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Abstract—We consider the problem of performing N — k& to have a probabilityl0~* to be unavailable, the probability
security analyses in large scale power systems. In such a ¢ekt, that one of the lines of the whole network is unavailable at a
the number of potentially dangerous N' — k contingencies may  gien moment is equal t6.2707. This value is high enough
become rapidly very large whenk grows, and so running a . L :
security analysis for each one of them is often intractableWe to consider that theV — 1 crlterlon_ls no longer conservatl\{e
assume in this paper that the number of dangerousN — & €nough and thalv — 2 contingencies also have to be studied
contingencies is very small with respect to the number of in order to make sure that it is possible to mitigate them evhil

non-dangerous ones. Under this assumption, we suggest toeus serving the electricity demand and respecting the operaltio
importance sampling techniques for identifying rare evens in constraints of the transmission network
combinatorial search spaces. With such techniques, it is gsible '

to identify dangerous contingencies by running security aalyses The Transmission System Operators (TSOs) of each inter-

for only a small number of events. A procedure relying on thes
techniques is proposed in this work for steady-state secusi connected country therefore need to be able to perfirm2,

analyses. This procedure has been evaluated on the IEEE 118 £V —3 Or even d‘?eper security analyses in orde_r to operate
test system. The results show that it is indeed able to efficidy — safely the transmission system they are responsible for.

identify among a large set of contingencies some of the rarenes ) )
which are dangerous. When runningN — k (k > 1) security analyses, a severe

computational problem arises. Indeed, whestarts growing,
the size of the set of potentially dangerous eventsNor &
analyses becomes rapidly huge and analyzing individuaHy e
The usual approach for planning and operation of electiégy event to find the dangerous ones becomes computationally
power transmission systems is based on the generally recpgelevant. As way of example, the size of the event space for
nized N —1 criterion. This criterion was originally designed fora 1000 line electric network grows from approximatgdy to
small to middle size power systems, scaled to one country arg? whenk goes from2 to 4.
sometimes its neighborhood. In such transmission systems, )
what is defined as an incident is for example the loss of oneWithin these extremely large sets of events, we assume in
generation unit or the tripping of one transmission lineed this paper that theV — k events that can indeed threaten the
events are rare enough so that it is a priori very unlike§gcurity of the system armre. Under this assumption, the
that two of them occur at the same time. For example, foblem of finding\V —k dangerous events becomes equivalent
the probability of one transmission line being unavailabi® the problem of finding rare-events in combinatorial skarc
is around 10~ and if we consider a 1000 line systenSPaces. This equwalence suggests that importance saynplln
(assuming that all the lines of this system have the sarfgehniques, which have been vastly successful for solving
reliability properties), the probability that one singied of the COmbinatorial problems, could also be used for efficiently
transmission network is unavailable at a given moment iskqddentifying dangerous contingencies.

to 0.0905 and the probability that two lines are disconnected |, this paper, we develop and validate an approach based on

at the same time is equal t0045. these importance sampling techniques for the fast ideatific

However, the continual increase in complexity in power sy§on, of dangerous contingencies within the context of sgead
tems, and especially the growing number of new interconnggz e security analysis.

tions may raise the question of whether this- 1 criterion is
still sufficient or even relevant. For example, when consie ~ The rest of this paper is organized as follows. The back-
the interconnected European transmission system, it ig vground for identifying rare events in combinatorial search
likely that there is at least one transmission line discetede spaces with iterative sampling methods is described ini@ect
for maintenance operations in the entire European netviork.ll. The approach for applying these techniques\te- £ static
terms of probabilities, if we consider a large network of P00 security analyses is presented in Section Ill. This apgroac
transmission lines and if each transmission line is assumigdillustrated on the IEEE 118 bus test system in Section
, _ IV, in which some simulation results are reported. Section
The authors are with the Department of Electrical Engimegri di hi hod with e K d
and Computer Science of the University of Liége, Belgiummais: V diSCUSses this method with respect to existing work an
{belmudes,ernst,wehenké@montefiore.ulg.ac.be conclusions are drawn in Section VI.
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[1. | TERATIVE SAMPLING METHODS FOR IDENTIFYING « Define a hypothesis space of candidate sampling densities
RARE EVENTS IN COMBINATORIAL SEARCH SPACES py defined overR™ and indexed by a parameter vector

>

In the literature many iterative sampling methods have been
proposed for searching solutions to combinatorial or non-*
convex optimization problems, such as genetic algorithms,
distribution estimation methods, Markov-Chain Monte ©arl R™).

methods, and also the so-called cross-entropy method (se& At €ach iteration, draw a sample; of sizes of config-
[10], [12], [2] and [15]). urations according to the current distribution defined by

the current value\; (s is a parameter of the algorithm)
and evaluate the value of the objective function for each
one of these configurations.

Keep the subsef’ of S; corresponding to then < s

best solutionss( is another parameter of the algorithm).
Use the samplé&’ to determine a new valug; ;. In the
cross-entropy method, one uses at this step the maximum
likelihood principle, i.e. one choses the valdg ; such

_ _ that the likelihood of the samplg;, , is maximal.
— generate a subset of potential solutions over the : . . .
. . ... In the next section, we describe the precise setting that we
search space by using the current sampling distri-

bution- propose in order to apply this approach to the identification
' I . . . of dangerousV — k events in power systems. These comprise
— evaluate the objective function for each configuratio : o . .
. ) he choice of an objective function measuring correctly the
in the current sample; . o ;
. severityof an event, the metrization and pre-image compu-

— use the pairs (configuration, objective function) Mations associated to the embedding of tNe— k events

the current sample so as to determine a new samplifn . . .
P PP a continuous space, and the choices associated to the

distribution better targeting the interesting solutions_ . ~ .
. application of the cross-entropy method per se (space of
of the problem;

i ) i sampling distributions, as well as the parametesdm).
o halt the iterative process when the computational re-

sources have been exhausted, or when the current samnlle STATIC SECURITY. N — k AND ITERATIVE SAMPLING

is sufficiently pure in terms of objective function distri- In thi i d i thod f vind th
bution, or when the variation of some sample statistics n his section, we describe a method fTor applying the

has not changed significantly since a certain number %(reneric iterative sampling approach explained previously
iterations the identification of dangeroud — k& contingencies in the

. . ) . ._context of static security. Simulations results generatethe
In this paper, we want to exploit such iterative samplln%EE 118 bus system are reported later in Section IV. The
based methods for rare combinatorial event simulatioss, i mainder of this section is structured as follows. Firse w
!‘r_1 order_ t(?, |den_t|fy e!ements of a very small subset Ofart by defining the event space and the notion of dangerous
interesting” configurations among a very large number nd non-dangerous events. Afterwards, we elaborate on the

candidate ones Iocz_ated n an (.)rlglnallly unstrugtur_ed dtscr_choice of the objective function, the representation of the
search space. To this end, we first define an objective fumctig, . i< in a (low-dimensional) continuous space and the pre-
over the original discrete space which is maximal only f

n tation. Finall full ified algorithm fi
the sought interesting solutions. Then we embed this dscr%e:?cehiﬁgr?grudzlnognerol:r;ae\)/ﬁeris Lijséijgr?m ed aigorthm for

search space in a continuous metric space where the olgjectiv
function varies in a sufficiently progressive way and on ihic
we may apply naturally linear operators such as averagiﬁ‘g The (rare) dangerous events
and interpolation, and we use the iterative sampling basedlhe event spaceé’ (here the set of potentially dangerous
optimization approach together with averaging/interfota contingencies) is made of the events that correspond to the
operators over the embedding space so as to generate alass of k distinct transmission lines. An element of this space
quence of sampling distributions defined over this spacehvhiis represented by thé-tuple (I1,12,...,1x) where everyl;
progressively targets elements corresponding to inieggstrefers to a liné. A dangerous event of this space is set to
configurations of the original problem. One main componeh€ an event for which there exists no post-fault steadstat
of this approach, needed to allow the computation of tiguilibrium point of the system. In our simulations, theteys
objective function over the embedding space, consists ofisasaid to have no post-fault equilibrium point if the power
reverse mapping (pre-image computation) of the embeddifigw diverges or does not converge after a specified number
so as to associate to each point of the embedding spaceOéHel’ationS. When the loss df transmission lines splits the
element of the original discrete space over which the object power system into several subsystems, a power flow should in
function is defined. principle be run for every area of the system and the stgbilit
In our simulations reported below, we use as iterative, o e .
Notice that in this paper we do not consider “mixedy” — k events (i.e.,

sampllng method the cross-entropy method [15]- This meth@&tingencies which correspond to the loss of various tyfiggower system
works as follows: elements) so as to simplify the metrization of the event sfaee later).

Set ) to its initial value )\ (typically Ay will be chosen
so as to let the distributiop,, cover the complete space

A common feature of these methods, from an algorithmic
point of view, is to combine random sampling with an iterativ
process allowing to “learn” the best sampling scheme for the
problem under consideration. Many of these algorithms work ®
in the following generic way:

« define some initial sampling distribution over the consid- *

ered search space;

- at each iteration:



or instability diagnosis should be based on the analysisaxfe
separate runs. Since it adds difficulty to the problem (éf.g.,
the system is splitted into two areas such that one is veryl sir
with respect to the other and if only the smaller has no steac
state operating point, then, should the system be considere
being stable or unstable?), we have preferred to remove fr
the set of events those which increase the degree of cogne
of the system.
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. . . Coefficient multiplying the global load with respect to the base case
B. The objective function piingfhe 9 P

The objective functiorO(z) is a real-valued function de- Fig. 1. Evolution of the number iterations to convergencehefpower flow
fined over the space of events which takes its maximum val rithm when the load increases monotonically. The testes is the IEEE
- . . . bus system.
when z is a dangerous event. This function is used at every
iteration of the algorithm for selecting among the several

events drawn from a sampling density, those which corred;pognd r tati Id be t the ol
to the largest value ofO(x). These are used to define, pre-image computation could be to use the platg (

. A - ~'as metrized space, to plot the geographical map of the power
baseq on the maximum likelihood pr|nC|pI_e, the next Salnllp“rgystem on this plane and to associate to every event of the
density. As the iterations go on, the algorithm should gateer metrized space the line which stands the closest to it (pre-

samp;hn(i:] (:ﬁnsﬁles _vvh||ch g'vﬁ gwre we|g[1t to 'gche”;j:v:gero age computation). The distance between an event in the
events. In e classical so-calied cross-entropy fra € plane and a line could for example be defined as the area of

function O(x) is given. In our problem, one has the flexibilitythe triangle formed by the event and the two end buses of
to choose among the set of real-valued function defined

) o line. By assuming that the closer two lines are from an
X, one which leads to good performances. Picking up e y g

qf ionO be challenai In th ¢ ment ofR2, the more likely it is that their loss has similar
good functionO(z) may be challenging. In the context o effects on the steady-state properties of the post-fastesy,

Zti‘."‘dy tzt_at? se;:_unt;t/, we prc_)ptOStta as pragmaatlc Iapptrr?atd}hﬁg strategy may indeed lead to an objective function that
efine this function 1o associate 1o an evena value fhat  ,aq progressively on the continuous metrized eventespac

reflectshow close— according to a metric based on some Unfortunately, one main drawback of this strategy is that

power engineering concepts the system is from instability. , . ) )
: . I~ o this assumption may often be false since, among others, the
This can be achieved by exploiting several criteria such as

. . . raphical distan ween two n m ften ver
the reactive power reserve still available on the genesatogeog aphical distance between two nodes may often be very

the distance between the current loading condition and t 8orly correlated with their electrical distance. To cirotent

maximum loading condition or other severity indices puidid 'S .problem, while ‘.3“" having the possibility to deﬂnegth
pre-image computation procedure based on the location of

in the power system literature. In this work, we chose toteelaIhe buses in a two-dimensional space. we have chosen to
the valueO(z) to the number of iterations that are needed b pace,

|yepresent these buses differently on the plane. Indedukrrat
a power flow to converge when the eventoccurs. Indeed, o . X .
o . : i, than to position the buses according to their geographical
it is likely that the closer an event is from instability, th . ; )
. cation, they are represented in a way such that the distanc
more the power flow has to iterate to converge. Note th . . : .
. . . ; tween every pair of nodes is correlated to their eledtrica
according to some simulations carried out on the benchmayl ; . X .
. . istance. Technically, this has been achieved as followst, F
IEEE 118 bus system, the number of iterations to convergence .
. . . we compute for every two buses of the electrical network the
and the distance between the current loading condition an . .
. . . ._reduced admittance between them (computed by reducing the
the maximum loading condition tend to be correlated. This IS, . .
: : . . . admittance matrix to these two buses) and take the modulus of
illustrated on Figure 1 depicting the relationship betwéen

global system load and the number of iterations needed by g inverse of this value to represent their electricaladise.

power flow computation. When, for an eventthe power flow econd, we place the buses on a plane such that the Euclidean

. . istan ween an I ions in this plane r
diverges or does not converge after the maximum numberdo?'ta ce between any two bus locations in this plane reptese

) - . well their electrical distance. For this purpose, we have-ch
iterations has been reached, the valuedt) is set equal to - . . .

. . : ! . sen to use multidimensional scaling (MDS) algorithms (see,
this maximum number of iteration plus one. This ensures tha

O(z) takes its maximum value on the dangerous events. g, .[5])’ and in partlcular_t_he Torgerson algorithm. MDS
algorithms have been specifically developed to map objects

o ) ) between which measures of distances are given into points in
C. Metrization and pre-image computation a low-dimensional Euclidean space such that their disence
For iterative sampling methods to work well, the everdomputed in this space are close to the given distances.
space should be metrized in a way that the objective functiGor the sake of illustration, Figure 2b represents on a plane
on the continuous metrized space should vary sufficientllye position of the buses of the IEEE 14 bus test system
progressively. computed by such an approach. The figure also shows the
To explain the strategy we have chosen to metrize the evéines connecting these buses. The one-line diagram oféhts t
space, we will first reason as if onlly — 1 contingencies system, as it is usually found in the literature, is given on
were considered. In such a case, one approach for metrizatioggure 2a. Obviously, the positions of the buses on thigtatt
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(b) One-line diagram that positions buses

() The “classical” one-line diagram according to their electrical distances

Fig. 2. Representation of two one-line diagrams of the IEEBbUs test system. Figure (a) gives the classical one-liagrain, as published in the literature.
The second diagram positions the nodes according to trestriglal distances by using a multi-dimensional scalind@®) algorithm.

diagram do not give a good image of their electrical distancesvent. There is again a similar checking on this rigvand

For example, nodes 1, 2, 4 and 5 are much closer from #re procedure repeats if necessary.

electric point of view than they appear on the original one- In the following, we denote byPrelmage : R*** — X

line diagram. Also, it is worth noticing that node 8 whicltthe function that computes the pre-image of an element of the

is connected to nodes 4 and 9 through a three windingetrized space.

transformer appears quite remote on the one-line diagram

drawn on Figure 2b while it is not the case on the other. This, A fully specified algorithm

was expected since the windin_gs_ of a transformer generally,;igure 3 gives the tabular version of an iterative sampling

have a reactance whosg value is in the range Of_ the_reactaggged algorithms for identifying rare events. This aldwnit

value of a few tens of kilometers long transmission line. ,qe5,,-dimensional Gaussian laws as sampling distributions
We discuss now the case whah—k events withk > 1 are  (referred to byGaussg~ (-, ;) in the algorithm) and is a

considered. First, we consid&2* as metrized space rathefparticu|ar instance of the cross-entropy based approach fo

thanR?, as it was the case wittV — 1 contingencies. The igentifying rare events described in Section II.

computation of the pre-imagé, l», ..., lx) of an eventin the  The algorithm takes as input an objective functi@f), its

metrized space is done as follows. To identify the componeqaximum valuemaz_objective and the pre-image function.

l1, we take the first two components of tRé-dimensional |t outputs a set of events which maximize this function.

event vector in the metrized space and exploit these twoThe parameters\, = 110, 00]" of the initial sampling

coordinates to identify a line as if we were dealing withjistribution (+ and o refer to the mean and the standard

an N — 1 event. By taking the second two components Qfeviation of the distribution, respectively) are usualhosen

the 2 x k-dimensional event vector, we identify using the such that the initial sampling distribution covers well teire

same procedure, and then similatly, ..., lx). The rationale event space. In our simulations, these will be chosen stath th

behind this approach lies on the assumption that if two even) ., corresponds to the geometrical center of the subspace

(i, 1oy ..., 1) and (I3, 15, ..., 1},) are such that if for any, l;  of the metrized event space in which all the buses and lines

is close tol}, then these events will have similar effects on thef the electric system are located (i) thign component of

steady-state properties of the post-fault system. 0o is equal to half the size of this subspace alongsidetiis
Finally, note that the pre-image computation just describelimension.

may lead to somé-tuples(ly,lo,...,lx) which do not belong At each iterationi, a sample ofs elements is drawn

to X since nothing does guarantee that théuple is made according toGaussg~ (-, A;). Usually, in cross-entropy algo-

of distinct lines or that thek-tuple does not correspondrithms, the value ok is chosen an order of magnitude larger

to an event which splits the network in several areas (s#&n the number of elements parameterizing the sampling

Subsection IlI-A). To address this problem, we have slightdistributions. In our simulationsy is equal to12 and s is

modified the pre-image computation procedure as followshosen equal t@00. The pre-image function is first applied

First, we consider that the elements of-duple are identified to every element of the sample to identify to which eventy the

sequentially. At every step, we check after having identified correspond. Afterwards, the different values that the cthje

l; whether there exists i’ a k-tuple whose firsyj elements function takes over these events are computed. These values

are (ly, ls, ..., I;). If it is not the case, we choose 4sthe are first exploited to identify which events are such that

second closest line to the point extracted from the metrizélx) = max_objective. If such events are found, they are



Problem definition: An objective functionD : X — R, the maximum valuerfaz_objective) of O(-), a pre-image function
Prelmage : R — X.
Algorithm parameters: The parameters, = [uo, 0o]" of the initial n-dimensional Gaussian sampling distribution, the
size s of the sample drawn at each iteration, the numbeof best solutions chosen at each iteration.
Output: A set X,,.x such that every element of this set maximizes).
Algorithm:
Step 1.Seti equal to0.
Step 2.SetS;, SO; and S; to empty sets.
Step 3.Draw independently elements according to the pdfaussg- (-, A;) and store them irb;.
Step 4.For every elemeny € S;, computex = Prelmage(y), computeo = O(x), add the pair(y, o) to SO; and, if
o = max_objective, addx t0 Xy ax.
Step 5.Identify in SO, the m pairs which have the largest value @fnd set their values inS..

2yes ylil >yes Wlil—niv1li])?
Step 6.Set ;i 1]j] = % ando;, 1 [j] = \/ ves; — i orj=1,...,nand set\;y; = [pit1, 0041
Step 7.If stopping conditions are reached, outpit,.. and stop. Otherwise,« i + 1 and go toStep 2.

Fig. 3. An algorithm for identifying the elements that maiima functionO : X — R by iterative sampling wheiR" is chosen as metrized space.

stored. Afterwards, the events which lead to théest values contingencies and computed for each of these permutatiens t
of the objective function are used to compute the next sargplinumber of contingencies to screen before encounteringrgte fi
distribution. The parameten is usually chosen0 to 20 times dangerous one. The results of these simulations are cadlect
smaller thans. In our simulationsyn is equal to10. in the histograms reported in Figure 4, where the horizontal
Different stopping conditions can be thought of for thisixis represents the number of screened contingencies and
algorithm (see Section I1). In our simulations, we will mgst where each vertical bar represents the number of runs out of
for illustrative purposes either stop the algorithm as sasn hundred which found the first dangerous contingency within
one element that maximize3(-) has been found or when athe corresponding range of numbers of runs.
specific number of iterations has been reached.

25

[ iterative sampling
IV. RESULTS ON THEIEEE 118BUS TEST SYSTEM FOR 20 | [lIMonte—Carlo samplig
N — 3 SECURITY ANALYSIS -
. . 215
In this section, we evaluate the proposed methodology S
the IEEE 118 bus test system, which has been vastly usec {10
benchmark test system in the literaturé.— 3 contingencies o
are considered.
To assess our approach, we first screened all the poss 0
. . . e 0 1000 2000 3000 4000, 5000 6000
N — 3 contingencies and identified the dangerous ones. Tl _ Number of contingencies screened when the first dangerous one is found

analysis has shown that there exist 895649- 3 contin- _ , _

. . . Fig. 4. Comparison of the number of contingencies to screeforé
gencies that do not split the network into several SUbs)&terﬂIentifying the first dangerous one with the iterative sangpklgorithm and
Among them, 187 contingencies are dangerous, that is contite Monte-Carlo sampling method.
gencies for which the power flow diverges or does not con-
verge after a maximal number of iterations. The ratio betwee We observe that the number of contingencies screened
the dangerous contingencies and all possible contingeiiebefore identifying the first dangerous one is centered atoun
thus around2.09.10~%, and so we can indeed consider that 403 with a standard deviation 941 for the cross-entropgdas
identifying such dangerous contingencies can be pareotedatgorithm, and centered around 4 770 with a standard denwiati
a rare-event problem. 484 for the Monte-Carlo method. The average number of

To illustrate the efficiency of our methodology, we haveontingencies screened when the first dangerous one is found
studied the speed at which it can identify one single dangerds about 4 times smaller for the method we propose in
contingency. This speed has then been compared with thes work, which means that our iterative sampling method
one corresponding to a classical Monte-Carlo sampling ef tis significantly more efficient than the classic Monte-Carlo
event space. For the cross-entropy based method, we ranrttethod, as regards the search of one dangerous contingency.
algorithm 100 times with different initial random seeds andhis result is explained by the fact that our approach can
stored the number of events after which the first dangeroes at every iterationi > 1 exploit the information contained
was found. For the Monte-Carlo sampling method, we todk the previously drawn sample to compute a new sampling
100 series of 100 random permutations of the 8956849 3  distribution which is more likely to give more weight to even
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V. RELATED WORK
The cross-entropy based importance sampling approach

I HHH}_ proposed in this paper for efficiently identifying rare dargus
events was first used within the context of power systems in
IIHI[H
10 ‘ 30

.
=

[4]. In this latter paper, the space of “events” was made of
- load/generation patterns and the cross-entropy algontias
IFFEIIFEITILE applied without any metrization of the event space.
‘ As regards the identification of dangerous events or the
40 50 computation of reliability indices, it has long been reciagad
by power system engineers that crude Monte-Carlo simulatio
Fig. 5. Evolution of the range of values that the objectivaction takes on may be computationally inefficient. Numerous techniques
the 200 element samples generated by our importance samgpiroach for \yere proposed to address this problem. For example, Refer-
'dentifying dangerous events for a typical run. ences [1], [13] propose to combine, in the context of distrib
tion systems, Monte-Carlo simulations with some analytica
approaches. Paper [11] proposes to exploit artificial deura
= networks based on the learning vector quantization algworit
- to make Monte-Carlo techniques more computationally ef-
il ficient for loss of load probability calculations. Importan
sampling as well as other variance reduction techniques hav
W also been recurrently proposed in the power system litexatu

al

Mean and standard deviation of th
objective function for each sample

o)

20
Number of the sample

[Jmean (over 100 runs of the algorithm)
- standard deviation (over 100 runs of the algori hr'rl).

N

=
q

B

as an enhancement of Monte-Carlo methods (see, e.g., [13],
(3], [14], [8]).

In order to identify probability distributions targetinga-
gerousN — k contingencies, the method proposed in this paper
only requires to run a security analysis for a relatively kma

o
13|

Number of distinct dangerous
contingencies identified

o

0 2000 8000 10000

4000 6000 _ A .
Number of contingencies screened set of events. Viewed in this light, it can be parented to the
, _ o significant body of work related to contingency filtering and
Fig. 6. Total number of dangerous contingencies identifiecsws number . . . 9l 16
of contingencies screened. contingency screening in power systems (see, e.g., [9], [6]

[7]). Most of the approaches for contingency filtering hoesev

rely on deterministic algorithms while the one proposed in

this paper is a stochastic one. The importance sampling
leading to high values of)(-). This is illustrated on Figure distributions computed over the course of the cross-eptrop
5 which shows the average values taken by the objecti@@or'thm algorithm could possibly also be gsed as classifie
function on the successive samples drawn, for a typical r{ff dangerous and non-dangerous events: indeed, theydshoul
of the algorithm. In this figure, the horizontal axis represe ideally associate a _Iow probability to non danggrous events
the iteration number of the algorithm while each vertical b&nd @ high probability to dangerous ones. To this extent, the

represents the average plus/minus the standard deviatiorf@Proach proposed has some similarities with the many works

the objective function in the sample of size 200 at a givéﬁhere classifiers for assessing the degree of severity oépow
iteration. system scenarios are built (see, e.g., [7], [17], [16]).

While Figure 4 gives information on the speed at which
our approach can identify one single dangerous contingency
it does not tell anything about its ability to identify rafyid  In this paper, we have proposed an approach for identifying
several dangerous contingencies. To study this, we hatteglo rapidly among large sets oV — k£ events, some of the
on Figure 6, the average and the standard deviation (comhpuassumed few that could endanger the steady-state sectirity o
over 100 runs of the algorithms) of the number of differeret power system. The approach relies on importance sampling
dangerous contingencies identified by the algorithm astechniques, a proper measure of the severity of an event and a
function of the number of contingencies it has screened. Agetrization of the contingency space. Simulations caroied
one observes, this average number gets quite rapidly clasethe IEEE 118 bus system have shown that the approach
to one but does not increase rapidly afterwards. This is diseable to find dangerous events significantly faster thawe pur
to the fact that once the first dangerous contingency hionte-Carlo approaches.
been identified by the algorithm, the sampling distribusion From a technical point of view, this work suggests sev-
built in the successive iterations are likely to give morel areral research directions. At first, the procedure proposed f
more weight to this specific contingency. We have howevaretrizing the event space was specific to events correspgndi
observed that for a few runs of the algorithm, this wa® the loss ofk lines. Therefore, we believe it would be
not necessary the case. These runs were identifying a larogeresting to develop flexible metrization procedurest tha
number of contingencies, between 3 and 6. This explains wbguld be applied to compare events of various nature and,
the variance plotted on the figure grows to rather large wluén particular, to comparéV — k events corresponding to the

VI. CONCLUSIONS AND FUTURE WORK



simultaneous loss of different types of power system elémefi2] H. Muehlenbein, T. Mahnig, and A. Ochoa Rodriguez. o,

(e.g., one generator, some loads and a line). Secondlye whil
our approach was able to identify rapidly some dangeroH§]
events, it would be relevant to study whether it could be
modified to identify all the dangerous events or at least a
significant fraction of them. Thirdly, investigating howeth [14
approach could be adapted to deal with other stability ssue

than steady-state ones (e.g., angle stability, voltagalisya
would certainly be another interesting topic of research.

Due to the increasing penetration of renewable energies, th
generation patterns that need to be considered when anglyz#©!
the stability of a power system may become very numerous
and running even only & — 1 security analysis for every of [17]
them may become impossible. This suggests that developing a

methodology for identifying the dangerous production grais

without having to analyze them one by one would be desirable.
We believe that such a methodology could be developed by

extending the approach proposed in this paper.
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