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Abstract— We consider the problem of performing N − k

security analyses in large scale power systems. In such a context,
the number of potentially dangerousN − k contingencies may
become rapidly very large when k grows, and so running a
security analysis for each one of them is often intractable.We
assume in this paper that the number of dangerousN − k

contingencies is very small with respect to the number of
non-dangerous ones. Under this assumption, we suggest to use
importance sampling techniques for identifying rare events in
combinatorial search spaces. With such techniques, it is possible
to identify dangerous contingencies by running security analyses
for only a small number of events. A procedure relying on these
techniques is proposed in this work for steady-state security
analyses. This procedure has been evaluated on the IEEE 118 bus
test system. The results show that it is indeed able to efficiently
identify among a large set of contingencies some of the rare ones
which are dangerous.

I. I NTRODUCTION

The usual approach for planning and operation of electric
power transmission systems is based on the generally recog-
nizedN−1 criterion. This criterion was originally designed for
small to middle size power systems, scaled to one country and
sometimes its neighborhood. In such transmission systems,
what is defined as an incident is for example the loss of one
generation unit or the tripping of one transmission line. These
events are rare enough so that it is a priori very unlikely
that two of them occur at the same time. For example, if
the probability of one transmission line being unavailable
is around 10−4 and if we consider a 1 000 line system
(assuming that all the lines of this system have the same
reliability properties), the probability that one single line of the
transmission network is unavailable at a given moment is equal
to 0.0905 and the probability that two lines are disconnected
at the same time is equal to0.0045.

However, the continual increase in complexity in power sys-
tems, and especially the growing number of new interconnec-
tions may raise the question of whether thisN −1 criterion is
still sufficient or even relevant. For example, when considering
the interconnected European transmission system, it is very
likely that there is at least one transmission line disconnected
for maintenance operations in the entire European network.In
terms of probabilities, if we consider a large network of 20 000
transmission lines and if each transmission line is assumed
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to have a probability10−4 to be unavailable, the probability
that one of the lines of the whole network is unavailable at a
given moment is equal to0.2707. This value is high enough
to consider that theN − 1 criterion is no longer conservative
enough and thatN − 2 contingencies also have to be studied
in order to make sure that it is possible to mitigate them while
serving the electricity demand and respecting the operational
constraints of the transmission network.

The Transmission System Operators (TSOs) of each inter-
connected country therefore need to be able to performN − 2,
N − 3 or even deeper security analyses in order to operate
safely the transmission system they are responsible for.

When runningN − k (k > 1) security analyses, a severe
computational problem arises. Indeed, whenk starts growing,
the size of the set of potentially dangerous events forN − k

analyses becomes rapidly huge and analyzing individually ev-
ery event to find the dangerous ones becomes computationally
irrelevant. As way of example, the size of the event space for
a 1000 line electric network grows from approximately106 to
1012 whenk goes from2 to 4.

Within these extremely large sets of events, we assume in
this paper that theN − k events that can indeed threaten the
security of the system arerare. Under this assumption, the
problem of findingN−k dangerous events becomes equivalent
to the problem of finding rare-events in combinatorial search
spaces. This equivalence suggests that importance sampling
techniques, which have been vastly successful for solving
combinatorial problems, could also be used for efficiently
identifying dangerous contingencies.

In this paper, we develop and validate an approach based on
these importance sampling techniques for the fast identifica-
tion of dangerous contingencies within the context of steady-
state security analysis.

The rest of this paper is organized as follows. The back-
ground for identifying rare events in combinatorial search
spaces with iterative sampling methods is described in Section
II. The approach for applying these techniques toN−k static
security analyses is presented in Section III. This approach
is illustrated on the IEEE 118 bus test system in Section
IV, in which some simulation results are reported. Section
V discusses this method with respect to existing work and
conclusions are drawn in Section VI.
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II. I TERATIVE SAMPLING METHODS FOR IDENTIFYING

RARE EVENTS IN COMBINATORIAL SEARCH SPACES

In the literature many iterative sampling methods have been
proposed for searching solutions to combinatorial or non-
convex optimization problems, such as genetic algorithms,
distribution estimation methods, Markov-Chain Monte Carlo
methods, and also the so-called cross-entropy method (see
[10], [12], [2] and [15]).

A common feature of these methods, from an algorithmic
point of view, is to combine random sampling with an iterative
process allowing to “learn” the best sampling scheme for the
problem under consideration. Many of these algorithms work
in the following generic way:

• define some initial sampling distribution over the consid-
ered search space;

• at each iteration:

– generate a subset of potential solutions over the
search space by using the current sampling distri-
bution;

– evaluate the objective function for each configuration
in the current sample;

– use the pairs (configuration, objective function) in
the current sample so as to determine a new sampling
distribution better targeting the interesting solutions
of the problem;

• halt the iterative process when the computational re-
sources have been exhausted, or when the current sample
is sufficiently pure in terms of objective function distri-
bution, or when the variation of some sample statistics
has not changed significantly since a certain number of
iterations.

In this paper, we want to exploit such iterative sampling
based methods for rare combinatorial event simulations, i.e.
in order to identify elements of a very small subset of
“interesting” configurations among a very large number of
candidate ones located in an originally unstructured discrete
search space. To this end, we first define an objective function
over the original discrete space which is maximal only for
the sought interesting solutions. Then we embed this discrete
search space in a continuous metric space where the objective
function varies in a sufficiently progressive way and on which
we may apply naturally linear operators such as averaging
and interpolation, and we use the iterative sampling based
optimization approach together with averaging/interpolation
operators over the embedding space so as to generate a se-
quence of sampling distributions defined over this space which
progressively targets elements corresponding to interesting
configurations of the original problem. One main component
of this approach, needed to allow the computation of the
objective function over the embedding space, consists of a
reverse mapping (pre-image computation) of the embedding
so as to associate to each point of the embedding space an
element of the original discrete space over which the objective
function is defined.

In our simulations reported below, we use as iterative
sampling method the cross-entropy method [15]. This method
works as follows:

• Define a hypothesis space of candidate sampling densities
pλ defined overRn and indexed by a parameter vector
λ.

• Setλ to its initial valueλ0 (typically λ0 will be chosen
so as to let the distributionpλ0

cover the complete space
R

n).
• At each iterationi, draw a sampleSi of sizes of config-

urations according to the current distribution defined by
the current valueλi (s is a parameter of the algorithm)
and evaluate the value of the objective function for each
one of these configurations.

• Keep the subsetS′

i of Si corresponding to them < s

best solutions (m is another parameter of the algorithm).
• Use the sampleS′

i to determine a new valueλi+1. In the
cross-entropy method, one uses at this step the maximum
likelihood principle, i.e. one choses the valueλi+1 such
that the likelihood of the sampleS′

i+1 is maximal.
In the next section, we describe the precise setting that we

propose in order to apply this approach to the identification
of dangerousN −k events in power systems. These comprise
the choice of an objective function measuring correctly the
severityof an event, the metrization and pre-image compu-
tations associated to the embedding of theN − k events
in a continuous space, and the choices associated to the
application of the cross-entropy method per se (space of
sampling distributions, as well as the parameterss andm).

III. STATIC SECURITY, N − k AND ITERATIVE SAMPLING

In this section, we describe a method for applying the
generic iterative sampling approach explained previouslyto
the identification of dangerousN − k contingencies in the
context of static security. Simulations results generatedon the
IEEE 118 bus system are reported later in Section IV. The
remainder of this section is structured as follows. First, we
start by defining the event space and the notion of dangerous
and non-dangerous events. Afterwards, we elaborate on the
choice of the objective function, the representation of the
events in a (low-dimensional) continuous space and the pre-
image computation. Finally, a fully specified algorithm for
searching for dangerous events is given.

A. The (rare) dangerous events

The event spaceX (here the set of potentially dangerous
contingencies) is made of the events that correspond to the
loss ofk distinct transmission lines. An element of this space
is represented by thek-tuple (l1, l2, . . . , lk) where everyli
refers to a line.1 A dangerous event of this space is set to
be an event for which there exists no post-fault steady-state
equilibrium point of the system. In our simulations, the system
is said to have no post-fault equilibrium point if the power
flow diverges or does not converge after a specified number
of iterations. When the loss ofk transmission lines splits the
power system into several subsystems, a power flow should in
principle be run for every area of the system and the stability

1Notice that in this paper we do not consider “mixed”N − k events (i.e.,
contingencies which correspond to the loss of various typesof power system
elements) so as to simplify the metrization of the event space (see later).
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or instability diagnosis should be based on the analysis of these
separate runs. Since it adds difficulty to the problem (e.g.,if
the system is splitted into two areas such that one is very small
with respect to the other and if only the smaller has no steady-
state operating point, then, should the system be considered as
being stable or unstable?), we have preferred to remove from
the set of events those which increase the degree of connexity
of the system.

B. The objective function

The objective functionO(x) is a real-valued function de-
fined over the space of events which takes its maximum values
when x is a dangerous event. This function is used at every
iteration of the algorithm for selecting among the several
events drawn from a sampling density, those which correspond
to the largest value ofO(x). These are used to define,
based on the maximum likelihood principle, the next sampling
density. As the iterations go on, the algorithm should generate
sampling densities which give more weight to the dangerous
events. In the classical so-called cross-entropy framework, the
functionO(x) is given. In our problem, one has the flexibility
to choose among the set of real-valued function defined on
X , one which leads to good performances. Picking up a
good functionO(x) may be challenging. In the context of
steady state security, we propose as pragmatic approach to
define this function to associate to an eventx a value that
reflectshow close− according to a metric based on some
power engineering concepts− the system is from instability.
This can be achieved by exploiting several criteria such as
the reactive power reserve still available on the generators,
the distance between the current loading condition and the
maximum loading condition or other severity indices published
in the power system literature. In this work, we chose to relate
the valueO(x) to the number of iterations that are needed by
a power flow to converge when the eventx occurs. Indeed,
it is likely that the closer an event is from instability, the
more the power flow has to iterate to converge. Note that,
according to some simulations carried out on the benchmark
IEEE 118 bus system, the number of iterations to convergence
and the distance between the current loading condition and
the maximum loading condition tend to be correlated. This is
illustrated on Figure 1 depicting the relationship betweenthe
global system load and the number of iterations needed by the
power flow computation. When, for an eventx, the power flow
diverges or does not converge after the maximum number of
iterations has been reached, the value ofO(x) is set equal to
this maximum number of iteration plus one. This ensures that
O(x) takes its maximum value on the dangerous events.

C. Metrization and pre-image computation

For iterative sampling methods to work well, the event
space should be metrized in a way that the objective function
on the continuous metrized space should vary sufficiently
progressively.

To explain the strategy we have chosen to metrize the event
space, we will first reason as if onlyN − 1 contingencies
were considered. In such a case, one approach for metrization
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Fig. 1. Evolution of the number iterations to convergence ofthe power flow
algorithm when the load increases monotonically. The test system is the IEEE
118 bus system.

and pre-image computation could be to use the plane (R
2)

as metrized space, to plot the geographical map of the power
system on this plane and to associate to every event of the
metrized space the line which stands the closest to it (pre-
image computation). The distance between an event in the
plane and a line could for example be defined as the area of
the triangle formed by the event and the two end buses of
the line. By assuming that the closer two lines are from an
element ofR2, the more likely it is that their loss has similar
effects on the steady-state properties of the post-fault system,
this strategy may indeed lead to an objective function that
varies progressively on the continuous metrized event space.

Unfortunately, one main drawback of this strategy is that
this assumption may often be false since, among others, the
geographical distance between two nodes may often be very
poorly correlated with their electrical distance. To circumvent
this problem, while still having the possibility to define the
pre-image computation procedure based on the location of
the buses in a two-dimensional space, we have chosen to
represent these buses differently on the plane. Indeed, rather
than to position the buses according to their geographical
location, they are represented in a way such that the distance
between every pair of nodes is correlated to their electrical
distance. Technically, this has been achieved as follows. First,
we compute for every two buses of the electrical network the
reduced admittance between them (computed by reducing the
admittance matrix to these two buses) and take the modulus of
the inverse of this value to represent their electrical distance.
Second, we place the buses on a plane such that the Euclidean
distance between any two bus locations in this plane represents
well their electrical distance. For this purpose, we have cho-
sen to use multidimensional scaling (MDS) algorithms (see,
e.g., [5]), and in particular the Torgerson algorithm. MDS
algorithms have been specifically developed to map objects
between which measures of distances are given into points in
a low-dimensional Euclidean space such that their distances
computed in this space are close to the given distances.
For the sake of illustration, Figure 2b represents on a plane
the position of the buses of the IEEE 14 bus test system
computed by such an approach. The figure also shows the
lines connecting these buses. The one-line diagram of this test
system, as it is usually found in the literature, is given on
Figure 2a. Obviously, the positions of the buses on this latter
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(a) The “classical” one-line diagram
(b) One-line diagram that positions buses

according to their electrical distances

Fig. 2. Representation of two one-line diagrams of the IEEE 14 bus test system. Figure (a) gives the classical one-line diagram, as published in the literature.
The second diagram positions the nodes according to their electrical distances by using a multi-dimensional scaling (MDS) algorithm.

diagram do not give a good image of their electrical distances.
For example, nodes 1, 2, 4 and 5 are much closer from an
electric point of view than they appear on the original one-
line diagram. Also, it is worth noticing that node 8 which
is connected to nodes 4 and 9 through a three windings
transformer appears quite remote on the one-line diagram
drawn on Figure 2b while it is not the case on the other. This
was expected since the windings of a transformer generally
have a reactance whose value is in the range of the reactance
value of a few tens of kilometers long transmission line.

We discuss now the case whenN−k events withk > 1 are
considered. First, we considerR

2k as metrized space rather
than R

2, as it was the case withN − 1 contingencies. The
computation of the pre-image(l1, l2, . . . , lk) of an event in the
metrized space is done as follows. To identify the component
l1, we take the first two components of the2k-dimensional
event vector in the metrized space and exploit these two
coordinates to identify a line as if we were dealing with
an N − 1 event. By taking the second two components of
the 2 × k-dimensional event vector, we identifyl2 using the
same procedure, and then similarly(l3, . . ., lk). The rationale
behind this approach lies on the assumption that if two events
(l1, l2, . . . , lk) and(l′1, l

′

2, . . . , l
′

k) are such that if for anyi, li
is close tol′i, then these events will have similar effects on the
steady-state properties of the post-fault system.

Finally, note that the pre-image computation just described
may lead to somek-tuples(l1, l2, . . . , lk) which do not belong
to X since nothing does guarantee that thek-tuple is made
of distinct lines or that thek-tuple does not correspond
to an event which splits the network in several areas (see
Subsection III-A). To address this problem, we have slightly
modified the pre-image computation procedure as follows.
First, we consider that the elements of ak-tuple are identified
sequentially. At every stepj, we check after having identified
lj whether there exists inX a k-tuple whose firstj elements
are (l1, l2, . . ., lj). If it is not the case, we choose aslj the
second closest line to the point extracted from the metrized

event. There is again a similar checking on this newlj and
the procedure repeats if necessary.

In the following, we denote byPreImage : R
2×k
→ X

the function that computes the pre-image of an element of the
metrized space.

D. A fully specified algorithm

Figure 3 gives the tabular version of an iterative sampling
based algorithms for identifying rare events. This algorithm
usesn-dimensional Gaussian laws as sampling distributions
(referred to byGaussRn(·, λi) in the algorithm) and is a
particular instance of the cross-entropy based approach for
identifying rare events described in Section II.

The algorithm takes as input an objective functionO(·), its
maximum valuemax objective and the pre-image function.
It outputs a set of events which maximize this function.

The parametersλ0 = [µ0, σ0]
n of the initial sampling

distribution (µ and σ refer to the mean and the standard
deviation of the distribution, respectively) are usually chosen
such that the initial sampling distribution covers well theentire
event space. In our simulations, these will be chosen such that
(i) µ0 corresponds to the geometrical center of the subspace
of the metrized event space in which all the buses and lines
of the electric system are located (ii) theith component of
σ0 is equal to half the size of this subspace alongside itsith
dimension.

At each iterationi, a sample ofs elements is drawn
according toGaussRn(·, λi). Usually, in cross-entropy algo-
rithms, the value ofs is chosen an order of magnitude larger
than the number of elements parameterizing the sampling
distributions. In our simulations,n is equal to12 and s is
chosen equal to200. The pre-image function is first applied
to every element of the sample to identify to which events they
correspond. Afterwards, the different values that the objective
function takes over these events are computed. These values
are first exploited to identify which eventsx are such that
O(x) = max objective. If such events are found, they are
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Problem definition: An objective functionO : X → R, the maximum value (max objective) of O(·), a pre-image function
PreImage : R

n
→ X .

Algorithm parameters: The parametersλ0 = [µ0, σ0]
n of the initial n-dimensional Gaussian sampling distribution, the

sizes of the sample drawn at each iteration, the numberm of best solutions chosen at each iteration.
Output: A setXmax such that every element of this set maximizesO(·).
Algorithm:

Step 1.Set i equal to0.
Step 2.SetSi, SOi andS′

i to empty sets.
Step 3.Draw independentlys elements according to the pdfGaussRn(·, λi) and store them inSi.

Step 4.For every elementy ∈ Si, computex = PreImage(y), computeo = O(x), add the pair(y, o) to SOi and, if
o = max objective , addx to Xmax.
Step 5. Identify in SOi the m pairs which have the largest value ofo and set theiry values inS′

i.

Step 6.Setµi+1[j] =

P

y∈S′

i
y[j]

m
andσi+1[j] =

√

P

y∈S′

i
(y[j]−µi+1[j])2

m
for j = 1, . . . , n and setλi+1 = [µi+1, σi+1] .

Step 7. If stopping conditions are reached, outputXmax and stop. Otherwise,i← i + 1 and go toStep 2.

Fig. 3. An algorithm for identifying the elements that maximize a functionO : X → R by iterative sampling whenRn is chosen as metrized space.

stored. Afterwards, the events which lead to them best values
of the objective function are used to compute the next sampling
distribution. The parameterm is usually chosen10 to 20 times
smaller thans. In our simulations,m is equal to10.

Different stopping conditions can be thought of for this
algorithm (see Section II). In our simulations, we will mostly
for illustrative purposes either stop the algorithm as soonas
one element that maximizesO(·) has been found or when a
specific number of iterations has been reached.

IV. RESULTS ON THEIEEE 118BUS TEST SYSTEM FOR

N − 3 SECURITY ANALYSIS

In this section, we evaluate the proposed methodology on
the IEEE 118 bus test system, which has been vastly used as
benchmark test system in the literature.N − 3 contingencies
are considered.

To assess our approach, we first screened all the possible
N − 3 contingencies and identified the dangerous ones. This
analysis has shown that there exist 895 649N − 3 contin-
gencies that do not split the network into several subsystems.
Among them, 187 contingencies are dangerous, that is contin-
gencies for which the power flow diverges or does not con-
verge after a maximal number of iterations. The ratio between
the dangerous contingencies and all possible contingencies is
thus around2.09.10−4, and so we can indeed consider that
identifying such dangerous contingencies can be parented to
a rare-event problem.

To illustrate the efficiency of our methodology, we have
studied the speed at which it can identify one single dangerous
contingency. This speed has then been compared with the
one corresponding to a classical Monte-Carlo sampling of the
event space. For the cross-entropy based method, we ran the
algorithm 100 times with different initial random seeds and
stored the number of events after which the first dangerous one
was found. For the Monte-Carlo sampling method, we took
100 series of 100 random permutations of the 895 649N − 3

contingencies and computed for each of these permutations the
number of contingencies to screen before encountering the first
dangerous one. The results of these simulations are collected
in the histograms reported in Figure 4, where the horizontal
axis represents the number of screened contingencies and
where each vertical bar represents the number of runs out of
hundred which found the first dangerous contingency within
the corresponding range of numbers of runs.
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Fig. 4. Comparison of the number of contingencies to screen before
identifying the first dangerous one with the iterative sampling algorithm and
the Monte-Carlo sampling method.

We observe that the number of contingencies screened
before identifying the first dangerous one is centered around
1 403 with a standard deviation 941 for the cross-entropy based
algorithm, and centered around 4 770 with a standard deviation
484 for the Monte-Carlo method. The average number of
contingencies screened when the first dangerous one is found
is about 4 times smaller for the method we propose in
this work, which means that our iterative sampling method
is significantly more efficient than the classic Monte-Carlo
method, as regards the search of one dangerous contingency.
This result is explained by the fact that our approach can
at every iterationi > 1 exploit the information contained
in the previously drawn sample to compute a new sampling
distribution which is more likely to give more weight to events
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Fig. 6. Total number of dangerous contingencies identified versus number
of contingencies screened.

leading to high values ofO(·). This is illustrated on Figure
5 which shows the average values taken by the objective
function on the successive samples drawn, for a typical run
of the algorithm. In this figure, the horizontal axis represents
the iteration number of the algorithm while each vertical bar
represents the average plus/minus the standard deviation of
the objective function in the sample of size 200 at a given
iteration.

While Figure 4 gives information on the speed at which
our approach can identify one single dangerous contingency,
it does not tell anything about its ability to identify rapidly
several dangerous contingencies. To study this, we have plotted
on Figure 6, the average and the standard deviation (computed
over 100 runs of the algorithms) of the number of different
dangerous contingencies identified by the algorithm as a
function of the number of contingencies it has screened. As
one observes, this average number gets quite rapidly close
to one but does not increase rapidly afterwards. This is due
to the fact that once the first dangerous contingency has
been identified by the algorithm, the sampling distributions
built in the successive iterations are likely to give more and
more weight to this specific contingency. We have however
observed that for a few runs of the algorithm, this was
not necessary the case. These runs were identifying a larger
number of contingencies, between 3 and 6. This explains why
the variance plotted on the figure grows to rather large values.

V. RELATED WORK

The cross-entropy based importance sampling approach
proposed in this paper for efficiently identifying rare dangerous
events was first used within the context of power systems in
[4]. In this latter paper, the space of “events” was made of
load/generation patterns and the cross-entropy algorithmwas
applied without any metrization of the event space.

As regards the identification of dangerous events or the
computation of reliability indices, it has long been recognized
by power system engineers that crude Monte-Carlo simulations
may be computationally inefficient. Numerous techniques
were proposed to address this problem. For example, Refer-
ences [1], [13] propose to combine, in the context of distribu-
tion systems, Monte-Carlo simulations with some analytical
approaches. Paper [11] proposes to exploit artificial neural
networks based on the learning vector quantization algorithm
to make Monte-Carlo techniques more computationally ef-
ficient for loss of load probability calculations. Importance
sampling as well as other variance reduction techniques have
also been recurrently proposed in the power system literature
as an enhancement of Monte-Carlo methods (see, e.g., [13],
[3], [14], [8]).

In order to identify probability distributions targeting dan-
gerousN−k contingencies, the method proposed in this paper
only requires to run a security analysis for a relatively small
set of events. Viewed in this light, it can be parented to the
significant body of work related to contingency filtering and
contingency screening in power systems (see, e.g., [9], [6],
[7]). Most of the approaches for contingency filtering however
rely on deterministic algorithms while the one proposed in
this paper is a stochastic one. The importance sampling
distributions computed over the course of the cross-entropy
algorithm algorithm could possibly also be used as classifiers
for dangerous and non-dangerous events: indeed, they should
ideally associate a low probability to non dangerous events
and a high probability to dangerous ones. To this extent, the
approach proposed has some similarities with the many works
where classifiers for assessing the degree of severity of power
system scenarios are built (see, e.g., [7], [17], [16]).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach for identifying
rapidly among large sets ofN − k events, some of the
assumed few that could endanger the steady-state security of
a power system. The approach relies on importance sampling
techniques, a proper measure of the severity of an event and a
metrization of the contingency space. Simulations carriedout
on the IEEE 118 bus system have shown that the approach
is able to find dangerous events significantly faster than pure
Monte-Carlo approaches.

From a technical point of view, this work suggests sev-
eral research directions. At first, the procedure proposed for
metrizing the event space was specific to events corresponding
to the loss ofk lines. Therefore, we believe it would be
interesting to develop flexible metrization procedures that
could be applied to compare events of various nature and,
in particular, to compareN − k events corresponding to the
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simultaneous loss of different types of power system elements
(e.g., one generator, some loads and a line). Secondly, while
our approach was able to identify rapidly some dangerous
events, it would be relevant to study whether it could be
modified to identify all the dangerous events or at least a
significant fraction of them. Thirdly, investigating how the
approach could be adapted to deal with other stability issues
than steady-state ones (e.g., angle stability, voltage stability)
would certainly be another interesting topic of research.

Due to the increasing penetration of renewable energies, the
generation patterns that need to be considered when analyzing
the stability of a power system may become very numerous
and running even only aN − 1 security analysis for every of
them may become impossible. This suggests that developing a
methodology for identifying the dangerous production patterns
without having to analyze them one by one would be desirable.
We believe that such a methodology could be developed by
extending the approach proposed in this paper.
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