Pseudo-geographical representations of power system buses by multidimensional scaling

Florence Fonteneau-Belmudes, Damien Ernst, Louis Wehenkel

Department of Electrical Engineering and Computer Science University of Liège, Belgium

ISAP 2009 - November 10th

1. Motivation for creating new power system representations

Examples of existing solutions to represent physical properties of power systems

> pie charts and arrows show the flows in the transmission lines.

1. Motivation for creating new power system representations

Examples of existing solutions to represent physical properties of power systems

> color contours illustrate voltage magnitude variations.

1. Motivation for creating new power system representations

We propose a new approach to represent any kind of information about the physical properties of a power system.

- > these characteristics are represented as *distances* between buses.
- > the location of the buses reflect both their geographical coordinates and these properties.
- > examples of data represented: line impedances, quantities related to the behavior of the buses (e.g., nodal sensitivity factors).

2. Problem formulation

- ightharpoonup input: distances between each pair of buses of the system, denoted by d_{ii} and collected in a distance matrix D.
- \triangleright **output:** a set of two-dimensional coordinates for the buses such that the Euclidean interbus distances approximate the distances given in matrix D.
- > corresponding optimization problem:

$$\underset{d_{ij}^{Eucl}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(d_{ij}^{Eucl} - d_{ij} \right)^{2}. \tag{1}$$

First stage: resolution of the optimization problem

> the optimization problem underlying the computation of the suited pseudo-geographic coordinates of the buses writes:

$$\underset{X}{\operatorname{arg\,min}} f(X) , \qquad (2)$$

where

$$f(X) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\sqrt{\sum_{k=1}^{2} (x_{ik} - x_{jk})^2 - d_{ij}} \right)^2.$$

> multidimensional scaling (MDS) techniques are used to solve this problem.

Second stage: similarity transformation

> the solution of optimization problem (2) is non-unique.

> any map obtained by translating, rotating and scaling a solution of (2) is also admitted as a solution.

> among all possibilities, we select the one in which the pseudogeographical coordinates of two particular buses coincide with their geographical coordinates.

Second stage: similarity transformation, illustration

```
+1
+2
-2
01
```

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Translation of the MDS map along vector *t*

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Translation of the MDS map along vector *t*

```
○4 ○3
⊕1 +4 +3
+2
```

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Rotation of the MDS map of angle Θ around node 1

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Rotation of the MDS map of angle Θ around node 1

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Homothety of origin node 1 to position node 3 correctly

Geographical map (+) and MDS map (o)

Second stage: similarity transformation, illustration

Final result: the position of nodes 1 and 3 in the MDS map (o) coincide with their geographical location (+).

Classical one-line diagram of the IEEE 14 bus system

Pseudo-geographical representation of the reduced impedances between buses

- > the reduced impedance between two buses is obtained by:
 - reducing the admittance matrix of the network to these two buses,
 - computing the modulus of the inverse of this value.
- > these reduced impedances can be seen as *electrical distances*.
- > they reflect for instance:
 - how close the voltage angles of two buses are likely to be,
 - how a short-circuit can affect the currents in the rest of the system.

Pseudo-geographical representation of the reduced impedances between buses

Geographical representation

Pseudo-geographical representation

Pseudo-geographical representation of the voltage sensitivities of the buses

- > the voltage sensitivity of a bus is the voltage variation following the loss of a generator.
- > to each bus is associated a vector collecting its voltage variations.

Voltage variations at bus i:

$$\Delta V_i = \left(\begin{array}{c} \Delta V_i^1 \\ \Delta V_i^2 \\ \vdots \\ \Delta V_i^{n_g} \end{array}\right)$$
 Voltage variation at bus i when generator 2 is lost

 \succ the information contained in vectors ΔV_i is then converted into interbus distances.

Distance between buses
$$i$$
 and j : $d_{ij} = \sqrt{\sum_{g=1}^{n_g} \left(\Delta V_i^g - \Delta V_j^g\right)^2}$.

Pseudo-geographical representation of the voltage sensitivities of the buses

Geographical representation

Pseudo-geographical representation

5. Conclusion

> We have proposed a new approach for visualizing power system data, expressed as distances between buses.

Prospects of application of this framework:

> The created representations could complement existing visualization tools for planning and operation of a power system.