed but LSRs are viewed as ordinary IP

6Those behaviors are described in Appendix IX-D.

5

routers, leading to a lack of “semantic” in the traceroute
output. Opaque tunnels are obscured from traceroute as
the RFC4950 is implemented but not the ttl-propagate
option and moreover the EH that pops the last label has
not received an explicit or implicit null label. Consequently,
only the EH is revealed while the remainder of the tun-
nel is hidden. Finally, invisible tunnels are hidden as the
no-ttl-propagate option is activated (RFC4950 may or
not implemented).

As illustrated in Fig. 2 (middle part), explicit tunnels are
the ideal case as all the MPLS information comes natively
with traceroute. For implicit tunnels, Donnet et al. [8]
have proposed techniques for identifying the tunnel based
on the way LSRs process ICMP messages (see Sec. II-
C.2 – the so-called UTURN) and the IP-TTL quoted in
the time-exceeded message (the so-called qTTL) that is
increased by one at each subsequent LSR of the LSP due to
the ttl-propagate option (ICMP time-exceeded are
generated based on the LSE-TTL while the IP-TTL of the
probe is left unchanged within the LSP and, thus, quoted as
such in the ICMP time-exceeded).

Opaque tunnels are only encountered with Cisco LSPs and
are a consequence of the way labels are distributed with LDP
(see Sec. II-B). Indeed, a label proposal may be sent to all
neighbors without ensuring that the LSP is enabled up to the
Egress LER, leading so to opaque tunnels because an LSP
can end abruptly without reaching the Egress LER (where the
prefix is injected in the IGP) that should bind an explicit (UHP)
or implicit null label (PHP). As illustrated in Fig. 2, opaque
tunnels and their length can be identified thanks to the LSE-
TTL. LSPs end without a standard terminating label (implicit
or explicit null) and so they break with the last MPLS header
of the neighbor that may not be an MPLS speaker.

The traceroute behavior, for invisible tunnel, is differ-
ent according to the way the LSE is popped from the packet
(i.e., UHP or PHP), as illustrated in Fig. 2. Invisible tunnels
are problematic, as they lead to a false vision of the Internet
topology, creating false links, and spoiling graph metrics,
such as the node degree distribution [9]. In this paper, we
distinguish between invisible tunnels produced with PHP and
UHP. In Donnet et al. [8], only the class “Invisible PHP” was
discussed. Vanaubel et al. [9] have proposed techniques for
revealing the content of invisible MPLS tunnels only in the
case of PHP.

With Invisible UHP tunnels, the behavior is clearly different,
at least for Cisco routers using the 15.2 IOS. Upon reception of
a packet with IP-TTL of 1, the Egress LER does not decrement
this TTL, but forwards the packet to the next hop (CE2 in the
example), so that the Egress does not show up in the trace. In
contrast, the next hop will appear twice: once for the probe
that should have expired at the Egress and once at the next
probe. UHP indeed provokes a surprising pattern, a duplicated
IP at two successive hops, illustrated as “Invisible UHP” in
Fig. 2

On the contrary, PHP moves the POP function at the PH,
one hop before the end of the tunnel. This PH does not
decrement the IP-TTL whatever its value is. Except for some
JunOS, the packet is still MPLS switched because the LSE-

TTL has not expired on it. It is somehow surprising because
for explicit and implicit tunnels, the PH replies on its own.
It is because the LSE-TTL has also expired. In Fig. 2, we
can see that there is no more asymmetry in path length for
router P3 proving so its reply does not follow a UTURN via
the Egress. On the contrary, any other LSR on the LSP builds a
time-exceeded message when the LSE-TTL expires and
then continues to MPLS switch their reply error packet to
the Egress LER unless the mpls ip ttl-expiration
pop <stack size> command has been activated for Cisco
routers. It seems to be just an option for Juniper routers with
the icmp-tunneling command.

Note that opaque and invisible UHP are Cisco tunnels
(signature < 255, 255 >) due to specific implementations.
Invisible PHP are both Juniper (signature < 255, 64 >), Linux
boxes (signature < 64, 64 >), or Cisco tunnels but they do not
behave exactly the same as we will explain latter.

Sec. III extends techniques for revealing MPLS tunnels
by proposing and implementing integrated measurement tech-
niques for all tunnels (i.e., explicit, implicit, opaque, and both
UHP and PHP invisible ones) in a single tool called TNT.

III. TNT: EXPLODING MPLS TUNNELS

This section introduces our tool, TNT (Trace the Naughty
Tunnels), able to reveal all MPLS tunnels along a path. TNT
is an extension to Paris Traceroute [12] so that we avoid
most of the problems related to load balancing. TNT has been
implemented within scamper [13] and is freely available.3

Sec. III-A provides an overview of TNT, while Sec. III-B and
Sec. III-C focus on techniques for revealing hidden tunnels
and how those techniques are triggered. Finally, Sec. ??
explains how we validated TNT on a GNS-3 platform2, an
emulator running the actual OS of real routers in a virtualized
environment.

A. Overview

Listing 1: Pseudo-code for TNT
1 Codes := 0 , None ; 1 , LSE ; 2 , qTTL ; 3 , UTURN ; 4 , LSE−TTL ;
2 5 , FRPLA ; 6 , RTLA ; 7 , DUP_IP .
3 t r a c e _ n a u g h t y _ t u n n e l (t a r g e t) :
4 prev_hop , cur_hop , nex t_hop = None
5

6 f o r (t t l =STARTING_TTL , ! h a l t (t t l , t a r g e t) , t t l ++)
7 s t a t e , t u n _ c o d e = None
8 nex t_hop = t r a c e _ h o p (t t l)
9

10 # f i r s t check un i fo rm t u n n e l e v i d e n c e wi th i n d i c a t o r s
11 t u n _ c o d e = c h e c k _ i n d i c a t o r s (cur_hop)
12 # p o s s i b l y f i r e s TNT wi th t r i g g e r s o r opaques t u n n e l s
13 i f (t u n _ c o d e == None)
14 t u n _ c o d e = c h e c k _ t r i g g e r s (prev_hop , cur_hop ,

nex t_hop)
15 # check i f cur_hop does n o t be lon g t o a un i fo rm LSP
16 i f (t u n _ c o d e != None)
17 # p o t e n t i a l h id de n t u n n e l t o r e v e a l
18 s t a t e = r e v e a l _ t u n n e l (prev_hop , cur_hop ,

t u n _ c o d e)
19 e l i f (t u n _ c o d e == LSE−TTL)
20 # p o t e n t i a l opaque t u n n e l t o r e v e a l
21 s t a t e = r e v e a l _ t u n n e l (prev_hop , cur_hop , t u n _ c o d e)
22

23 #hop by hop and t u n n e l d i s p l a y
24 dump (cur_hop , tun_code , s t a t e)
25

26 # s l i d i n g p a i r o f IP a d d r e s s e s
27 prev_hop = cur_hop # c a n d i d a t e i n g r e s s LER
28 cur_hop = nex t_hop # c a n d i d a t e e g r e s s LER

6

TNT is conceptually illustrated in Listing 1. At the macro-
scopic scale, the trace_naughty_tunnel() function is
a simple loop that fires probes towards each processed target.
TNT consists in collecting, in a hop-by-hop fashion, inter-
mediate IP addresses (trace_hop() function) between the
vantage point and the target. Tracing a particular destination
ends when the halt() function returns true: the target
has been reached or a gap has been encountered (e.g., five
consecutive non-responding hops, etc.). TNT uses a moving
window of two hops such that, at each iteration, it considers a
potential Ingress LER (i.e., prev_hop) and a potential Egress
LER (i.e., cur_hop) for possibly revealing an invisible tunnel
between them. Indicators allow to check if the current hop does
not belong to a uniform tunnel, i.e. a visible one (see line 11).

For each couple of collected IP addresses with trace_hop,
TNT checks for the presence of tunnels through so called indi-
cators and triggers. The former provides reliable indications
about the presence of an MPLS tunnel without necessarily
requiring additional probing. Generally, indicators correspond
to uniform tunnels (or to the last hop of an Opaque tunnel),
and are, mostly, basic evidence of visible MPLS presence such,
as LSEs quoted in the ICMP time-exceeded packet – see
Sec. III-B for details. Triggers are mainly unsigned values
suggesting the potential presence of Invisible tunnels through
a large shifting in path length asymmetry – see Sec. III-B for
details. When exceeding a given threshold T , such triggers
fire path revelation methods (function reveal_tunnel())
between the potential Ingress and Egress LERs as developed
in Sec. III-C. If intermediate hops are found, they are stored
in a global stack structure named revealed_lsrs.
STARTING_TTL is a parameter used to avoid tracing

repeatedly the nodes close to the vantage point [24], usually
STARTING_TTL ∈ [3, 5].

Finally, at each loop iteration, the collected data is dumped
into a warts file, the scamper file format for storing IPv4/IPv6
traceroute records. This job is performed by the dump()
function. It writes potential revealed hops (available in the
global stack structure revealed_lsrs), and any useful
information, such as tags, identifying the tunnel’s type and
revelation method, if any.

B. Indicators and Triggers

Listing 2: Pseudo-code for checking indicators
1 code c h e c k _ i n d i c a t o r s (hop) :
2 #hop must e x i s t
3 i f (hop == None)
4 re turn None
5

6 i f (i s _ m p l s (hop))
7 i f (TLSE_TTL < hop . l s e _ t t l < 255)
8 # opaque t u n n e l a r e bo th i n d i c a t o r s and t r i g g e r s
9 re turn LSE−TTL

10 e l s e
11 # e x p l i c i t t u n n e l
12 re turn LSE
13

14 i f (hop . q t t l > 1)
15 # i m p l i c i t t u n n e l
16 re turn qTTL
17

18 # r e t r i e v e p a t h l e n g t h from raw TTLs
19 LTE

R = p a t h _ l e n (hop . t t l _ t e)
20 LER

R = p a t h _ l e n (hop . t t l _ e r)

21

22 #UTURN w i l l be t u r n e d i n t o RTLA f o r junOS s i g n a t u r e s
23 i f (| LTE

R − LER
R | > TUTURN && ! s i g n a t u r e _ i s _ j u n O S (hop))

24 # i m p l i c i t t u n n e l
25 re turn UTURN
26

27 re turn None

Tunnels indicators are evidence of MPLS tunnel presence
and concern cases where tunnels (or parts of them) can
be directly retrieved from the original traceroute. They
are used for Explicit tunnels and uniform/visible tunnels in
general. Explicit tunnels are indicated through LSEs directly
quoted in the ICMP time-exceeded message – See line 12
in Listing 2 and traceroute output on Fig. 2. It is worth
noting that Fig. 2 highlights the main patterns TNT looks for
firing or not additional path revelation in a simple scenario
where forward and return paths are symmetrical.

The indicator for Opaque tunnels consists in a single hop
LSP with the quoted LSE-TTL not being equal to 1, due to
the way labels are distributed within some Cisco routers (see
Sec. II-B). This is illustrated in Fig. 2 where we get a value of
252 because the LSP is actually 3 hops long. This surprising
quoted LSE-TTL is a piece of evidence in itself. It is illustrated
in lines 7 to 9 in Listing 2, where a hop is tagged as Opaque
if the quoted LSE-TTL is between a minimum threshold,
TLSE_TTL(see Sec. V for fixing a value for the threshold) and
254 (LSE-TTL is initialized to 255 [18]). Note that this pattern
resulting from an Opaque tunnel is both an indicator and a
trigger: TNT passively understands the tunnel is incomplete
and try to reveal its content with new active measurements.

Implicit tunnels are detected through qTTL and/or UTURN
indicators [8]. First, if the IP-TTL quoted in an ICMP
time-exceeded message (qTTL) is greater than one, it
likely reveals the ttl-propagate option at the Ingress LER
of an LSP. For each subsequent traceroute probe within
the LSP, the qTTL will be one greater, resulting in an increas-
ing sequence of qTTL values. This indicator is considered in
line 14 in Listing 2. Second, the UTURN indicator relies on
the fact that, by default, LSRs send ICMP time-exceeded
messages to the Egress LER which, in turns, forwards the
packets to the probing source. However, they reply directly
to other kinds of probe (e.g., echo-request) using their
own IP forwarding table, if available. As a result, in general,
return paths are shorter for time-exceeded packets than
echo-request messages. Thereby, UTURN is the signature
related to the difference in these lengths. This is illustrated in
Fig. 2 (Implicit and Explicit tunnels follow the same behavior
except for RFC4950 implementation). On P1, we have UTURN
(P1) = LTE

R - LER
R = 9 - 3 = 6. With a symmetric example, one

can formalize the UTURN pattern for an LSR Pi in an LSP of
length LL as follows:

UTURN(Pi) = 2× (LL− i+ 1). (1)

Due to the iBGP path heterogeneity (the IGP tie-break
rule in particular), the BGP return path taken by the ICMP
echo-reply message can be different from the BGP return
path taken by the time-exceeded reply. This is illustrated
in Fig. 3a where the two return paths in blue and red can
differ even outside the AS (L”TE

R can be distinct of L”ER
R). As

7

a result, and because it may differ at each intermediate hop, the
UTURN indicator does not necessarily follow exactly Eqn. 1.
A small variation may then appear in practice. In particular, a
value of 0 can hide a true Implicit hop.

For JunOS routers, the situation is quite different. It
turns out that, by default (i.e., without enabling the
icmp-tunneling feature – see Appendix IX-A.2 for de-
tails), these routers send time-exceeded replies directly
to the source, without forwarding them to the egress LER.
The UTURN indicator becomes then useless. Moreover, for
routers having the JunOS signature, the UTURN indicator
and the RTLA trigger are computed in the same way. Thus,
to avoid any confusion, TNT introduces an exception for
such OS signatures (line 23 in Listing 2), and first consid-
ers the difference as a trigger, and then falls back to an
indicator if the revelation fails (not shown in Listing 1 for
clarity). In addition, when icmp-tunneling is enabled,
time-exceeded replies start with a TTL of 254, implying
a bigger difference with echo-request replies, as it can be
seen in Fig. 2: UTURN(P1) =LJER

R -LJTE
R = 10−3 = 7 instead

of 6 if P1 runs a Cisco OS.

Listing 3: Pseudo-code for checking triggers
1 code c h e c k _ t r i g g e r s (prev_hop , cur_hop , nex t_hop) :
2 # prev_hop and cur_hop must e x i s t
3 # d u p l i c a t e IP checked on cur_hop and nex t_hop
4 i f (p rev_hop == None or cur_hop == None or prev_hop ==

cur_hop)
5 re turn None
6

7 i f (cur_hop == nex t_hop)
8 # i n v i s i b l e UHP t u n n e l
9 re turn DUP_IP

10 # r e t r i e v e p a t h l e n g t h from raw TTLs
11 LTE

R = p a t h _ l e n (cur_hop . t t l _ t e)
12 LER

R = p a t h _ l e n (cur_hop . t t l _ e r)
13 LT = cur_hop . p r o b e _ t t l
14

15 i f (s i g n _ i s _ j u n O S (cur_hop))
16 # f o r t h e JunOS s i g n a t u r e
17 i f (LTE

R − LER
R ≥ TRTLA)

18 # i n v i s i b l e PHP t u n n e l w i th JunOS
19 re turn RTLA
20 e l s e
21 # f o r o t h e r s i g n a t u r e s (raw TTLs a r e i n i t i a l i z e d t h e

same)
22 i f (LTE

R − LT ≥ TFRPLA)
23 # i n v i s i b l e PHP t u n n e l w i th o t h e r known OS
24 re turn FRPLA
25

26 re turn None

Indicators are MPLS passive evidence that can also prevent
TNT from firing new probes (with the exception of LSE-TTL
which is also a trigger for Opaque tunnels). On the contrary,
triggers are active patterns suggesting the presence of invisible
tunnels (both PHP and UHP) that could be revealed using
additional probing (see Sec. III-C). Listing 3 provides the
pseudo-code for checking triggers.

First, we look for potential Invisible UHP tunnel (line 7).
As explained in Sec. II-D, Invisible UHP tunnels occur with
Cisco routers using IOS 15.2. When receiving a packet with
an IP-TTL of 1, the Egress LER does not decrement the TTL
but, rather, forwards it directly to the next hop. Consequently,
the Egress LER does not appear in the trace while, on the
contrary, the next hop (CE2 in Fig. 2) appears twice (duplicate
IP address in the trace output).

The two remaining triggers, RTLA (Return Tunnel Length
Analysis [9]) and FRPLA (Forward/Return Path Length Anal-
ysis [9]), work by using three path lengths, which are LTE

R

(the time-exceeded path length), LER
R (the echo-reply

path length), and LT (the forward traceroute path
length). More precisely, RTLA is the difference between the
time-exceeded and the echo-reply return path lengths,
while FRPLA is the difference between the forward and the re-
turn path lengths (obtained based on traceroute probe and
reply messages). TNT tries to capture significative differences
between these lengths to infer the presence of MPLS tunnels,
relying on two common practices of LSRs, in particular the
EH, developed in the previous subsection. Both triggers are
based on the idea that replies sent back to the vantage point
are also likely to cross back the MPLS cloud, which will apply
the MIN(IP-TTL, LSE-TTL) operation at the EH of the return
tunnel. These triggers respectively infer the exact (RTLA) or
approximate (FRPLA) return path length. Indeed, FRPLA is
subject to BGP path asymmetry (and so, to false positives
or negatives) in opposition to RTLA when it applies (it may
produce some false alarms but only due to ECMP). In the
absence of invisible tunnel, we expect those triggers to have
a value equal or close to 0. Indeed, in such a case, we should
have L’ER

R = L’TE
F = L’TE

R = 1 if BGP does not interfere
(see Fig. 3). Therefore, any significant deviation from this
value is interpreted as the potential presence of an Invisible
MPLS cloud, and thus, brings TNT to trigger additional path
revelation techniques (see Sec. III-C). In practice (look at
Fig. 3b), we expect to have L’ER

R = L’TE
F = 1 (due to the

MIN for the echo-reply return tunnel and the pipe mode
for the forward tunnel) while L’TE

R directly provides the actual
return tunnel length (with a value ≥ 1). It is due to the MIN
operation applied by the EH of the return tunnel, which selects
the LSE-TTL of the time-exceeded reply, and keeps the
IP-TTL for the echo-reply packet. Indeed, in the case of
the time-exceeded message, the return Ingress LER (i.e.,
the forward Egress LER) initializes the LSE-TTL with the
same value as the IP-TTL, meaning 255. For echo-reply
packets, the IP-TTL is set to 64. RTLA is not subject to any
BGP asymmetry because we have L”ER

R = L”TE
R , i.e. BGP

return paths have the same length. Indeed, the two messages
use the same physical path, the only difference being the MIN
operation applied at the EH of the return tunnel, if any.

To check for those triggers, we first extract the three key
distances thanks to the reply IP-TTLs received by the vantage
point (lines 11 to 13 in Listing 3). As explained by Vanaubel
et al. [9], RTLA only works with JunOS routers, while FRPLA
is more generic. Therefore, prior to estimate the triggers, TNT
uses network fingerprinting (see Sec. II-A) to determine the
router brand of the potential Egress LER (line 15 in Listing 3).

In the presence of a JunOS hardware, LTE
R is compared

to LER
R , as in case of an Invisible tunnel, LTE

R is supposed
to be greater than LER

R . Indeed, with this routing platform,
time-exceeded and echo-reply packets have different
initial TTL values (see Table I), and the RTLA trigger can
exploit the TTL gap between those two kinds of messages
caused by the MIN(IP-TTL, LSE-TTL) behavior at the Egress
LER (the LER

R appears longer than LTE
R as the MIN operation

8

(a) Implicit tunnels. (b) Invisible tunnels.

Fig. 3: Indicators and triggers illustration for implicit and invisible tunnels. Notations L’x
y and L”x

y refer to a given sub-length
of an ICMP packet x on the y path (y being the forward or return path and x being a echo-reply or traceroute ICMP
packet, see Fig. 2). For example, L’TE

R gives the return path of the time-exceeded within the MPLS cloud, while L”TE
R is

the return path of the time-exceeded between the MPLS cloud and the vantage point. Consequently, we have LTE
R = L’TE

R

+ L”TE
R .

results in a different pick). This difference represents the
number of LSRs in the return LSP, and is compared to a pre-
defined threshold TRTLA(line 17 in Listing 3). This threshold
(see Sec. V for the parameter calibration) filters all the LSPs
shorter than the limit it defines. In the case depicted in Fig. 2:
RTLA(PE2) := LER

R - LTE
R =L’ER

R − L’TE
R = 6 − 3 = 3.

Indeed, for the echo-reply message, we have TTL_IP =
64 = min(TTL_IP = 64, TTL_MPLS = 252) instead of
TTL_IP = 252 = min(TTL_IP = 255, TTL_MPLS =
252) for the time-exceeded reply. Note that an invisible
shadow effect also applies for RTLA after the Invisible tunnel,
as the trigger will still be positive for a few nodes after the
egress LER.

FRPLA is more generic and applies thus to any configu-
ration. FRPLA allows to compare, at the AS granularity, the
length distribution of forward (i.e., LT) and return paths (i.e.,
LTE
R). Return paths are expected to be longer than forward

ones, as the tunnel hops are not counted in the forward paths
while they are taken into account in the return paths (due
to the MIN(IP-TTL, LSE-TTL) behavior at the return Egress
LER).Then, we can statistically analyze their length difference
and check if a shift appears (see Line 22 in Listing 3). This is
illustrated in Fig. 2 (“Invisible PHP”) in which LT is 3 while
LTE
R is equal to 6, leading so to an estimation of the return

tunnel length of 3. In general, when no IP hops is hidden, we
expect that the resulting distribution will look like a normal
distribution centered in 0 (i.e., forward and return paths have,
on average, a similar length). If we rather observe a significant
and generalized shift towards positive values, it means the
AS makes probably use of the no-ttl-propagate option.
In order to deal with path asymmetry, TNT uses a threshold,
TFRPLA(see Sec. V for calibrating this parameter), greater than
0 to avoid generating too much false positives (revelation
attempt with no tunnel). The MIN effect also results in an
invisible shadow after the hidden LSP: FRPLA(CE2) = 2 and
FRPLA(CE3) = 1, etc until the situation returns to normal.
Note that the RTLA and FRPLA shadows are the reasons why
TNT does not look for consecutive Invisible tunnels in a trace.

Finally, for Invisible UHP, one can observe that no MIN shift
applies on the return path, as only the duplicate effect is
visible.

Threshold calibration will be discussed in details in Sec. V.
The optimal calibration can provide a 80/20 % success/error
rates (errors being due to the BGP and ECMP noises). More-
over, the order in which TNT considers indicators and triggers,
their codes, reflects their reliability, and so, their respective
success rates (and their resulting states): the lower the code
(i.e. the higher its priority), the more reliable (and higher the
revelation success rate). Thus, if a hop matches simultaneously
multiple triggers (RTLA and FRPLA for example), it is tagged
with the one having the highest priority (i.e., RTLA in our
example).

C. Hidden Tunnels Revelation

Listing 4: Pseudo-code for revealing invisible tunnels
1 s t a t e r e v e a l _ t u n n e l (i n g r e s s , e g r e s s , t u n _ c o d e) :
2 # i n g r e s s and e g r e s s hops must e x i s t
3 i f (i n g r e s s == None or e g r e s s == None)
4 re turn None
5 b u d d y _ b i t = F a l s e
6 # s t a n d a r d traceroute t o w a r d s t h e c a n d i d a t e e g r e s s
7 t a r g e t = e g r e s s
8 r o u t e = t r a c e (REV_STARTING_TTL , t a r g e t)
9

10 i f (l a s t _ h o p (r o u t e) != e g r e s s)
11 # t h e t a r g e t does n o t r e s p o n d (r e v e l a t i o n i s n o t

p o s s i b l e)
12 re turn TARGET_NOT_REACHABLE
13 e l s e i f (i n g r e s s /∈ r o u t e)
14 # t h e f o r w a r d i n g p a t h d i f f e r s (r e v e l a t i o n i s n o t

p o s s i b l e)
15 re turn ING_NOT_FOUND
16 e l s e i f (d i s t a n c e (i n g r e s s , e g r e s s , r o u t e) > 1)
17 # p a t h segment r e v e l a t i o n wi th DPR
18 p u s h _ s e g m e n t _ t o _ r e v e l a t i o n _ s t a c k (i n g r e s s , e g r e s s , r o u t e

)
19 re turn DPR
20 e l s e
21 t t l = i n g r e s s . p r o b e _ t t l + 1
22 r e v e a l e d _ i p = e x t r a c t _ h o p (t t l , r o u t e)
23

24 f o r iTR = 0 ; ;
25 i f (r e v e a l e d _ i p == t a r g e t)
26 i f (t u n _ c o d e != DUP_IP | | b u d d y _ b i t)
27 #no more p r o g r e s s i o n i n t h e r e v e l a t i o n

9

28 break
29 e l s e
30 # t r y wi th t h e buddy f o r t h e DUP_IP t r i g g e r
31 t a r g e t = buddy (r e v e a l e d _ i p)
32 b u d d y _ b i t = True
33 e l s e
34 # a new hop has been r e v e a l e d
35 iTR++
36 p u s h _ h o p _ t o _ r e v e l a t i o n _ s t a c k (r e v e a l e d _ i p)
37 t a r g e t = r e v e a l e d _ i p
38 b u d d y _ b i t = F a l s e
39

40 r e v e a l e d _ i p = t r a c e H o p (t t l , t a r g e t)
41

42 i f (iTR == 0)
43 #no r e v e l a t i o n (f a i l)
44 re turn NOTHING_TO_REVEAL
45 i f (iTR == 1)
46 # s i n g l e hop r e v e a l e d LSP (DPR ≈ BRPR)
47 re turn 1HOP_LSP
48 e l s e
49 #hop by hop r e v e l a t i o n wi th BRPR
50 re turn BRPR

Listing 4 offers a simplified view of the TNT tunnel
revelation. The first step consists in launching a standard
traceroute towards the candidate Egress7 (line 8 in List-
ing 4). REV_STARTING_TTL is the starting TTL used for the
revelation, which corresponds to 2 hops before the candidate
Ingress hop, by default. During this first attempt, TNT may fail
to reach the candidate Egress (line 12), and/or the candidate
Ingress (line 15) when collecting the active data. Otherwise,
TNT may reveal a tunnel and four additional output states can
arise:

• an LSP composed of at least 2 LSRs is revealed in the
first trace towards the egress (line 19 – DPR, Direct Path
Revelation [9]);

• an LSP having more than one LSR is revealed using
several iterations (line 50 – BRPR, Backward Recursive
Path Revelation [9]).

• nothing is revealed, the candidate Ingress and Egress are
still consecutive IP addresses in the trace towards the
candidate Egress (line 44);

• a single-hop LSP is revealed (line 47) although several
iterations have been tried: DPR and BRPR cannot be
distinguished for one hop LSPs.

With the default configuration on Cisco IOS 15.2, an
additional test, called buddy (line 31), is required to retrieve the
outgoing IP interface of the Egress LER (the right interface,
in green, on PE2 in Fig. 2), and so, force replies from its
incoming IP interface (the left one, in red, on PE2 in Fig. 2).
The buddy() function assumes a point-to-point connection
between the Egress LER and the next hop (IP addresses on
this point-to-point link are called buddies). In most cases, the
corresponding IP addresses belong to a /31 or a /30 prefix [4].
Note that according to the IP address submitted to buddy(),
the test may require additional probing to infer the right
prefix. In particular, specific UDP probing is necessary in
order to provoke destination-unreachable messages.
Such error messages, as time-exceeded ones, enable to
get the incoming interface of the targeted router (instead of
echo-reply that are indexed with the target IP).

7We use the term candidate as, at this point, we are not completely sure
an MPLS tunnel is hidden there.

DPR (Direct Path Revelation) works when there is no
MPLS tunneling for internal IGP prefixes other than loopback
addresses, i.e., the traffic to internal IP prefixes is not MPLS
encapsulated (default Juniper configuration but can also be
easily configured on Cisco devices – see Sec. II-B) . With PHP,
BRPR (Backward Recursive Path Revelation) works because
the target (PE2.left on Fig. 2) belongs to a prefix being also
advertised by the PH. Thus, the probe is popped one hop
before the PH (P3 on Fig. 2), and it appears in the trace towards
the Egress incoming IP interface, e.g., PE2.left on Fig. 2.
BRPR is then applied recursively on the newly discovered
interface until no new IP address is revealed. BRPR works also
natively with UHP on IOS 12.4 (i.e., without the buddy()
function), for the same reason as for PHP: the prefix is local
and shifts the end of the tunnel one hop before and, in this
implementation, the EH replies directly. On the contrary, TNT
needs to use the buddy() function at each step for IOS 15.2
enabling UHP, because the EH silently forwards the packet
one hop ahead. Vanaubel et al. [9] provides more details on
DPR and BRPR.

IV. REPRODUCIBILITY AND PRACTICAL BGP
CONFIGURATIONS

We use the GNS3 emulation environment for several pur-
poses. First, we aim at verifying that the inference assumptions
we considered in the wild are correct and reproducible in a
controlled environment. Second, some of the phenomena we
exploit to reveal tunnels in the wild have been directly dis-
covered in our testbed. Indeed, using our testbed we reverse-
engineered the TTL processing (considering many MPLS
configurations, we study the POP operation in particular)
of some common OSes used by many real routers. Finally,
it is also useful for debugging TNT to test its features in
this controllable environment. Generally speaking, we aim at
reproducing with GNS3 all common behaviors observed in the
wild, and, on the opposite, we also expect to encounter in the
wild all basic behaviors (based on standard MPLS and BGP
configurations) we build and setup within GNS3.

In practice, we have considered four distinct router OSes:
two Cisco standard IOS (12.4 and 15.2), and two virtualized
versions of JunOS (Olive and VMX, the only Juniper OS
we succeeded to emulate within GNS3). We envision in a
near future to also test the IOS XR and some other Juniper
OSes, if possible, but we believe that our tests are already
representative enough of most behaviors existing in the wild.

In our emulations, topologies (see Fig. 2) are configured as
follows. We assumed that LERs are AS Provider-Edge (PE)
routers, i.e., AS border routers of the ISP running (e)BGP
sessions. Two main configurations are then possible to enable
transit tunneling at the edges. Either the BGP next-hop can
be the loopback IP address of the PE itself (with next hop
self command), or it belongs to the eBGP neighbor – and
in that case the connected subnet or the IP address should
be redistributed in the ISP. In both cases, there exists a LDP
mapping, at each Ingress LER and for any transit forwarding
equivalent class (FEC) between the BGP next-hop, the IGP
next-hop, and the local MPLS label to be pushed. According

10

to the configuration at the Egress LER, when the Ingress LER
is in pipe mode (see Sec. II-C.1), distinct kinds of tunnels
emerge: Opaque, UHP Invisible, or PHP Invisible.

We consider the simplest possible configurations, i.e., homo-
geneous in terms of OS and MPLS+BGP configurations. They
are consistent and symmetric MPLS configurations both in
terms of signaling (LDP with the independent model using all
IGP connected prefix – Cisco default mode – xor the ordered
model using only loopback addresses – Juniper default mode)8

and the propagation operation in use (pipe xor uniform)9 at
the domain scale. Using heterogeneous configurations, we
discovered many intriguing corner cases that are discussed
in Appendix IX. Some of them may result in incorrect TTL
processing and other in hiding even more the tunnel to TNT.
In some rare cases, only the Brute Force option of TNT is able
to fire the path revelation that exposes tunnels.

The BGP configuration is also standard: the Egress LER
enables the next-hop-self feature and so the transit traffic is
tunneled via this IP address. All LSR also have a global IGP
routing table thanks to a route reflector (they can answer
natively to ping requests) or a redistribution in the IGP routing
control plane. The AS scale BGP prefix is advertised using a
global aggregation and the BGP inter-domain link is addressed
by the neighbor but can be redistributed in the IGP as a
connected one.

Opaque tunnels show up when enabling the neighbor
<IP> ebgp-multihop <#hops> command towards
the BGP neighbor whose IP address is redistributed
statically in the IGP. DPR works also with Cisco IOS when
enabling the mpls ldp label allocate global
host-routes command. Eventually, the command mpls
ldp explicit-null [for prefix-acl] allows for
revealing UHP tunnels without the use of the buddy. Next
paragraphs provide more practical details about the usage of
such commands.

One of the most surprising behavior we observe in the
wild is the one resulting from opaque tunnels. It is intriguing
especially at the BGP scale because it means a badly controlled
tunnel ending. It is the only kind of tunnel that requires a
change in our BGP configuration to show up. Indeed, we
disable the next hop self feature and select the loopback
address of the neighbor as the BGP next hop using the
neighbor <IP> ebgp-multihop <#hops> command
to enable this possibility (IP being the address of the neighbor
loopback and #hops the maximum distance expressed as a TTL
value of the EBGP session). Then, we simply redistribute this
IP via a static route within the IGP.

While we expect to only associate DPR to Juniper and
BRPRP to Cisco configurations (as default configurations),
we notice that DPR succeeds quite well in Cisco networks.
It is indeed rather easy to enable such a behavior using the
mpls ldp label allocate global host-routes
command. It does not require complex ingoing/outgoing fil-
tering ACL to be installed anywhere.

We also observe many different ground behaviors with UHP

8See Sec. II-B
9See Sec. II-C.1

(only tested for LDP and so Cisco). First, when there is
no duplicate IP, we sometimes collect directly null label. It
appears only with the Cisco IOS 12.4. Second, we notice
that the host address feature enables DPR to work without
the use of the buddy. This case seems the most frequent in
the wild. Even more than the default Cisco configuration that
requires BRPR with the buddy. Eventually, we also discover a
more sophisticated pattern in the wild: BRPR working without
the use of the buddy. One can reproduce this behavior by
filtering which prefixes are UHP proposed with a very simple
ACL. The command mpls ldp explicit-null [for
prefix-acl] should be associated with an ACL forcing
the UHP proposal only for the loopback address of the Egress
LER.

Using heterogeneous configurations, we discover many in-
triguing corner cases that are discussed in Appendix ??. Some
of them may result in incorrect TTL processing and others
in hiding even more the tunnel to TNT. In some rare cases,
only the Brute Force option of TNT is able to fires the path
revelation that expose tunnels.

Appendix IX provides all the details of our emulations for
both Cisco and Juniper configurations. All configurations were
run on the topology provided by Fig. 2. The TNT running
version is the one implemented in Python, available with GNS-
3 scripts.3

V. TNT CALIBRATION AND PROBING COST

Sec. III shows that TNT relies mainly on four parameters
when looking for tunnels indicators or triggers: TLSE_TTLfor
Opaque tunnels, TUTURNfor iIplicit tunnels, and TRTLAand
TFRPLAfor Invisible tunnels. This section aims at calibrating
those parameters (Sec. V-B), as well as evaluating the probing
cost associated to TNT (Sec. V-C).

A. Measurement Setup

We deployed TNT on three vantage points (VPs) in the
Archipelago infrastructure [14]. VPs were located in Europe
(Belgium), North America (San Diego), and Asia (Tokyo).
TNT was run on April 6th, 2018 towards a set of 10,000

destinations (randomly chosen among the whole set of
Archipelago destinations list). Each VP had its own list of
destinations, without any overlapping.

From indicators and triggers described in Sec. III-B (see
Listing 2 and 3), it is obvious that UTURN is equivalent to
RTLA. Consequently, the TUTURNwill have the same value than
TRTLA.

For our tests, we varied TRTLAand TFRPLAbetween 0 and 4.
A full measurement campaign was launched for each pair
of parameter value (thus, a total of 25 measurement runs).
Moreover for each pair, if no trigger is pulled, a so called
brute force revelation is undertaken: DPR/BRPR are launched
(with the use of the buddy if required). This brute force data
is used as a basis to evaluate the quality and cost of each
threshold value.

11

23
6

23
8

24
0

24
2

24
4

24
6

24
8

25
0

25
2

25
4

LSE-TTL

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 4: Distribution of abnormal LSE-TTL values received at
vantage points

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

(TF0,TR0)

(TF1,TR0)

(TF2,TR0)

(TF3,TR0)

(TF4,TR0)

(TF0,TR1)

(TF1,TR1)

(TF2,TR1)

(TF3,TR1)

(TF4,TR1)

(TF0,TR2)

(TF1,TR2)

(TF2,TR2)

(TF3,TR2)

(TF4,TR2)

(TF0,TR3)

(TF1,TR3)

(TF2,TR3)

(TF3,TR3)

(TF4,TR3)

(TF0,TR4)

(TF1,TR4)

(TF2,TR4)

(TF3,TR4)

(TF4,TR4)

Fig. 5: Receiver operating characteristic (ROC) curve provid-
ing the efficiency of TNT according to values for Invisible
tunnels parameters. TRx

refers to TRTLAwith the value x, while
TFy

to TFRPLAwith the value y.

B. Calibration

Fig. 4 provides the distribution of abnormal LSE-TTL
values. By abnormal, we mean here “different from 1”, which
is the LSE-TTL value that should be observed in ICMP
time-exceeded messages. Fig. 4 shows that LSE-TTL
values oscillate between 236 and 254, the main proportion
being located between 250 and 254. It suggests thus that, in
the majority of the cases, Opaque tunnels are rather short.
Consequently, a value of 236 for TLSE_TTLwould be enough
for detecting the presence of an Opaque tunnel and launching
additional measurements for revealing its content.

With the help of well calibrated thresholds, the results
associated to FRPLA and RTLA triggers allows for a binary
classification. These triggers provide a prediction, while the
results of additional probing gives the true facts when some
conditions apply (see resulting states of Listing 4), i.e. being or
not a tunnel. With that in mind, one can assess the performance
of FRPLA and RTLA triggers through the analysis of True
Positive Rate (TPR) and False Positive Rate (FPR): we plot
the results on a Receiver Operating Characteristic (ROC) curve
in Fig. 5. We define TPR as the ratio of TNT success to
the number of links being actually MPLS tunnels (having a
length greater than 1): TNT triggers additional probing and
actually reveals Invisible tunnels (we have TPR+FNR = 1,

0 2 0 2 0 2 0 2 0 2TRtla

0

25

50

75

100

R
aw

nb
.

of
p

ro
b

es
(×

10
4) TFrpla=0 TFrpla=1 TFrpla=2 TFrpla=3 TFrpla=4

Original

Revelation

No Revelation

Inconclusive

B. Force Revelation

B. Force No Revelation

B. Force Inconclusive

Fig. 6: Probing cost associated to TNT according to TFRPLAand
TRTLAthresholds.

i.e., when adding to False Negative Rate, we obtain all links
being long enough tunnels). FPR is defined as the ratio of
TNT failure to the amount of standard IP links: it triggers for
additional probing but without revealing anything (we have
FPR + TNR = 1, i.e., when adding to True Negative Rate,
we obtain all IP links without tunnels). Here, our brute force
data gives the ground data that we consider reliable (i.e.,
revelation is fired at each hop and if nothing is revealed,
we consider that there is no tunnel – we do not consider
inconclusive cases where we obtain states ING_NOT_FOUND
or TARGET_NOT_REACHED– see Listing 4). The ROC curve
is obtained by varying the TRTLAand TFRPLAparameters between
0 and 4. The red dotted diagonal provides the separation
between positive results for TNT (above part of the graph)
and negative results (below part of the graph). Finally, the
black dotted line is the interpolation of measurement results
(at the exception of TR0

values which appear as being outliers,
as expected).

We observe that the results are essentially positive for TNT.
Some results, between (TR1

, TF3
) and (TR2

, TF3
), are even

reasonably close to the perfect classification (upper left corner)
and, thus, are considered as the best choice for defining our
thresholds TRTLAand TFRPLA. We expect to obtain a compromise
close to 80%-20%: while we expect to reveal at least 80% of
existing tunnels (MPLS links), TNT has a controlled overhead
of 20%, i.e., it fires useless additional probing for an average
limited to two actual IP links on ten.

C. Probing Cost

Fig. 6 illustrates the probing cost associated to TNT. In
particular, it focuses on additional measurements triggered by
RTLA or FRPLA for revealing Invisible tunnels. The light grey
zone (labeled as “Original” on Fig. 6) corresponds to probes
associated to standard traceroute. The green, orange, and
dark grey zones correspond to probes sent when additional
measurements are triggered by RTLA or FRPLA. In particular,
the green zone corresponds to additional measurements that
were able to reveal the content of an Invisible tunnel. On the
contrary, the orange zone refers to additional measurements
that failed, i.e., no invisible tunnel content was revealed.

12

Finally, the dark grey zone refers to inconclusive revelation:
the trigger has led to additional measurements but TNT was
unable to reach the potential Egress LER (i.e., the IP address
that engaged the trigger – cur_hop in Listing 1 – generally
due to unresponsive IP interface) or TNT was unable to reach
again the candidate Ingress LER (i.e., prev_hop in Listing 1)
because the destination has changed (ECMP or BGP routing
noises).

If the amount of probes sent for actually revealing the
content of an Invisible tunnel remains almost stable whatever
the values for TFRPLAand TRTLAare, one can observe a very
slow decrease meaning that there are less revealed tunnels
for high values. Further, the additional traffic generated by
erroneous trigger (orange) or by inconclusive revelation (dark
grey) clearly decreases while TFRPLAincreases. This result is
aligned with Sec. V-B in which the best values for TFRPLAare
between 2 and 3. Note that FRPLA is more generic but less
reliable than other triggers. On the contrary, the TRTLAthreshold
has a minor effect on the amount of probes sent because it is
more specific and more reliable.

Hatched zones (orange, dark grey, and green) correspond
to the amount of probes sent using brute force. First, on
the contrary to normal behavior (i.e., revelation launched
according to triggers), the amount of probes sent increases
with TFRPLA(the impact of TRTLAis quite negligible), as well as
the amount of inconclusive revelation. Second, the amount of
probes having revealed an Invisible tunnel is low compared to
standard behavior.

Generally speaking, one can observe that the overhead of
TNT is quite limited compared to a basic active campaign and
considering the information gathered. In particular, if using
correct parameters to limit both useless probes and missed
tunnels (e.g., TR1 , TF3), our tool generates less than 10% of
additional probing compared to the underlying campaign for
reaching a satisfying compromise where 80% of tunnels are
revealed.

VI. TNT TUNNELS QUANTIFICATION

This section aims at discussing how TNT and its features
behave in the wild Internet. In particular, it analyzes the suc-
cess rate of each indicator and trigger with respect to possible
revelation techniques. Sec. VI-A describes the measurement
setup, while Sec. VI-B discusses the results obtained.

A. Measurement Setup

We deployed TNT on the Archipelago infrastructure [14] on
April 23rd, 2018 with parameters TFRPLAfixed to 3 and TRTLAto
1, according to results discussed in Sec. V-B.
TNT has been deployed over 28 vantage points, scattered

all around the world: Europe (9), North America (11), South
America (1), Asia (4), and Australia (3). The overall set of
destinations, nearly 2,800,000 IP addresses, is inherited from
the Archipelago dataset and spreads over the set of 28 vantage
points to speed up the probing process.
TNT is based on Paris traceroute [12] and sends ICMP

probes. A total of 522,049 distinct IP addresses (excluding
traceroute targets) has been collected, with 28,350 being

non publicly routable addresses (and thus excluded from our
dataset). Each collected routable IP address has been pinged,
only once per vantage point, allowing us to collect additional
data for fingerprinting (see Sec. II-A). Our dataset and our
post-processing scripts are freely available.3

B. Results

Table II provides the amount of probes sent by
traceroute-like probing in TNT, ping, and buddy bit ex-
ploration. The row “original” refers to standard traceroute
based revelation (i.e., nothing to reveal, Explicit, or Implicit
tunnels).

The main results from Table II is the amount of
probes involved in inconclusive revelation, split between
TARGET_NOT_REACHED (TNT was unable to reach the
potential Egress LER) and ING_NOT_FOUND (TNT did
not cross the potential Ingress LER). In particular, TAR-
GET_NOT_REACHED involved twice more probes than re-
vealed tunnels. Those particular inconclusive revelations
might be explained by ICMP rate limiting between the
traceroute probe and additional probing (both ping
and BRPR/DPR). Another explanation is that those potential
Egress LERs respond to initial traceroute with an IP
address that is not globally announced. As such, additional
probing following the traceroute will fail as no route is
available to reach them.

Table III provides the number of MPLS tunnels discovered
by TNT, per tunnel type as indicated in the first column. The
indicators/triggers are provided, as well as the additional rev-
elation technique used. Without any surprise, Explicit tunnels
are the most present category (76% of tunnels discovered).

Implicit tunnels represent 5% of the whole dataset, with the
UTURN indicator providing more results than qTTL. However,
those results must be taken with care as UTURN has been
proven to be subject to false positive, while qTTL is much
more reliable [25].

Opaque tunnels are less prevalent (1.7% of tunnels dis-
covered). This is somewhat expected as Opaque tunnels are
the results of particular label distribution within Cisco MPLS
clouds. This confirms previous empirical results [8, Sec. 7.2].
It is also worth noticing that additional revelation techniques
(DPR or BRPR) does not perform well with such tunnels
(content of 98% of Opaque tunnels cannot be revealed).

The proportion of Invisible tunnels is not negligible (16%
of tunnels in our dataset). Those measurements clearly con-
tradicts our previous work suggesting that Invisible tunnels
were probably 40 to 50 times less numerous than Explicit
ones [8, Sec. 8]. More precisely, Invisible PHP is the most
prominent configuration (87% of Invisible tunnels belongs to
the Invisible PHP category), confirming so our past survey [9].
RTLA appears as being the most efficient trigger. This is
partially due to the order of triggers in the TNT code because
it favors high ranked trigger compared to low ranked (in case
both apply). As indicated in Listing 3 (Sec. III-B), we first
check for RTLA as it is proven to be more reliable than
FRPLA. DPR works better than BRPR, which is obvious as it
is triggered by RTLA (Juniper routers). For Invisible UHP, it

13

Status # probes
traceroute ping buddy

original 63,559,385 7,109,075 −

at
te

m
pt revealed 2,190,275 206,842 19,181

no revelation 1,640,224 − 556
TARGET_NOT_REACHED 4,174,404 − 9,888
ING_NOT_FOUND 1,790,900 − 7,326

TABLE II: Raw number of probes sent by TNT over
the set of 28 vantage points.

Tunnel Type Indicator/Trigger Revelation Technique # TunnelsDPR BRPR 1HOP_LSP Mix
Explicit LSE headers - - - - 150,036

Implicit qTTL - - - - 2,689
UTURN - - - - 7,216

Opaque LSE-TTL 22 17 43 - 3,346

Invisible PHP RTLA 11,268 1,191 2,595 279 15,333
FRPLA 5,903 2,555 3,260 1,012 12,730

Invisible UHP DUP_IP 1,609 1,531 686 296 4,122
Total 18,802 5,294 6,584 1,587 195,525

TABLE III: Raw number of tunnels discovered by TNT per
tunnel type (see Sec. II-D). Color code for indicators/triggers
is identical to Fig. 2. No additional revelation technique is
necessary for Explicit and Implicit tunnels.

is worth noticing that the buddy bit, prior to BRPR or DPR
revelation, was required in nearly 25% of the cases. In other
cases, a simple BRPR or DPR revelation was enough to get the
tunnel content. UHP seems to be often filtered for a particular
FEC, e.g., only /32 host loopback addresses are advertised
in LDP with UHP while other FEC are advertised with PHP
(BRPR) or are not injected at all (DPR).

The column labeled “mix” corresponds to tunnels partially
revealed thanks to BRPR and partially with DPR. Typically,
it comes from heterogeneous MPLS clouds. For instance, op-
erators may deploy both Juniper and Cisco hardware without
any homogeneous prefixes distribution (i.e., local prefix for
Juniper, all prefixes for Cisco – See Sec. II-B for details).
Note that it is also possible that the UHP and PHP label pop-
ping techniques co-exist when using our backward recurisve
path revelation (BRPR). Although not explained in Sec. III
for clarity reasons, TNT can deal with those more complex
situations, making the tool quite robust to pitfalls encountered
in the wild Internet (5% of the Invisible tunnels encountered).

Finally, the column labeled “1HOP_LSP” corresponds to
one hop tunnels where DPR and BRPR cannot be distin-
guished. This large proportion (20%) of very short Invisible
tunnels is aligned with previous works that already noticed the
proportion of short Explicit tunnels [8], [11], [26].

Compared to the results presented in our previous papers
([8] in particular), we greatly improve our knowledge about
MPLS and so are now able to correct our tunnel inference
on many aspects. Generally speaking we had overestimated
the implicit class while, in the same time, underestimating
the use of the no-ttl-propagate option using incorrect
assumptions and so extrapolation. Opaque tunnels are not due
to a MPLS/IP poor interaction and concerns Cisco routers
that enable the independent control mode as default (using, in
addition, a specific eBGP configuration). In [8], we extrapolate
the quantity of invisible tunnels considering opaque tunnels
as the category gathering all LSP enabling both no TTL
propagation and RFC4950. This is far from being correct as
this set is actually way smaller: it consists in the intersection
of no-ttl-propagate, RFC4950, the independent control
model and a specific eBGP configuration where the eBGP next
hop on which is based the transit traffic does not propose a
normal terminating label (i.e. a null one, explicit or implicit).
Our extrapolation thus clearly underestimated invisible tun-

nels because the actual opaque class is not consistent with
our former classification. While invisible tunnels are much
more frequent than expected because of that first mistake,
it is also because implicit tunnels are less numerous than
announced (and some of them turn to be badly interpreted
trigger of invisible tunnels). Indeed, we realize that some
inferred implicit tunnels in our previous analysis may be in
reality invisible tunnels that we did not try to reveal at the
time. It is because the min effect can produce the same
pattern as UTURN on ICMP replies: it also provokes an
asymmetry between ping and time exceeded replies as long
as the downstream invisible tunnel size, we call that effect the
upstream shadow of invisible tunnels. The confusion between
implicit and invisible only arises for Juniper Egress but this
upstream shadow also exists with Cisco routers.

VII. RELATED WORK

For years now, traceroute has been used as the main
tool for discovering the Internet topology [1]. Multiple exten-
sions have been provided to circumvent traceroute limits.

Doubletree [24], [27] has been proposed for improving the
cooperation between scattered traceroute vantage points,
reducing so the probing redundancy. Paris traceroute [12] has
been developed for fixing issues related to IP load balancing,
avoiding so false links between IP interfaces. tracebox [5]
extends traceroute for revealing the presence of mid-
dleboxes along a path. YARRP [28] provides techniques
for speeding up the traceroute probing process. Reverse
traceroute [29] is able to provide the reverse path (i.e.,
from the target back to the vantage point). Passenger [30]
and Discarte [31] extend traceroute with the IP record
route option. Marchetta et al. [32] have proposed to use
the ICMP Parameter Problem in addition to Record Route
option in traceroute. Finally, tracenet [33] mimics
traceroute for discovering subnetworks.
TNT is also in the scope of the hidden router issue, i.e.,

any device that does not decrement the TTL causing the
device to be transparent to traceroute probing. Discarte
and Passenger, through the use of IP Record Route Option,
allows, to some extent, to reveal hidden routers along a path.
DRAGO [34] considers the ICMP Timestamp for also detecting
hidden routers. TNT goes beyond those solutions as it does
not rely on ICMP messages and IP option that are, generally,

14

filtered by operators either locally (i.e., the option/message
is turned off on the router) or for transit packets (i.e., edge
routers do not forward those particular packets).10 TNT only
relies on standard messages (echo-request/echo-reply
and time-exceeded) that are implemented and used by the
vast majority of routers and, as such, has the potential to reveal
much more information.

VIII. CONCLUSION

In this report, we introduce TNT (Trace the Naughty
Tunnels is Not Traceroute) that is an extension to Paris
traceroute for revealing all MPLS tunnels along a path. As
such, TNT has the potential to reveal more complete informa-
tion on the exact Internet topology. We provide accurate IP
level tracing functions leading so to better Internet models.
For instance, it has been shown that Invisible tunnels have
an impact on Internet basic graph properties [9]). Our tool
reveals most kind of tunnels in two simple stages: first, it uses
indicators and triggers to respectively classify and possibly tag
tunnels as hidden, second it reveals the tagged tunnel content
if any. TNT has the capacity to unveil the MPLS ecosystem
deployed by operators. Recent works on MPLS discovery have
revealed that MPLS is largely deployed by most ISP [8],
[26], [11]. By running TNT on a daily (or nearly daily) basis
from the Archipelago platform, we expect to see numerous
researches using our tool and data to mitigate the impact of
MPLS on the Internet topology. TNT has been developed with
a reproducibility perspective. As such, it is freely available, as
well as our dataset and scripts used for processing data.3

ACKNOWLEDGMENTS

Authors would like to thank kc claffy and her team at
CAIDA for letting them deploying TNT on the Archipelago
infrastructure. In addition, part of Mr. Vanaubel’s work was
supported by an internship at CAIDA, under the direction of
Young Hyun.

REFERENCES

[1] B. Donnet and T. Friedman, “Internet topology discovery: a survey,”
IEEE Communications Surveys and Tutorials, vol. 9, no. 4, pp. 2–15,
December 2007.

[2] H. Haddadi, G. Iannaccone, A. Moore, R. Mortier, and M. Rio, “Network
topologies: Inference, modeling and generation,” IEEE Communications
Surveys and Tutorials, vol. 10, no. 2, pp. 48–69, April 2008.

[3] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the
Internet: A Statistical Physics Approach. Cambridge University Press,
2004.

[4] P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot, “On the
impact of layer-2 on node degree distribution,” in Proc. ACM Internet
Measurement Conference (IMC), November 2010.

[5] G. Detal, b. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[6] K. Edeline and B. Donnet, “A first look at the prevalence and persistence
of middleboxes in the wild,” in Proc. International Teletraffic Congress
(ITC), September 2017.

[7] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” Internet Engineering Task Force, RFC 3031, January 2001.

10It has been, however, demonstrated recently that IP Record Route option
might still find a suitable usage in Internet measurements if used with
prudence [35].

[8] B. Donnet, M. Luckie, P. Mérindol, and J.-J. Pansiot, “Revealing
MPLS tunnels obscured from traceroute,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 2, pp. 87–93, April 2012.

[9] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “Through the
wormhole: Tracking invisible MPLS tunnels,” in In Proc. ACM Internet
Measurement Conference (IMC), November 2017.

[10] ——, “A brief history of MPLS usage in IPv6,” in Proc. Passive and
Activement Measurement Conference (PAM), March/April 2016.

[11] J. Sommers, B. Eriksson, and P. Barford, “On the prevalence and
characteristics of MPLS deployments in the open Internet,” in Proc.
ACM Internet Measurement Conference (IMC), November 2011.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies
with Paris traceroute,” in Proc. ACM Internet Measurement Conference
(IMC), October 2006.

[13] M. Luckie, “Scamper: a scalable and extensible packet prober for active
measurement of the Internet,” in Proc. ACM Internet Measurement
Conference (IMC), November 2010.

[14] H. Y. claffy, kc, K. Keys, M. Fomenkov, and D. Krioukov, “Internet
mapping: from art to science,” in Proc. IEEE Cybersecurity Application
and Technologies Conference for Homeland Security (CATCH), March
2009.

[15] Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet, “Network
fingerprinting: TTL-based router signature,” in Proc. ACM Internet
Measurement Conference (IMC), October 2013.

[16] L. Andersson and R. Asati, “Multiprotocol label switching (MPLS)
label stack entry: EXP field renamed to traffic class field,” Internet
Engineering Task Force, RFC 5462, February 2009.

[17] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li,
and A. Conta, “MPLS label stack encoding,” Internet Engineering Task
Force, RFC 3032, January 2001.

[18] P. Agarwal and B. Akyol, “Time-to-live (TTL) processing in multiproto-
col label switching (MPLS) networks,” Internet Engineering Task Force,
RFC 3443, January 2003.

[19] L. Andersson, I. Minei, and T. Thomas, “LDP specification,” Internet
Engineering Task Force, RFC 5036, October 2007.

[20] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Engineering
Task Force, RFC 3209, December 2001.

[21] D. Aydin, “CISCO vs. Juniper MPLS,” June 2014, see http://
monsterdark.com/cisco-vs-juniper-mpls/.

[22] L. De Ghein, MPLS Fundamental: A Comprehensive Introduction to
MPLS (Theory and Practice). CISCO Press, November 2006.

[23] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “ICMP extensions for
multiprotocol label switching,” Internet Engineering Task Force, RFC
4950, August 2007.

[24] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMETRICS,
June 2005.

[25] G. Davila Revela, M. A. Ricci, B. Donnet, and J. I. Alvarez-Hamelin,
“Unveiling the MPLS structure on Internet topology,” in Proc. Traffic
Monitoring and Analysis Workshop (TMA), April 2016.

[26] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “MPLS under
the microscope: Revealing actual transit path diversity,” in Proc. ACM
Internet Measurement Conference (IMC), October 2015.

[27] R. Beverly, A. Berger, and G. Xie, “Primitives for active Internet
topology mapping: Toward high-frequency characterization,” in Proc.
ACM Internet Measurement Conference (IMC), November 2010.

[28] R. Beverly, “Yarrp’ing the Internet: Randomized high-speed active
topology discovery,” in Proc. ACM Internet Measurement Conference
(IMC), November 2016.

[29] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), June 2010, see https://www.revtr.ccs.neu.edu.

[30] R. Sherwood and N. Spring, “Touring the internet in a TCP sidecar,” in
Proc. ACM Internet Measurement Conference (IMC), October 2006.

[31] R. Sherwood, A. Bender, and N. Spring, “Discarte: a disjunctive Internet
cartographer,” in Proc. ACM SIGCOMM, August 2008.

[32] P. Marchetta, W. de Donato, V. Persico, and A. Pescapé, “Experimenting
with alternative path tracing solutions,” in Proc. IEEE Symposium on
Computers and Communications (ISCC, July 2015.

[33] M. E. Tozal and K. Sarac, “TraceNET: an Internet topology data
collector,” in Proc. ACM Internet Measurement Conference (IMC),
November 2010.

[34] P. Marchetta and A. Pescapé, “DRAGO: Detecting, quantifying and
locating hidden routers in traceroute IP paths,” in Proc. Global Internet
Symposium (GI), April 2013.

15

[35] B. J. Goodchild, Y.-C. Chiu, R. Hansen, H. Lua, M. Calder, M. Luckie,
W. Lloyd, D. Choffnes, and E. Katz-Bassett, “The record route option is

an option!” in In Proc. ACM Internet Measurement Conference (IMC),
November 2017.

16

IX. APPENDIX

This appendix illustrates the validation of TNT through GNS-3 emulations. Multiple configurations have been tested (and even more are
proposed on the website3 and can be setup using the scripts and the data online). Note that we use the version 2.1.5 of GNS3 to export the
so-called portable configurations. TNT is able to deal with all those configurations (both in the wild and with the ones emulated in GNS3),
making it a pretty robust tool. However, in this report we use another version of our tool to simplify the output. The output of TNT slightly
differ but the conclusions are the same.

(a) Cisco topology. PE1 is the Ingress LER, PE2 the Egress LER, the LSP is set up between PE1 and the EH (P3 or PE2).
The TNT target (i.e., the argument of trace_naughty_tunnel() function – See Listing 1) is the loopback address of
CE3.

(b) Juniper topology. PE1 is the Ingress LER, PE2 the Egress LER, the LSP is set up between PE1 and the EH (P3 or PE2).
The TNT target (i.e., the argument of trace_naughty_tunnel() function – See Listing 1) is the loopback address of
CE3.

Fig. 7: Topology used for GNS-3 tests

17

A. Explicit Tunnels Validation
We first review Explicit tunnels, i.e., tunnels with RFC4950 and ttl-propagate enabled (see Sec. II-D).
In the following, we distinguish Cisco (Appendix IX-A.1) and Juniper IP topologies (Appendix IX-A.2) and configurations. In particular,

with Cisco configurations, PHP (LSE popped by P3) is distinguished from UHP (LSE popped by Egress LER).
For each case, we provide the configuration of routers as well as the simplified TNT output. Indicators and triggers (see Sec. III-B) are

provided, as well as raw ICMP time-exceeded and ICMP echo-reply TTLs.
1) Cisco Explicit Configurations: All configurations presented here were run on the IP topology provided by Fig. 7a.
The first example provides an Explicit tunnel deployed with PHP, under Cisco IOS 15.2. The TNT behavior is the one expected.

IOS 15.2 – Explicit PHP

1 PE1
2 version 15.2
3 mpls label protocol ldp
4 router bgp 3333
5 redistribute connected
6 redistribute ospf 10
7 neighbor 10.12.0.1 remote-as 3333
8 neighbor 10.12.0.1 next-hop-self
9 neighbor 192.168.8.1 remote-as 1024

10 neighbor 192.168.8.1 next-hop-self
11

12 PE2
13 version 15.2
14 mpls label protocol ldp
15 router bgp 3333
16 redistribute connected
17 redistribute ospf 10
18 neighbor 10.12.0.1 remote-as 3333
19 neighbor 10.12.0.1 next-hop-self
20 neighbor 192.168.2.2 remote-as 2048
21 neighbor 192.168.2.2 next-hop-self

22

23

24 P1
25 version 15.2
26 mpls label protocol ldp
27 router bgp 3333
28 neighbor 10.12.0.1 remote-as 3333
29

30

31 P2
32 version 15.2
33 mpls label protocol ldp
34 router bgp 3333
35 neighbor 10.12.0.1 remote-as 3333
36

37

38 P3
39 version 15.2
40 mpls label protocol ldp
41 router bgp 3333
42 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Explicit PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 27.083 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 19.895 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 80.598 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 69.875 ms
7 5 left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 20 | LSE-TTL : 1] 68.98 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 78.17 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 78.957 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 110.598 ms

The next two configurations illustrate UHP with both IOS 12.4 and IOS 15.2. TNT works as expected and shows two examples of MPLS
TTL processing specifically with UHP. With the 12.4 IOS, we see the null label while it is hidden with the 15.2 IOS. In addition, we can
see that UHP tunnels show a UTURN signature different from PHP tunnels. This difference results from the way time-exceeded messages
are handled by the LSRs. In both cases, the time-exceeded message is forwarded to the EH which replies using its own IP forwarding table.
The EH changes depending on the configuration: P3 for PHP (here the EH is the PH), and PE2 for UHP (here the EH is the Egress LER).
Indeed, we can see that the UTURN difference disappears at the respective EH.

IOS 12.4 – Explicit UHP

1

2 PE1
3 version 12.4
4 mpls label protocol ldp
5 mpls ldp explicit-null
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 12.4
16 mpls label protocol ldp
17 mpls ldp explicit-null
18 router bgp 3333
19 redistribute connected
20 redistribute ospf 10
21 neighbor 10.12.0.1 remote-as 3333
22 neighbor 10.12.0.1 next-hop-self
23 neighbor 192.168.2.2 remote-as 2048
24 neighbor 192.168.2.2 next-hop-self

25

26

27 P1
28 version 12.4
29 mpls label protocol ldp
30 mpls ldp explicit-null
31 router bgp 3333
32 neighbor 10.12.0.1 remote-as 3333
33

34

35 P2
36 version 12.4
37 mpls label protocol ldp
38 mpls ldp explicit-null
39 router bgp 3333
40 neighbor 10.12.0.1 remote-as 3333
41

42

43 P3
44 version 12.4
45 mpls label protocol ldp
46 mpls ldp explicit-null
47 router bgp 3333
48 neighbor 10.12.0.1 remote-as 3333

18

TNT running over IOS 12.4 – Explicit UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 22.651 ms
4 2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 230.326 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 22 | LSE-TTL : 1] 263.686 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 22 | LSE-TTL : 1] 358.238 ms
7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][qttl = 3][uturn = 2][MPLS LSE | Label : 16 | LSE-TTL : 1] 374.214 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 0 | LSE-TTL : 1] 418.696 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 655.848 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 513.054 ms

IOS 15.2 – Explicit UHP

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 mpls ldp explicit-null
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 15.2
16 mpls label protocol ldp
17 mpls ldp explicit-null
18 router bgp 3333
19 redistribute connected
20 redistribute ospf 10
21 neighbor 10.12.0.1 remote-as 3333
22 neighbor 10.12.0.1 next-hop-self
23 neighbor 192.168.2.2 remote-as 2048
24 neighbor 192.168.2.2 next-hop-self

25

26

27 P1
28 version 15.2
29 mpls label protocol ldp
30 mpls ldp explicit-null
31 router bgp 3333
32 neighbor 10.12.0.1 remote-as 3333
33

34

35 P2
36 version 15.2
37 mpls label protocol ldp
38 mpls ldp explicit-null
39 router bgp 3333
40 neighbor 10.12.0.1 remote-as 3333
41

42

43 P3
44 version 15.2
45 mpls label protocol ldp
46 mpls ldp explicit-null
47 router bgp 3333
48 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Explicit UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.64 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 39.87 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 100.632 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 80.453 ms
7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][qttl = 3][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL : 1] 100.815 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 109.089 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 98.817 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 119.842 ms

2) Juniper Explicit Configurations: All configurations presented here were run on the topology provided by Fig. 7b.
For Explicit tunnels, Juniper Olive and VMX behave the same. We first provide the configuration and TNT output for Explicit tunnels

without UTURN effect.
VMX – Explicit PHP (default configuration)

1 PE1
2 propagate ttl
3

4 PE2
5 propagate ttl
6

7

8

9 P1
10 propagate ttl
11

12 P2
13 propagate ttl
14

15 P3
16 propagate ttl

TNT running over VMX - Explicit PHP (default configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 2.682 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 4.603 ms
5 3 left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 6.362 ms
6 4 left.P2 (192.168.1.6) <252,61> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 8.451 ms
7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 8.557 ms
8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][qttl = 1][uturn = 0] 8.285 ms
9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][qttl = 1][uturn = 0] 8.09 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][qttl = 1][uturn = 0] 8.142 ms

On the contrary to Cisco configuration, Juniper does not exhibit the UTURN effect. When the LSE-TTL of a packet expires, the LSR
does not send the ICMP time-exceeded to the EH which then forwards the packets on its own to the probing source, it replies the same

19

with respect to other probes (e.g., echo-request) using its own IP forwarding table if available – resulting in general in a shorter return
path (see Sec. III-B). The configuration must be explicitly stated with the icmp-tunneling as provided below.

VMX – Explicit PHP (icmp-tunneling configuration)

1

2 PE1
3 propagate ttl
4 icmp-tunneling
5

6 PE2
7 propagate ttl
8 icmp-tunneling
9

10

11

12 P1
13 propagate ttl
14 icmp-tunneling
15

16 P2
17 propagate ttl
18 icmp-tunneling
19

20 P3
21 propagate ttl
22 icmp-tunneling

TNT running over VMX – Explicit PHP (icmp-tunneling configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 2.034 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 4.646 ms
5 3 left.P1 (192.168.1.2) <246,62> [frpla = 7][qttl = 1][uturn = 7][MPLS LSE | Label : 299824 | LSE-TTL : 1] 11.424 ms
6 4 left.P2 (192.168.1.6) <247,61> [frpla = 5][qttl = 1][uturn = 5][MPLS LSE | Label : 299824 | LSE-TTL : 1] 7.994 ms
7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 6.252 ms
8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][qttl = 1][uturn = 0] 8.585 ms
9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][qttl = 1][uturn = 0] 9.369 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][qttl = 1][uturn = 0] 9.232 ms

B. Opaque Tunnels Validation (Cisco only)
Opaque tunnels only occur with Cisco routers, in some particular configuration (see Sec. II-D for details). The topology used for GNS-3

emulation is the one provided by Fig. 7a. We only show tests for IOS 15.2 as the situation is the same with IOS 12.4. In our example, we
were able to reveal the content of the Opaque tunnel through BRPR, on the contrary to in the wild TNT deployment where Opaque tunnels
revelation did not work that much (see Sec. VI). We see thus here a difference between theory and practice.

IOS 15.2 – Opaque PHP

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 no propagate-ttl
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 192.168.8.1 remote-as 1024
11

12 PE2
13 version 15.2
14 mpls label protocol ldp
15 no propagate-ttl
16 router bgp 3333
17 redistribute connected
18 redistribute ospf 10
19 neighbor 10.12.0.1 remote-as 3333
20 neighbor 192.168.6.1 remote-as 2048
21 neighbor 192.168.6.1 ebgp-multihop 2
22

23

24

25 P1
26 version 15.2
27 mpls label protocol ldp
28 no propagate-ttl
29 router bgp 3333
30 neighbor 10.12.0.1 remote-as 3333
31

32

33 P2
34 version 15.2
35 mpls label protocol ldp
36 no propagate-ttl
37 router bgp 3333
38 neighbor 10.12.0.1 remote-as 3333
39

40

41 P3
42 version 15.2
43 mpls label protocol ldp
44 no propagate-ttl
45 router bgp 3333
46 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Opaque PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 25.164 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 40.06 ms
5

6 OPAQUE | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 40.008 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 40.058 ms - step 1
9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 90.301 ms - step 0

10

11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][qttl = 1][uturn = 0][MPLS LSE | Label : 16 | LSE-TTL : 252] 110.408 ms
12 4 left.CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 80.195 ms
13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 132.331 ms

20

C. Invisible Tunnels Validation

This section discusses Invisible tunnels, i.e., tunnels with the no-ttl-propagate option enabled (see Sec. II-D).

We do a distinction between Cisco (Appendix IX-C.1) and Juniper configurations (Appendix IX-C.2). PHP (LSE popped by P3) is also
distinguished from UHP (LSE popped by Egress LER).

For each case, we provide the configuration of routers as well as the TNT output. Indicators and triggers (see Sec. III-B) are provided, as
well as ICMP time-exceeded and ICMP echo-reply TTLs.

1) Invisible Cisco Configurations: All configurations presented here were run on the topology provided by Fig. 7a.

IOS 15.2 – Invisible PHP

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 no propagate-ttl
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 15.2
16 mpls label protocol ldp
17 no propagate-ttl
18 router bgp 3333
19 redistribute connected
20 redistribute ospf 10
21 neighbor 10.12.0.1 remote-as 3333
22 neighbor 10.12.0.1 next-hop-self
23 neighbor 192.168.2.2 remote-as 2048
24 neighbor 192.168.2.2 next-hop-self

25

26

27

28 P1
29 version 15.2
30 mpls label protocol ldp
31 no propagate-ttl
32 router bgp 3333
33 neighbor 10.12.0.1 remote-as 3333
34

35

36 P2
37 version 15.2
38 mpls label protocol ldp
39 no propagate-ttl
40 router bgp 3333
41 neighbor 10.12.0.1 remote-as 3333
42

43

44 P3
45 version 15.2
46 mpls label protocol ldp
47 no propagate-ttl
48 router bgp 3333
49 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.52 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.927 ms
5

6 FRPLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 50.051 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 60.102 ms - step 1
9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 59.876 ms - step 0

10

11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][qttl = 1][uturn = 0] 80.38 ms
12 4 left.CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 69.89 ms
13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 99.833 ms

The configuration for running standard Cisco Invisible UHP tunnels is provided below. Such a configuration might be revealed through
BRPR thanks to the DUP_IP trigger.

21

IOS 15.2 – Invisible UHP

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 no propagate-ttl
6 mpls ldp explicit-null
7 router bgp 3333
8 redistribute connected
9 redistribute ospf 10

10 neighbor 10.12.0.1 remote-as 3333
11 neighbor 10.12.0.1 next-hop-self
12 neighbor 192.168.8.1 remote-as 1024
13 neighbor 192.168.8.1 next-hop-self
14

15 PE2
16 version 15.2
17 mpls label protocol ldp
18 no propagate-ttl
19 mpls ldp explicit-null
20 router bgp 3333
21 redistribute connected
22 redistribute ospf 10
23 neighbor 10.12.0.1 remote-as 3333
24 neighbor 10.12.0.1 next-hop-self
25 neighbor 192.168.2.2 remote-as 2048
26 neighbor 192.168.2.2 next-hop-self
27

28

29

30 P1
31 version 15.2
32 mpls label protocol ldp
33 no propagate-ttl
34 mpls ldp explicit-null
35 router bgp 3333
36 neighbor 10.12.0.1 remote-as 3333
37

38

39 P2
40 version 15.2
41 mpls label protocol ldp
42 no propagate-ttl
43 mpls ldp explicit-null
44 router bgp 3333
45 neighbor 10.12.0.1 remote-as 3333
46

47

48 P3
49 version 15.2
50 mpls label protocol ldp
51 no propagate-ttl
52 mpls ldp explicit-null
53 router bgp 3333
54 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 3.157 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.92 ms
5

6 Duplicate IP (Egress : 192.168.2.2) | Length estimation : 1 | Revealed : 4 (difference : 3)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 50.043 ms - step 4 (Buddy used)
8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 49.778 ms - step 3 (Buddy used)
9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 69.834 ms - step 2 (Buddy used)

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 80.594 ms - step 1 (Buddy used)
11

12 3 left.CE2 (192.168.2.2) <252,252> [frpla = 1][qttl = 1][uturn = 0] 80.08 ms
13 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 89.891 ms
14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 107.579 ms

With Cisco routers, it is possible to mimic an Invisible UHP tunnel with a Juniper per loopback configuration (i.e., by filtering addresses
to /32 border prefixes), meaning that the tunnel content might be revealed through DPR, thanks to the DUP_IP trigger. Such a configuration
is achieved with the allocate global host-routes command.

22

IOS 15.2 – Invisible UHP (allocate global host route configuration)

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 no propagate-ttl
6 mpls ldp explicit-null
7 mpls ldp label
8 allocate global host-routes
9 router bgp 3333

10 redistribute connected
11 redistribute ospf 10
12 neighbor 10.12.0.1 remote-as 3333
13 neighbor 10.12.0.1 next-hop-self
14 neighbor 192.168.8.1 remote-as 1024
15 neighbor 192.168.8.1 next-hop-self
16

17 PE2
18 version 15.2
19 mpls label protocol ldp
20 no propagate-ttl
21 mpls ldp explicit-null
22 mpls ldp label
23 allocate global host-routes
24 router bgp 3333
25 redistribute connected
26 redistribute ospf 10
27 neighbor 10.12.0.1 remote-as 3333
28 neighbor 10.12.0.1 next-hop-self
29 neighbor 192.168.2.2 remote-as 2048
30 neighbor 192.168.2.2 next-hop-self
31

32

33

34 P1
35 version 15.2
36 mpls label protocol ldp
37 no propagate-ttl
38 mpls ldp explicit-null
39 mpls ldp label
40 allocate global host-routes
41 router bgp 3333
42 neighbor 10.12.0.1 remote-as 3333
43

44

45 P2
46 version 15.2
47 mpls label protocol ldp
48 no propagate-ttl
49 mpls ldp explicit-null
50 mpls ldp label
51 allocate global host-routes
52 router bgp 3333
53 neighbor 10.12.0.1 remote-as 3333
54

55

56 P3
57 version 15.2
58 mpls label protocol ldp
59 no propagate-ttl
60 mpls ldp explicit-null
61 mpls ldp label
62 allocate global host-routes
63 router bgp 3333
64 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP (allocate global host route configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 8.091 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 39.867 ms
5

6 Duplicate IP (Egress : 10.1.0.2) | Length estimation : 1 | Revealed : 4 (difference : 3)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 39.788 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 49.573 ms - step 2
9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 70.094 ms - step 2

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 89.171 ms - step 1 (Buddy used)
11

12 3 left.CE2 (192.168.2.2) <252,252> [frpla = 1][qttl = 1][uturn = 0] 120.546 ms
13 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 89.892 ms
14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 117.301 ms

It is also possible to build Invisible UHP tunnel in which the buddy mechanism is not necessary (as we discover in the wild). Simply
running BRPR will make the tunnel content visible. This configuration might be achieved with the ip access-list command to enable
Ultimate Hop Popping for external destinations only:

23

IOS 15.2 – Invisible UHP (mpls ldp explicit-null [for prefix-acl] configuration)

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 no propagate-ttl
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 15.2
16 mpls label protocol ldp
17 no propagate-ttl
18 mpls ldp explicit-null for BRPR-wo-buddy
19 router bgp 3333
20 redistribute connected
21 redistribute ospf 10
22 neighbor 10.12.0.1 remote-as 3333
23 neighbor 10.12.0.1 next-hop-self
24 neighbor 192.168.2.2 remote-as 2048
25 neighbor 192.168.2.2 next-hop-self
26 ip access-list standard BRPR-wo-buddy
27 permit 10.9.0.1
28 deny any
29

30

31

32

33 P1
34 version 15.2
35 mpls label protocol ldp
36 no propagate-ttl
37 router bgp 3333
38 neighbor 10.12.0.1 remote-as 3333
39

40

41

42

43 P2
44 version 15.2
45 mpls label protocol ldp
46 no propagate-ttl
47 router bgp 3333
48 neighbor 10.12.0.1 remote-as 3333
49

50

51

52

53 P3
54 version 15.2
55 mpls label protocol ldp
56 no propagate-ttl
57 router bgp 3333
58 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP (mpls ldp explicit-null [for prefix-acl] configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 192.168.3.2 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.299 ms
4 2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 14.921 ms
5

6 Duplicate IP (Egress : 10.4.0.2) | Length estimation : 3 | Revealed : 4 (difference : 1)
7 2.1 [REVEALED] 10.1.0.2 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 36.443 ms - step 3
8 2.2 [REVEALED] 10.2.0.2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 35.879 ms - step 2
9 2.3 [REVEALED] 10.3.0.2 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 66.288 ms - step 1

10 2.4 [REVEALED] 10.4.0.2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 64.19 ms - step 0
11

12 3 CE2 (192.168.2.2) <250,250> [frpla = 3][qttl = 1][uturn = 0] 116.643 ms
13 4 CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 99.93 ms
14 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 94.185 ms

2) Juniper Invisible Configurations: All configurations presented here were run on the topology provided by Fig. 7b.
Juniper, with Olive OS, does not apply the MIN(IP-TTL, LSE-TTL) at the exit of the MPLS cloud. As such, the FRPLA trigger does not

provide the return tunnel length but is equal to 1 because the ingress LER process the incoming IP TTL in a distinct way with respect to
the origin of the packet (locally generated or not). Invisible PHP tunnel can, then, be revealed through DPR. Juniper LSR can be configured
as followed:
JunOS Olive – Invisible PHP

1

2 PE1
3 no-propagate-ttl
4

5

6 PE2
7 no-propagate-ttl
8

9

10 P1
11 no-propagate-ttl
12

13 P2
14 no-propagate-ttl
15

16 P3
17 no-propagate-ttl

TNT running over JunOS Olive – Invisible PHP
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.638 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.898 ms
5

6 FRPLA | Length estimation : 1 | Revealed : 3 (difference : 2)
7 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0] 3.039 ms - step 0
8 2.2 [REVEALED] left.P2 (192.168.1.6) <252,61> [frpla = 0][qttl = 1][uturn = 0] 3.951 ms - step 0
9 2.3 [REVEALED] left.P3 (192.168.1.10) <252,61> [frpla = 0][qttl = 1][uturn = 0] 4.906 ms - step 0

10

11 3 left.PE2 (192.168.1.14) <252,61> [frpla = 1][qttl = 1][uturn = 0] 7.043 ms
12 4 CE2 (192.168.2.2) <252,61> [frpla = 0][qttl = 1][uturn = 0] 6.891 ms
13 5 CE3 (192.168.2.102) <251,60> [frpla = 0][qttl = 1][uturn = 0] 8.978 ms

24

On the contrary to Olive, VMX applies the MIN(IP-TTL, LSE-TTL) function. As such, the behavior observed is the theoretical one. It
is worth noting that configuring Juniper VMX for Invisible MPLS tunnels is identical than with Olive. Invisible tunnels are, now, revealed
through DPR, with the RTLA trigger.

JunOS VMX – Invisible PHP

1

2 PE1
3 no-propagate-ttl
4

5

6 PE2
7 no-propagate-ttl
8

9

10 P1
11 no-propagate-ttl
12

13 P2
14 no-propagate-ttl
15

16 P3
17 no-propagate-ttl

TNT running over JunOS VMX – Invisible PHP
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.96 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.66 ms
5

6 RTLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0] 8.8 ms - step 0
8 2.2 [REVEALED] left.P2 (192.168.1.6) <252,62> [frpla = 0][qttl = 1][uturn = 0] 2.134 ms - step 0
9 2.3 [REVEALED] left.P3 (192.168.1.10) <251,62> [frpla = 0][qttl = 1][uturn = 0] 3.352 ms - step 0

10

11 3 left.PE2 (192.168.1.14) <250,62> [frpla = 3][rtl = 3(3)][qttl = 1][uturn = 3] 4.569 ms
12 4 CE2 (192.168.2.2) <250,61> [frpla = 2][rtl = 2(-1)][qttl = 1][uturn = 2] 4.625 ms
13 5 CE3 (192.168.2.102) <250,60> [frpla = 1][rtl = 1(-1)][qttl = 1][uturn = 1] 4.355 ms

D. Corner Cases: heterogeneous propagation configuration
This section discusses corner cases, i.e., unlikely configurations that may arise when MPLS is not homogeneously configured throughout

the tunnel. TNT, like traceroute, cannot deal with those situations, but these abnormal shiftings have not been clearly encountered in
practice.

1) Cisco Jumpy Configurations: The following Cisco configuration (for IOS 15.2) is supposed to build an UHP Invisible tunnel.
However, on the contrary to the configuration provided in Appendix IX-C.1, the management of LSE-TTL is heterogeneous over the tunnel.
Indeed, in this case, the Ingress LER is not configured with the no-ttl-propagate (on the contrary to the Egress LER and other routers
in the tunnel). As such, the MIN(IP-TTL, LSE-TTL) operation is not – systematically – applied on the Egress while it is expected to be
from the Ingress. The EH assumes that the propagation configuration is homogeneous among LERs, which is not the case here. Therefore,
the Egress LER will use the IP-TTL instead of the LSE-TTL when popping the LSE. As consequence, and as shown by the TNT output,
we observe that

1) the MPLS tunnel is actually Explicit;
2) a number of hops equal to the tunnel length after the MPLS tunnel are missing (here, only CE2 is missing as the platform is too short

– see Fig. 7a for the Cisco topology we use), leading to a so-called jump effect.
We call such a configuration Explicit Jump and it can be observed in the qTTL of the last hop (2 instead of one plus the skipped hop).

IOS 15.2 – Explicit Jump (heterogeneous configuration)

1

2 PE1
3 version 15.2
4 mpls label protocol ldp
5 mpls ldp explicit-null
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
9 neighbor 10.12.0.1 remote-as 3333

10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 15.2
16 mpls label protocol ldp
17 no propagate-ttl
18 mpls ldp explicit-null
19 router bgp 3333
20 redistribute connected
21 redistribute ospf 10
22 neighbor 10.12.0.1 remote-as 3333
23 neighbor 10.12.0.1 next-hop-self
24 neighbor 192.168.2.2 remote-as 2048
25 neighbor 192.168.2.2 next-hop-self

26

27 P1
28 version 15.2
29 mpls label protocol ldp
30 no propagate-ttl
31 mpls ldp explicit-null
32 router bgp 3333
33 neighbor 10.12.0.1 remote-as 3333
34

35

36 P2
37 version 15.2
38 mpls label protocol ldp
39 no propagate-ttl
40 mpls ldp explicit-null
41 router bgp 3333
42 neighbor 10.12.0.1 remote-as 3333
43

44

45 P3
46 version 15.2
47 mpls label protocol ldp
48 no propagate-ttl
49 mpls ldp explicit-null
50 router bgp 3333
51 neighbor 10.12.0.1 remote-as 3333

25

TNT running over IOS 15.2 – Explicit Jump (heterogeneous configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 8.407 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.477 ms
5 3 left.P1 (10.1.0.2) <250,253> [frpla = 3][qttl = 1][uturn = 3][MPLS LSE | Label : 19 | LSE-TTL : 1] 79.929 ms
6 4 left.P2 (10.2.0.2) <250,252> [frpla = 2][qttl = 2][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL : 1] 80.573 ms
7 5 left.P3 (10.3.0.2) <250,251> [frpla = 1][qttl = 3][uturn = 1][MPLS LSE | Label : 20 | LSE-TTL : 1] 109.577 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 79.766 ms
9 7 192.168.4.2 (192.168.4.2) <250,250> [frpla = -1][qttl = 2][uturn = 0] 109.357 ms

2) Juniper Jumpy Configurations: In the fashion of Cisco, Juniper with the Olive OS (this is not possible with VMX) allows to
configure an Explicit Jump tunnel with PHP. The configuration provided below shows such an MPLS tunnel. The EH is configured with
the no-ttl-propagate option, while other routers are configured with ttl-propagate. As such, P3 will not apply the MIN(IP-TTL,
LSE-TTL) when popping the label, leading so to a jump effect that is nearly as long as the tunnel itself (the Egress LER and CE2 are
missing plus the qTTl at 2 on the last hop).

Olive – Explicit Jump (heterogeneous configuration)

1

2

3 PE1
4 propagate ttl
5

6 PE2
7 propagate ttl
8

9

10 P1
11 propagate ttl
12

13 P2
14 propagate-ttl
15

16 P3
17 no-propagate-ttl

TNT running over Olive – Explicit (heterogeneous configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.622 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.749 ms
5 3 left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 2.799 ms
6 4 left.P2 (192.168.1.6) <252,252> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 3.725 ms
7 5 left.P3 (192.168.1.10) <251,251> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299776 | LSE-TTL : 1] 7.784 ms
8 6 CE3 (192.168.2.102) <248,57> [frpla = 2][qttl = 2][uturn = 0] 8.884 ms

The last configuration is Juniper Olive with an Invisible Jump configuration. This is somewhat equivalent to the Explicit Jump but for
Invisible tunnels. In that case, when P3 (PHP is configured) will pop the LSE, it will not apply the MIN(IP-TTL, LSE-TTL). As a result,
TNT will see the Ingress LER (PE1) and several hops after P3 will be missed (Egress LER and CE2). The tunnel is invisible and triggers
do not work. One can notice a qTTL of 250 on the last hop of our platform: it means that traceroute can miss an entire path of 255
minus the length of the tunnel!

Olive – Invisible Jump configuration (heterogeneous configuration)

1

2 PE1
3 no-propagate ttl
4

5

6 PE2
7 propagate ttl
8

9

10 P1
11 no-propagate ttl
12

13 P2
14 no-propagate-ttl
15

16 P3
17 propagate-ttl

TNT running over Olive – Invisible Jump (heterogeneous configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.515 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.712 ms
5 3 CE3 (192.168.2.102) <251,60> [frpla = 2][qttl = 250][uturn = 0] 8.553 ms

