
 1

Identification of dangerous contingencies 
for large scale power system security assessment

Florence Fonteneau-Belmudes 

Department of Electrical Engineering and Computer Science
University of Liège, Belgium

PhD defense - March 1st



 2

1. Introduction

Electric power systems - structure

   



 3

1. Introduction

Power system security assessment - objective

➢ what Transmission System Operators (TSOs) want to avoid:

+  → 

contingency degradation of the security of 
the system

normal situation
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1. Introduction

Power system security assessment – notion of contingency

➢ definition: 

any unexpected event triggering a change in the current operating 
conditions;

➢ examples: 

- equipment outages (the simultaneous loss of k equipments is 
called an N-k contingency);
- transient faults;
- error of an operator;

➢ note: 

the notion of contingency can also be used to model the 
uncertainties on the future generation and load patterns.
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1. Introduction

Power system security assessment - usual practice

➢ using models of their network and simulation tools, TSOs simulate the 
occurrence of each potential contingency;

➢ the contingencies leading to unacceptable operating conditions are 
classified as dangerous;

➢ for each dangerous contingency, adapted preventive or corrective 
control actions are designed to preserve the level of security of the 
system.
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1. Introduction

Large scale power system security assessment

➢ the size of the set of potential contingencies grows with the size of 
the studied system and with the considered time horizon;

➢ when the contingency space is too big, it is no longer possible to 
analyze each contingency individually in a reasonable amount of time;

➢ traditional solutions:

- increase of the computational resources  and parallelization of 
the security assessment task;

- use of filtering techniques to determine thanks to some light 
computations which contingencies to simulate.
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1. Introduction

Large scale power system security assessment

➢ problem considered in this thesis:

- we address large scale power system security assessment 
problems with bounded computational resources (not allowing an 
exhaustive screening of the contingency space);

- we consider that only detailed contingency analyses are 
performed;

➢ proposed approach:

we propose an algorithm exploiting at best the number of 
contingency analyses that can be carried out so as to identify a 
maximal number of dangerous contingencies.
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1. Introduction

Definitions

➢contingency severity:

based on the definition of an objective function O : X → ℝ (where 

X  is the contingency space) that quantifies the effect of each 
contingency on the operating conditions of the system;

➢ dangerous contingencies:

contingencies x  such that O(x)  ≥  Í, where the threshold Í  is 
defined by the user;

➢ computational resources:

a fixed budget in terms of CPU time, expressed as a maximal 
number of evaluations of the objective function that can be 
performed.
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1. Introduction

Reformulation of the problem addressed in the thesis

➢problem statement:
 

identify a maximal number of contingencies x such that O(x) ≥ Í 
while evaluating the function O a bounded number of times.

➢ procedure developed to solve it:

an iterative sampling framework inspired from derivative-free 
optimization algorithms.
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Outline
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Comparison with an optimization problem

➢usual formulation of an optimization problem:

given a search space X  and a real-valued function f  : X  → ℝ, 

identify an element x
0
 in X such that  f (x

0
) ≥ f (x) 8 x 2 X ; 

➢ problem addressed here:

given a search space X, a real-valued function O : X → ℝ and 

a real number Í, identify a maximal number of points w  in X 
such that O(w) ≥ Í with a bounded number of evaluations of the 
function O.

2. An iterative sampling approach based 
on derivative-free optimization methods
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Comparison with an optimization problem

➢ the configuration (search space and objective function) is the same;

➢ we do not only want to identify one maximum of the objective 
function, but the set of points such that O(x) ≥ Í ;

➢ if Í  = max  O(x), our problem is equivalent to a classical 

optimization problem aiming at identifying all the maxima of the 

objective function.

2. An iterative sampling approach based 
on derivative-free optimization methods

x 2 X
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Specificities of our ''optimization-like'' problem

➢the search space is very large;

➢we want to be able to solve this problem in a generic way, whatever 
the contingency space and objective function at hand;

➢no derivative of the objective function is available, and only the pairs 
(x,O(x)) can be used for solving the problem;

➢ since the objective function can only be evaluated a given number 
of times, the number of such pairs (x,O(x)) is bounded.

2. An iterative sampling approach based 
on derivative-free optimization methods
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Derivative-free optimization algorithms

➢ they only use values taken by the objective function for different 
points of the search space to search for a maximum of this function;

➢they are split into different categories:

- algorithms building models of the objective function based on 
samples of its values;

- algorithms directly exploiting sets of values of the objective 
function and iteratively trying to improve a candidate solution to 
the problem.

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢considered problem: 
 

2. An iterative sampling approach based 
on derivative-free optimization methods

 O (x)

 x

Í9
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ first iteration: drawing a sample of points from ℝ  according to an 
initial sampling distribution;
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ first iteration: evaluating the objective function for all the points of 
this sample;
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ first iteration: selecting the ''best points'' of the current sample to 
compute a new sampling distribution;
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration 

➢ second iteration: generating a new sample according to this 
updated sampling distribution; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration 

➢ second iteration: generating a new sample according to this 
updated sampling distribution; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ third iteration: the points in the current sample are located in a 
tighter area around the maximum of the objective function; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ third iteration: the points in the current sample are located in a 
tighter area around the maximum of the objective function; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ fourth and last iteration: the current sampling distribution is now 
focused on the maximum of the objective function; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ fourth and last iteration: the current sampling distribution is now 
focused on the maximum of the objective function; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification: illustration

➢ a large majority of the points drawn from the contingency space 
during the execution of the algorithm are dangerous contingencies; 
 

2. An iterative sampling approach based 
on derivative-free optimization methods

Í9
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Our basic iterative sampling (BIS) algorithm for dangerous 
contingency identification

Draw a sample S of contingencies in X 

Output the set of  dangerous 
contingencies identified

yes

Evaluate O(x) for each x in S and store 

the contingencies for which O(x) ≥ Í

Define an initial sampling distribution 

Use the pairs (x,O(x)) 
to compute a new 

sampling distribution 
 σ (S) small enough?

no

computational 
budget 

exhausted
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Our comprehensive iterative sampling algorithm for dangerous 
contingency identification

➢ the basic iterative sampling algorithm is repeated as long as the 
available computational resources have not been exhausted;

2. An iterative sampling approach based 
on derivative-free optimization methods

Execute BIS algorithm

Computational 
budget

 exhausted? 

Output the set of different 
dangerous contingencies identified

yes

no
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The objective function

➢role

    - direct the sampling process towards dangerous contingencies;

➢examples

- global criteria:  impact of unsupplied energy, distance of some 
system variables to their acceptability limits, voltage stability 
limits;

- equipment-based criteria:  nodal voltage collapse proximity 
indicators, post-contingency line flows. 

2. An iterative sampling approach based 
on derivative-free optimization methods
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3. Embedding the contingency space 
in a Euclidean space

Motivation

➢ our comprehensive iterative sampling algorithm works in a 
Euclidean space and uses the Euclidean metric;

➢ there is no natural metric in the contingency spaces in power 
system security assessment problems;

=> to use this algorithm for power system security assessment, 

we propose to embed the contingency space X  in a  Euclidean 

space  Y  in which the algorithm is executed.
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3. Embedding the contingency space 
in a Euclidean space

Metrization process, illustration

Contingency space, X Euclidean embedding space, Y
(e.g., ℝ² or ℝ2k)

Projection
 operator
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3. Embedding the contingency space 
in a Euclidean space

Metrization process, illustration

Contingency space, X Euclidean embedding space, Y
(e.g., ℝ² or ℝ2k)

Projection
 operator
Preimage
 function
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3. Embedding the contingency space 
in a Euclidean space

Embedding the set of all N-1 line outage contingencies in ℝ², 
example 1: exploiting the equipments' geographical coordinates

➢ each contingency is projected in ℝ² as the midpoint of the lost line 
in the geographical map of the system:

IEEE 14 bus system
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3. Embedding the contingency space 
in a Euclidean space

Embedding the set of all N-1 line outage contingencies in ℝ², 
example 1: exploiting the equipments' geographical coordinates

➢ each contingency is projected in ℝ² as the midpoint of the lost line 
in the geographical map of the system:

Projection of the contingencies as the midpoints of the transmission lines
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3. Embedding the contingency space 
in a Euclidean space

Embedding the set of all N-1 line outage contingencies in ℝ², 
example 1: exploiting the equipments' geographical coordinates

➢ the pre-image function associates to each point of the plane the 
projected contingency it stands the closest to:
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3. Embedding the contingency space 
in a Euclidean space

Extension of example 1: embedding set of all N-k line outage 
contingencies in ℝ2k

➢ projection of the contingency (l
1 
, l

2
, ..., l

i 
,..., l

k
):

   point with coordinates (y
1 
, y

2 
, ..., y

2i1 
, y

2i
 , ..., y

2k
),

coordinates of the midpoint of line l
i
 in the geographical 

map of the system.
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3. Embedding the contingency space 
in a Euclidean space

Extension of example 1: embedding set of all N-k line outage 
contingencies in ℝ2k

➢ pre-image of the point of coordinates (y
1 
, y

2 
, ..., y

2i1 
, y

2i
 , ..., y

2k
): 

contingency (l
1 
, l

2
, ..., l

i 
,..., l

k
),

line whose midpoint is the nearest neighbor of the 
point with coordinates  (y

2i1 
, y

2i
).
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3. Embedding the contingency space 
in a Euclidean space

Embedding the set of all N-1 line outage contingencies in ℝ2, 
example 2: exploiting ''electrical'' equipment coordinates

➢ based on the electrical distances between equipments, we first 
compute new bus coordinates thanks to a multi-dimensional scaling 
algorithm;
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3. Embedding the contingency space 
in a Euclidean space

Embedding the set of all N-1 line outage contingencies in ℝ2, 
example 2: exploiting ''electrical'' equipment coordinates

➢ each contingency is projected in ℝ² as the midpoint of the lost line 
in the ''electrical'' map of the system;

➢ the pre-image function also associates to a point of ℝ2  the nearest 
projected contingency;

➢ this procedure can be extended to the set of all N-k line outage 
contingencies in the same way as the previous one.
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4. Case studies

Problem 1  

➢ studied network: IEEE 118 bus test system;
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4. Case studies

Problem 1  

➢ contingency space: 
N-3 line tripping contingencies in a given base case (1 055 240 
potential contingencies); 

➢ objective function: 
number of iterations required by an AC load-flow algorithm 
applied to the post-contingency situation to converge;

➢ dangerous contingencies: 
contingencies such that O(x) ≥  11;

➢ Euclidean embedding space: 
ℝ6 (electrical distances).



 41

4. Case studies

Results  

➢  number of contingencies screened when the first dangerous 
contingency is identified (our approach):
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4. Case studies

Results  

➢  number of contingencies screened when the first dangerous 
contingency is identified (classical Monte Carlo sampling):
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4. Case studies

Problem 2

➢ studied system: Belgian transmission network ≥ 150 kV;
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4. Case studies

Problem 2

➢ contingency space: 
N-2 line tripping contingencies in a given base case (201 295 
potential contingencies); 

➢ objective function: 
maximal loading rate (in %) observed over all the lines in the 
post-contingency steady-state;

➢ dangerous contingencies: 
O(x) ≥ 170;

➢ Euclidean embedding space: 
ℝ4  (geographical coordinates).
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4. Case studies

Simulation results 

➢ number of dangerous contingencies identified vs available 
computational budget (mean and standard deviation over 100 runs):

210
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4. Case studies

Simulation results 

➢ number of dangerous contingencies identified vs available 
computational budget (mean and standard deviation over 100 runs):

210
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4. Case studies

Simulation results 

➢ probability of identifying at least n dangerous contingencies with a 
computational budget of 750 contingency analyses:
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4. Case studies

Simulation results 

➢ probability of identifying at least n dangerous contingencies with a 
computational budget of 750 contingency analyses:
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5. On-line selection of iterative sampling 
algorithms

Context 

➢ several basic iterative sampling algorithms (differing by their 
parameters) are available;

BIS1

(λ
0

1, s1, m1)

BIS3

(λ
0

3, s3, m3)

BIS4

(λ
0

4, s4, m4)

BIS2

(λ
0

2, s2, m2)

Probability of identification of dangerous contingencies 1 to 6
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5. On-line selection of iterative sampling 
algorithms

Context 

➢ several basic iterative sampling algorithms (differing by their 
parameters) are available;

BIS1

(λ
0

1, s1, m1)

BIS3

(λ
0

3, s3, m3)

BIS4

(λ
0

4, s4, m4)

BIS2

(λ
0

2, s2, m2)

Probability of identification of each dangerous contingency
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5. On-line selection of iterative sampling 
algorithms

Objective 

➢ we consider that these algorithms can be executed sequentially 
until the available computational resources are exhausted;

➢ we want to schedule their execution so as to maximize the number 
of dangerous contingencies identified.

BIS ? BIS ?BIS ? ...

Computational resources exhausted

Step 1 Step 2 Step t
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5. On-line selection of iterative sampling 
algorithms

Proposed strategy 

➢ a discovery rate-based strategy, scoring at each step the different 
algorithms according to their ability to discover new dangerous 
contingencies and selecting the one with the highest score;

Definition of the discovery rate: number of new dangerous 
contingencies identified over the last T runs of algorithm i.

➢ this strategy is compared to a strategy looping over the series of 
algorithms at hand.
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5. On-line selection of iterative sampling 
algorithms

Simulation results: studied problem

➢ considered system: 
Belgian transmission system  ≥ 150 kV; 

➢ contingency space: 
N-1 line tripping contingencies in a given base case (634 
potential contingencies); 

➢ objective function: 
loading rate (in %) induced on one specific transmission line, the 
line Ruien-Wortegem 150 kV;

➢ dangerous contingencies: 
O(x) ≥ 100;

➢ Euclidean embedding space: 
ℝ2  (geographical coordinates).
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5. On-line selection of iterative sampling 
algorithms

Simulation results: studied problem

➢ projection of the N-1 contingencies in ℝ2  (in blue) and dangerous 
contingencies (in red);
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5. On-line selection of iterative sampling 
algorithms

Simulation results: studied problem

➢ set of BIS algorithms at hand: 9 different algorithms initialized in the 
9 areas delimited in black on the picture;
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5. On-line selection of iterative sampling 
algorithms

Simulation results

➢ number of different dangerous contingencies identified by the two 
selection strategies with increasing computational budgets;
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6. Estimating the probability and cardinality 
of the set of dangerous contingencies

Main ideas

➢ we focus here on discrete contingency spaces, in which we 
consider that all contingencies are uniformly distributed (with 
probability p);

➢ we use our basic iterative sampling algorithm and  exploit the 
principle of the cross-entropy method for rare-event simulation so as 
to estimate the probability l of the event {O(x) ≥ Í}:

;

➢ we also propose to derive from this latter probability an estimation of 
the cardinality n

dang
 of the set of dangerous contingencies:
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6. Estimating the probability and cardinality 
of the set of dangerous contingencies

Simulation results

➢ considered problem: N-2 analysis of the Belgian transmission 
network, as in section 4;

(objective function: maximal overload induced on the lines of the system, Í = 170, 
contingency space embedded in ℝ4 using the equipments' geographical coordinates);

➢ results obtained after 100 runs of our BIS algorithm and of a naive 
Monte Carlo sampling algorithm: 
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7. Conclusion and future work

We have proposed in this thesis to apply iterative sampling 
techniques to the field of power system analysis.

Further research directions

➢ explore new variants of the proposed algorithms;

➢ integrate the developed approach to the security assessment 
procedures used by TSOs;

➢ extend the use of such algorithms to the control part of the security 
assessment task. 
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Thank you!
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