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1. Motivation for creating new
power system representations

Examples of existing solutions to represent physical properties

of power systems

» pie charts and arrows show the flows in the transmission lines.
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1. Motivation for creating new
power system representations

Examples of existing solutions to represent physical properties
of power systems

» color contours illustrate voltage magnitude variations.




1. Motivation for creating new
power system representations

We propose a new approach to represent any Kkind of
information about the physical properties of a power system.

» these characteristics are represented as distances between buses.

» the location of the buses reflect both their geographical coordinates
and these properties.

» examples of data represented: line impedances, quantities related
to the behavior of the buses (e.g., nodal sensitivity factors).



2. Problem formulation

» Input: distances between each pair of buses of the system, denoted
by dz;]- and collected in a distance matrix D.

> output: a set of two-dimensional coordinates for the buses such
that the Euclidean interbus distances approximate the distances given
In matrix D.

» corresponding optimization problem:

arg min T Y (dE“’d — ij>2. (1)
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3. Computational method

First stage: resolution of the optimization problem

> the optimization problem underlying the computation of the suited
pseudo-geographic coordinates of the buses writes:

arg min f(X) , (2)
X

where f(X) = Z Z (\ Z(mzk — Tj;)? — dij) ;

i=1 j=i+1 -

» multidimensional scaling (MDS) techniques are used to solve this
problem.



3. Computational method

Second stage: similarity transformation

» the solution of optimization problem (2) is non-unique.

» any map obtained by translating, rotating and scaling a solution of
(2) is also admitted as a solution.

» among all possibilities, we select the one in which the pseudo-
geographical coordinates of two particular buses coincide with their
geographical coordinates.



3. Computational method

Second stage: similarity transformation, illustration
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3. Computational method

Second stage: similarity transformation, illustration

Translation of the MDS map along vector ¢
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3. Computational method

Second stage: similarity transformation, illustration

Translation of the MDS map along vector ¢

Geographical map (+) and MDS map (o)
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3. Computational method

Second stage: similarity transformation, illustration

Rotation of the MDS map of angle © around node 1

Geographical map (+) and MDS map (o)



3. Computational method

Second stage: similarity transformation, illustration

Rotation of the MDS map of angle © around node 1

Geographical map (+) and MDS map (o)
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3. Computational method

Second stage: similarity transformation, illustration

Homothety of origin node 1 to position node 3 correctly

Geographical map (+) and MDS map (o)
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3. Computational method

Second stage: similarity transformation, illustration

Final result: the position of nodes 1 and 3 in the MDS
map (0) coincide with their geographical location (+).
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4. lllustrations on the IEEE 14 bus system

Classical one-line diagram of the IEEE 14 bus system
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4. lllustrations on the IEEE 14 bus system

Pseudo-geographical representation of the reduced impedances
between buses

» the reduced impedance between two buses is obtained by:
- reducing the admittance matrix of the network to these two buses,
- computing the modulus of the inverse of this value.

> these reduced impedances can be seen as electrical distances.

» they reflect for instance:
- how close the voltage angles of two buses are likely to be,

- how a short-circuit can affect the currents in the rest of the system.
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4. lllustrations on the IEEE 14 bus system

Pseudo-geographical representation of the reduced impedances
between buses
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4. lllustrations on the IEEE 14 bus system

Pseudo-geographical representation of the voltage sensitivities
of the buses

» the voltage sensitivity of a bus is the voltage variation following the
loss of a generator.

» to each bus is associated a vector collecting its voltage variations.

[ AVE _ |
9 Voltage variation at bus i
AVz‘ when generator 2 is lost

Voltage variations at bus i : AV =

\ AV
» the information contained in vectors AVi IS then converted into

interbus distances. -
. . . 2
Distance between busesi andj : d;; = E (AVY — AV? )"

\ = s




4. lllustrations on the IEEE 14 bus system

Pseudo-geographical representation of the voltage sensitivities
of the buses

Geographical representation Pseudo-geographical representation
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5. Conclusion

» We have proposed a new approach for visualizing power
system data, expressed as distances between buses.

Prospects of application of this framework:

» The created representations could complement existing
visualization tools for planning and operation of a power system.
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