Identification of dangerous contingencies for large scale power system security assessment

Florence Fonteneau-Belmudes

Department of Electrical Engineering and Computer Science University of Liège, Belgium

PhD defense - March 1st

Electric power systems - structure

Power system security assessment - objective

\succ what Transmission System Operators (TSOs) want to avoid:

 $normal\ situation$

contingency

degradation of the security of the system

Power system security assessment – notion of contingency

> definition:

any unexpected event triggering a change in the current operating conditions;

➤ examples:

- equipment outages (the simultaneous loss of k equipments is called an N-k contingency);

- transient faults;
- error of an operator;

≻ note:

the notion of contingency can also be used to model the uncertainties on the future generation and load patterns.

Power system security assessment - usual practice

 \succ using models of their network and simulation tools, TSOs simulate the occurrence of each potential contingency;

 \succ the contingencies leading to unacceptable operating conditions are classified as dangerous;

 \succ for each dangerous contingency, adapted preventive or corrective control actions are designed to preserve the level of security of the system.

Large scale power system security assessment

 \succ the size of the set of potential contingencies grows with the size of the studied system and with the considered time horizon;

 \succ when the contingency space is too big, it is no longer possible to analyze each contingency individually in a reasonable amount of time;

> traditional solutions:

- increase of the computational resources and parallelization of the security assessment task;

- use of filtering techniques to determine thanks to some light computations which contingencies to simulate.

Large scale power system security assessment

> problem considered in this thesis:

- we address large scale power system security assessment problems with bounded computational resources (not allowing an exhaustive screening of the contingency space);

- we consider that only detailed contingency analyses are performed;

> proposed approach:

we propose an algorithm exploiting at best the number of contingency analyses that can be carried out so as to identify a maximal number of dangerous contingencies.

Definitions

Contingency severity:

based on the definition of an objective function $O : X \rightarrow \mathbb{R}$ (where X is the contingency space) that quantifies the effect of each contingency on the operating conditions of the system;

> dangerous contingencies:

contingencies x such that $O(x) \ge \gamma$, where the threshold γ is defined by the user;

Computational resources:

a fixed budget in terms of CPU time, expressed as a maximal number of evaluations of the objective function that can be performed.

Reformulation of the problem addressed in the thesis

> problem statement:

identify a maximal number of contingencies x such that $O(x) \ge \gamma$ while evaluating the function O a bounded number of times.

> procedure developed to solve it:

an iterative sampling framework inspired from derivative-free optimization algorithms.

Outline

1. Introduction

2. An iterative sampling approach based on derivative-free optimization methods

- 3. Embedding the contingency space in a Euclidean space
- 4. Case studies
- 5. On-line selection of iterative sampling algorithms

6. Estimating the probability and cardinality of the set of dangerous contingencies

7. Conclusion

Comparison with an optimization problem

> usual formulation of an optimization problem:

given a search space X and a real-valued function $f : X \to \mathbb{R}$, identify an element x_0 in X such that $f(x_0) \ge f(x) \forall x \in X$;

> problem addressed here:

given a search space X, a real-valued function $O : X \to \mathbb{R}$ and a real number γ , identify a maximal number of points w in Xsuch that $O(w) \ge \gamma$ with a bounded number of evaluations of the function O.

Comparison with an optimization problem

 \succ the configuration (search space and objective function) is the same;

> we do not only want to identify one maximum of the objective function, but the set of points such that $O(x) \ge \gamma$;

For $\gamma = \max_{x \in X} O(x)$, our problem is equivalent to a classical optimization problem aiming at identifying all the maxima of the objective function.

Specificities of our "optimization-like" problem

 \succ the search space is very large;

 \succ we want to be able to solve this problem in a generic way, whatever the contingency space and objective function at hand;

> no derivative of the objective function is available, and only the pairs (x, O(x)) can be used for solving the problem;

> since the objective function can only be evaluated a given number of times, the number of such pairs (x, O(x)) is bounded.

Derivative-free optimization algorithms

 \succ they only use values taken by the objective function for different points of the search space to search for a maximum of this function;

 \succ they are split into different categories:

- algorithms building models of the objective function based on samples of its values;

- algorithms directly exploiting sets of values of the objective function and iteratively trying to improve a candidate solution to the problem.

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

> considered problem:

15

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ first iteration: drawing a sample of points from \mathbb{R} according to an initial sampling distribution;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ first iteration: evaluating the objective function for all the points of this sample;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ first iteration: selecting the "best points" of the current sample to compute a new sampling distribution;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ second iteration: generating a new sample according to this updated sampling distribution;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ second iteration: generating a new sample according to this updated sampling distribution;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ third iteration: the points in the current sample are located in a tighter area around the maximum of the objective function;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ third iteration: the points in the current sample are located in a tighter area around the maximum of the objective function;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ fourth and last iteration: the current sampling distribution is now focused on the maximum of the objective function;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ fourth and last iteration: the current sampling distribution is now focused on the maximum of the objective function;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification: illustration

 \succ a large majority of the points drawn from the contingency space during the execution of the algorithm are dangerous contingencies;

Our basic iterative sampling (BIS) algorithm for dangerous contingency identification

Our comprehensive iterative sampling algorithm for dangerous contingency identification

 \succ the basic iterative sampling algorithm is repeated as long as the available computational resources have not been exhausted;

The objective function

≻ role

- direct the sampling process towards dangerous contingencies;

\succ examples

- *global criteria:* impact of unsupplied energy, distance of some system variables to their acceptability limits, voltage stability limits;

- *equipment-based criteria:* nodal voltage collapse proximity indicators, post-contingency line flows.

Motivation

 \succ our comprehensive iterative sampling algorithm works in a Euclidean space and uses the Euclidean metric;

 \succ there is no natural metric in the contingency spaces in power system security assessment problems;

=> to use this algorithm for power system security assessment, we propose to embed the contingency space X in a Euclidean space \mathcal{Y} in which the algorithm is executed.

Metrization process, illustration

Contingency space, ${\cal X}$

Euclidean embedding space, \mathcal{Y} (e.g., \mathbb{R}^2 or \mathbb{R}^{2k})

Metrization process, illustration

Contingency space, ${\cal X}$

Euclidean embedding space, \mathcal{Y} (e.g., \mathbb{R}^2 or \mathbb{R}^{2k})

Embedding the set of all N-1 line outage contingencies in \mathbb{R}^2 , example 1: exploiting the equipments' geographical coordinates

 \succ each contingency is projected in \mathbb{R}^2 as the midpoint of the lost line in the geographical map of the system:

IEEE 14 bus system

Embedding the set of all N-1 line outage contingencies in \mathbb{R}^2 , example 1: exploiting the equipments' geographical coordinates

 \succ each contingency is projected in \mathbb{R}^2 as the midpoint of the lost line in the geographical map of the system:

Projection of the contingencies as the midpoints of the transmission lines

Embedding the set of all N-1 line outage contingencies in \mathbb{R}^2 , example 1: exploiting the equipments' geographical coordinates

 \succ the pre-image function associates to each point of the plane the projected contingency it stands the closest to:

Extension of example 1: embedding set of all N-k line outage contingencies in \mathbb{R}^{2k}

> projection of the contingency $(l_1, l_2, ..., l_i, ..., l_k)$:

point with coordinates $(y_1, y_2, ..., y_{2i-1}, y_{2i}, ..., y_{2k})$,

coordinates of the midpoint of line l_i in the geographical map of the system.

Extension of example 1: embedding set of all N-k line outage contingencies in \mathbb{R}^{2k}

> pre-image of the point of coordinates $(y_1, y_2, ..., y_{2i-1}, y_{2i}, ..., y_{2k})$:

contingency
$$(l_1, l_2, ..., l_i, ..., l_k)$$
,

line whose midpoint is the nearest neighbor of the point with coordinates (y_{2i-1}, y_{2i}) .

Embedding the set of all N-1 line outage contingencies in \mathbb{R}^2 , example 2: exploiting "electrical" equipment coordinates

 \succ based on the electrical distances between equipments, we first compute new bus coordinates thanks to a multi-dimensional scaling algorithm;

Embedding the set of all N-1 line outage contingencies in \mathbb{R}^2 , example 2: exploiting "electrical" equipment coordinates

 \succ each contingency is projected in \mathbb{R}^2 as the midpoint of the lost line in the "electrical" map of the system;

> the pre-image function also associates to a point of \mathbb{R}^2 the nearest projected contingency;

 \succ this procedure can be extended to the set of all N-k line outage contingencies in the same way as the previous one.

Problem 1

studied network: IEEE 118 bus test system;

Problem 1

> contingency space:

N-3 line tripping contingencies in a given base case (1 055 240 potential contingencies);

> objective function:

number of iterations required by an AC load-flow algorithm applied to the post-contingency situation to converge;

> dangerous contingencies:

contingencies such that $O(x) \ge 11$;

> Euclidean embedding space:

 \mathbb{R}^6 (electrical distances).

Results

 \succ number of contingencies screened when the first dangerous contingency is identified (our approach):

Results

 \succ number of contingencies screened when the first dangerous contingency is identified (classical Monte Carlo sampling):

Problem 2

> studied system: Belgian transmission network \geq 150 kV;

43

Problem 2

> contingency space:

N-2 line tripping contingencies in a given base case (201 295 potential contingencies);

> objective function:

maximal loading rate (in %) observed over all the lines in the post-contingency steady-state;

> dangerous contingencies:

 $O(x) \ge 170;$

Euclidean embedding space:

 \mathbb{R}^4 (geographical coordinates).

Simulation results

 \succ number of dangerous contingencies identified vs available computational budget (mean and standard deviation over 100 runs):

Simulation results

 \succ number of dangerous contingencies identified vs available computational budget (mean and standard deviation over 100 runs):

Simulation results

 \succ probability of identifying at least n dangerous contingencies with a computational budget of 750 contingency analyses:

	Probability of identifying at least			
п	n dangerous contingencies			
	Iterative sampling	Monte Carlo		
1	1	0.49		
2	1	0.20		
3	1	0.03		
4	1	0.01		
5	0.99	0		
10	0.95	0		
20	0.75	0		
30	0.51	0		
40	0.26	0		
50	0.13	0		
100	0	0		
210	0	0		

Simulation results

 \succ probability of identifying at least n dangerous contingencies with a computational budget of 750 contingency analyses:

	Probability of identifying at least			
п	n dangerous contingencies			
	Iterative sampling	Monte Carlo		
1	1	0.49		
2	1	0.20		
3	1	0.03		
4	1	0.01		
5	0.99	0		
10	0.95	0		
20	0.75	0		
30	0.51	0		
40	0.26	0		
50	0.13	0		
100	0	0		
210	0	0		

Context

 \succ several basic iterative sampling algorithms (differing by their parameters) are available;

Probability of identification of dangerous contingencies 1 to 6

Context

 \succ several basic iterative sampling algorithms (differing by their parameters) are available;

Probability of identification of each dangerous contingency

Objective

 \succ we consider that these algorithms can be executed sequentially until the available computational resources are exhausted;

 \succ we want to schedule their execution so as to maximize the number of dangerous contingencies identified.

Proposed strategy

 \succ a **discovery rate-based strategy**, scoring at each step the different algorithms according to their ability to discover new dangerous contingencies and selecting the one with the highest score;

Definition of the discovery rate: number of new dangerous contingencies identified over the last T runs of algorithm *i*.

$$D_{t-1}^{i} = \begin{cases} d_{T}^{i}(t-1) \text{ if } T \leq n_{t-1}^{i} \\ d_{n^{i}(t-1)}^{i}(t-1) \text{ if } T > n_{t-1}^{i} \end{cases}$$

 \succ this strategy is compared to a strategy looping over the series of algorithms at hand.

Simulation results: studied problem

considered system:

Belgian transmission system \geq 150 kV;

> contingency space:

N-1 line tripping contingencies in a given base case (634 potential contingencies);

> objective function:

loading rate (in %) induced on one specific transmission line, the line Ruien-Wortegem 150 kV;

> dangerous contingencies:

 $O(x) \ge 100;$

Euclidean embedding space:

 \mathbb{R}^2 (geographical coordinates).

Simulation results: studied problem

 \succ projection of the N-1 contingencies in \mathbb{R}^2 (in blue) and dangerous contingencies (in red);

Simulation results: studied problem

 \succ set of BIS algorithms at hand: 9 different algorithms initialized in the 9 areas delimited in black on the picture;

Simulation results

 \succ number of different dangerous contingencies identified by the two selection strategies with increasing computational budgets;

6. Estimating the probability and cardinality of the set of dangerous contingencies

Main ideas

 \succ we focus here on discrete contingency spaces, in which we consider that all contingencies are uniformly distributed (with probability p);

> we use our basic iterative sampling algorithm and exploit the principle of the cross-entropy method for rare-event simulation so as to estimate the probability *l* of the event $\{O(x) \ge \gamma\}$:

$$\hat{l} = \frac{1}{s} \sum_{y \in S_{final}} I_{\{O(preImage(y)) \ge \gamma\}} \frac{p}{\int_{z \in V_y} Gauss_{\mathbb{R}^n}(z, \lambda_{final}) dz}$$

> we also propose to derive from this latter probability an estimation of the cardinality n_{dang} of the set of dangerous contingencies:

$$\hat{n}_{dang} = rac{\hat{l}}{p}$$
 .

6. Estimating the probability and cardinality of the set of dangerous contingencies

Simulation results

 \succ considered problem: N-2 analysis of the Belgian transmission network, as in section 4;

(objective function: maximal overload induced on the lines of the system, $\gamma = 170$, contingency space embedded in \mathbb{R}^4 using the equipments' geographical coordinates);

 \succ results obtained after 100 runs of our BIS algorithm and of a naive Monte Carlo sampling algorithm:

	$\overline{\hat{l}}$	$\overline{\hat{n}_{dang}}$	$\sigma(\hat{n}_{dang})$
Iterative sampling	$1.03 \cdot 10^{-3}$	207.4	6.7
Monte Carlo sampling	$5.47 \cdot 10^{-6}$	1.1	2.5

7. Conclusion and future work

We have proposed in this thesis to apply iterative sampling techniques to the field of power system analysis.

Further research directions

 \succ explore new variants of the proposed algorithms;

 \succ integrate the developed approach to the security assessment procedures used by TSOs;

 \succ extend the use of such algorithms to the control part of the security assessment task.

Thank you!