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Liège, November 2011.

vi



Abstract
This thesis presents an approach for identifying a maximal number of dangerous con-
tingencies in large scale power system security assessment problems with bounded
computational resources.

The method developed in this work relies on the definition of an objective function
associating to each contingency a real value that quantifies its severity for the security
of the system, this value being greater than or equal to a given threshold only for dan-
gerous contingencies. The value of this function for a given contingency is computed
from the result of a security analysis executed on the post-contingency configuration.

The framework we propose for identifying dangerous contingencies is derived from
an algorithm from the optimization literature so as to find, with a given number of
evaluations of the objective function, a maximal number of contingencies whose value
of this function exceeds the adopted threshold. This approach performs successive
samplings of the space gathering all the contingencies, and exploits the information
contained in each of these samples in order to direct the subsequent sampling process
towards contingencies with high values of the objective function. Our algorithm is first
introduced in the case where the search space is a Euclidean space. Then we propose an
extension of this approach to the more common case where the search space is discrete,
thanks to a procedure allowing to embed a discrete contingency space in a Euclidean
space, over which a metric is defined.

The efficiency of the developed method is evaluated on several case studies: an
N− 3 analysis of a benchmark test system, the IEEE 118 bus test system, and N− 1
and N−2 studies of a real system, the Belgian transmission network.

Afterwards, we consider the case where several of these iterative sampling algo-
rithms are available. Assuming that these algorithms are executed sequentially, we
propose two different strategies for selecting on-line which of them to execute at the
next step in order to identify as many dangerous contingencies as possible, while still
respecting the given computational budget.

We finally provide an adapted version of the developed iterative sampling algorithm
allowing to estimate the probability of occurrence of a dangerous contingency and the
number of dangerous contingencies in a discrete search space.
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Résumé
Cette thèse présente une approche permettant d’identifier un nombre maximal de con-
tingences dangereuses dans des problèmes d’analyse de sécurité de réseaux électriques
de grande taille lorsque les ressources informatiques disponibles sont bornées.

La méthode développée dans ce travail requiert la définition d’une fonction objectif
associant à chaque contingence un nombre réel qui quantifie sa sévérité vis-à-vis de la
sécurité du système, cette valeur étant supérieure ou égale à un seuil donné seulement
pour les contingences dangereuses. La valeur prise par cette fonction pour une contin-
gence donnée est calculée à partir du résultat d’une analyse de sécurité effectuée dans
la configuration post-contingence.

L’approche proposée dans ce manuscrit pour identifier les contingences dangereuses
est inspirée d’un algorithme d’optimisation et permet de trouver, en évaluant la fonction
objectif un nombre limité de fois, un nombre maximal de contingences dont la valeur de
cette fonction est supérieure ou égale au seuil fixé. Cette approche tire des échantillons
successifs dans l’espace de contingences et exploite l’information qu’ils contiennent
pour orienter le tirage suivant vers des contingences dont la valeur de la fonction ob-
jectif est élevée. La méthode développée est définie en premier lieu pour un espace de
recherche continu. Elle est étendue dans un second temps au cas, plus courant, dans
lequel cet espace est discret, grâce à une procédure permettant d’incorporer un espace
de contingences discret dans un espace continu doté d’une métrique.

La méthode développée est ensuite mise en oeuvre dans plusieurs situations : une
analyse N−3 d’un système de test de référence, le réseau à 118 noeuds de l’IEEE, et
des analyses N−1 et N−2 d’un système réel, le réseau de transmission belge.

Ce manuscrit traite également le cas dans lequel plusieurs instances de cet algo-
rithme d’échantillonnage itératif sont disponibles. En considérant que ces algorithmes
sont appelés de manière séquentielle, deux stratégies sont proposées pour choisir au
fur et à mesure lequel d’entre eux exécuter afin d’identifier autant de contingences
dangereuses que possible, tout en respectant le budget de calcul fixé.

Pour finir, l’algorithme d’échantillonnage itératif mis au point dans cette thèse est
adapté afin d’estimer la probabilité d’occurrence d’une contingence dangereuse ainsi
que le nombre de contingences dangereuses dans un espace de contingences discret.
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1

Introduction

This chapter introduces the field of power system security assessment. The problem
addressed in this thesis is then motivated and precisely stated. Finally, a short summary
of the different contributions exposed in the following chapters is provided.
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1.1 Power system security assessment

1.1.1 Power systems
Electric power systems are one of the greatest human realizations. As our societies
strongly depend on them, they have always benefited from advanced technological
innovation. Even if their size and equipments may differ from one system to the other,
they always have the same structure: they are made of generators of electricity, loads
and transmission equipments carrying the power from the former to the latter.

The generators are mostly synchronous machines, which convert the mechanical en-
ergy supplied to a turbine’s rotor into electrical energy supplied to the network.
Different sources of energy (e.g., fossil, nuclear, hydraulic, wind-borne, ...) can
be used to spin turbine’s rotors. All the generating stations of a network work at
the same nominal frequency (usually 50 or 60 Hz).

The loads range from industrial machinery to household appliance. They all need to
be supplied with a frequency and voltage level standing in a tight range around
their nominal values.

The transmission equipments are split between the transmission system, intercon-
necting the major generating stations and load centers at a high voltage level
(typically, 69 kV and above), and the distribution system, which transfers power
to the individual customers at a lower voltage level (usually up to 34.5 kV).

Generation and transmission facilities mostly use three-phase alternative current
equipments, whereas the loads are either three-phased (usually the industrial ones)
or single-phased (usually the commercial and residential ones), and are in this case
roughly distributed among the phases in order to keep the imbalance between the three
of them acceptable.

In a power system, the power supply is expected to meet the constantly changing
demand while fulfilling several requirements such as the tight control of its frequency
and voltage level. These requirements are achieved thanks to a wide variety of control
actions, taken either locally on individual system elements or more globally by the
Transmission System Operators (TSOs), who are responsible for the quality of the
power supply.

1.1.2 Power system security
The operating conditions of a power system can be classified into different states, which
reflect the level of security of the system and determine the appropriate control actions
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to take. Dy Liacco defined in [1] three classes of power system states such that a power
system is always operating in either one of them. His power system state diagram has
been enriched in [2], where two new classes of states are introduced. The resulting
diagram is represented on Figure 1.1. These power system “states” can be described as
follows:

• in the so-called normal state, all the system variables are within the normal range
and the system is secure with respect to the set of relevant contingencies likely
to occur. The control objective in the normal state is to keep voltage levels and
frequency close to their nominal values;

• in the alert state, all the system variables are still within the acceptability limits
but close to them, and a contingency may lead the system to the emergency state
or even to the in extremis state. Preventive control actions should be taken to
bring the current operating conditions to the normal state;

• in the emergency state, some components’ operating limits are violated but the
system is still intact. The corrective control objective is to relieve system stress
and go back to alert or normal conditions;

• the in extremis state is characterized by the disintegration of the entire system
into smaller islands, or by a complete blackout. Emergency control actions aim
at saving as much of the system as possible from a widespread blackout if it is
still feasible;

• in the restorative state, restorative control actions are being taken to reconnect
lost generators and restore load, so as to bring the system back to either alert or
normal operating conditions.

Nowadays, the trend is that power systems operate more and more in the alert state.

1.1.3 Security assessment
Power system security assessment consists in analyzing the ability of the system to
withstand any likely changes in its current operating conditions, i.e. to remain in the
normal or alert operating state.

The events triggering changes in the operating conditions of a system are named
contingencies. Among the very vast range of such events are for instance transient
faults, equipment outages but also changes in the load and generation patterns, as well
as human errors of the operators. The notion of contingency can also be used to model
the uncertainties on the future generation and load patterns.

3



Figure 1.1: Power system state diagram defined in [2].

In practical terms, a security assessment procedure considers a given set of poten-
tial contingencies and evaluates, thanks to numerical simulations, to which operating
state the post-contingency steady-state operating conditions correspond to, if a post-
contingency steady-state exists. If a contingency is found out to lead the system to-
wards the emergency or in extremis state, preventive control actions should be taken
so that the system goes back to the normal state. The different numerical tools that
can be used for simulating the effect of a contingency on the studied power system are
presented hereafter.

• Transient angle stability analyses. Transient stability is the ability of a power
system to maintain synchronism after the occurrence of a disturbance like a fault
on transmission equipments, loss of generation or loss of load (see [3]). A tran-
sient stability analysis requires to perform time-domain simulations of the sys-
tem’s dynamic response after the occurrence of such a disturbance. This proce-
dure implies to solve a set of mixed algebraic and ordinary differential equations,
which are strongly nonlinear.

• Voltage stability analyses. Voltage stability is the property of a power system
which enables it to remain in a state of equilibrium (i.e., with acceptable voltages
at all buses) under normal operating conditions and to regain an acceptable state
of equilibrium after a disturbance (see [4]). A voltage stability analysis can be

4



carried out either using static methods, allowing in particular to evaluate how
close the system is to voltage instability, or time-domain simulations in case
when it is necessary to study voltage collapse dynamics (see [5]).

• Load-flow calculations. When focusing only on the post-contingency steady-
state, the voltage magnitudes and angles for all buses of the system as well as the
real and reactive power flows in the transmission lines can be computed thanks
to an AC power flow algorithm (see [6]). This algorithm iteratively solves a
set of nonlinear equations including all the nodal current balance equations of
the system. In some cases (e.g., when the user only needs to compute the real
power flows in the transmission lines, or when the voltage variations are not
too important), a DC power flow algorithm can be used (see [7]). It solves in a
non-iterative way a simplified and linear model of the AC system.

Security assessment is performed at different time scales, both ahead of time for
operation planning and in real-time operation. It mainly allows to identify the set of
contingencies which would bring the security level of the system below an acceptable
threshold. This set is afterwards used by the operator to design adapted preventive and
corrective control actions.

The set of potential contingencies considered in power system operation is typically
the set of what TSOs call N − k contingencies, i.e. all the events consisting in the
sudden loss of k transmission equipments among the N available ones. When the value
of k is rather small (in practice, it is commonly set equal to 1 or 2), the potential
contingencies are analyzed individually: each of them is simulated in order to assess its
effect on the security of the system. Even in large scale systems, this problem remains
perfectly tractable. When k takes higher values, the size of the set of potential N− k
contingencies can be really huge, especially in wide interconnected systems which
comprise a very high number of equipments, and considerable computational resources
would be necessary to simulate them one by one.

As mentioned previously, the notion of contingency can also refer to changes in
the generation profile, which can happen at every moment and with various ampli-
tudes due to the increasing penetration of renewable energies among generation pat-
terns (in particular, wind power and solar energy). The number of potential contin-
gencies grows exponentially with the length of the considered time horizon and their
exhaustive screening would therefore require computational resources that also grow
exponentially.

In situations where the available amount of computational resources does not allow
an exhaustive screening of the contingency space within a reasonable amount of time,
even with parallel computation, the system operators usually choose to focus on the N−

5



k contingencies that seem a priori more likely to occur (named credible contingencies
in [8]). They also generally include in their studies the contingencies, whatever their
probability, that have already affected the system in the past.

This thesis proposes an alternative to this latter procedure of selection of the contin-
gencies to be analyzed which is not based on the probability of occurrence of the con-
tingencies, but rather on information on the similarities between contingency severities
directly extracted from the search space.

1.2 Problem addressed in this thesis

1.2.1 Studied setting
We focus in this thesis on large scale power system security assessment problems,
like N − k analyses when k takes a large value, or security assessment problems in
which the contingencies model the wide variety of the potential generation patterns
that it is possible to observe. In such problems, the set of potential contingencies
(named contingency space in the following and denoted by X ) is often too large to be
screened exhaustively in a reasonable amount of time with the available computational
resources.

We specifically address large scale security assessment problems submitted to a
constraint on the available computational resources, and propose an alternative to the
exhaustive screening of the contingency space for identifying a maximal number of
dangerous ones, i.e. those driving the system to unacceptable operating conditions,
while using a given amount of computational resources. In a few words, the developed
algorithm iteratively draws samples of contingencies from the contingency space and
analyses at each step the properties of the current sample to update the parameters of
the sampling mechanism and orient it towards the most dangerous contingencies.

1.2.2 Assumptions
The research presented in this manuscript relies on the definitions of the notions of
contingency severity, dangerous contingencies and computational resources detailed
hereafter.

1.2.2.1 Contingency severity: objective function

First, we assume that there exists a real-valued function defined on the contingency
space that quantifies the effect of each contingency on the operating conditions of the
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system. Such a “severity” function is named objective function in the following and
denoted by O : X → R. It is built from the result of the numerical simulation of each
post-contingency steady-state, and more precisely based on the system state variables.
The evaluation of the objective function for a given contingency thus requires to run a
security analysis in order to calculate the post-contingency operating conditions of the
system.

As it will be explained later, the choice of the involved state variables depends on
the performed study: for instance, the value of the objective function can reflect the
loading rate of one or several transmission lines, or the amount of available reactive
power reserve in the post-contingency steady-state.

1.2.2.2 Dangerous contingencies

A contingency is classified as dangerous or non-dangerous according to its value of the
objective function: the dangerous contingencies are the contingencies for which this
value exceeds a threshold defined by the user. This threshold, denoted by γ ∈ R in the
following, is defined according to the acceptability limits of the operating conditions
of the system and, naturally, is closely linked with the adopted objective function. For
instance, if the objective function focuses on one single transmission line and is set
equal to the value of the current flowing in this line, a logical choice for the value
of γ is the maximal current the line is admitted to carry. Note that, in large scale
power system security assessment problems, the dangerous contingencies are usually
rare with respect to the non-dangerous ones.

1.2.2.3 Computational resources

What we refer to as computational resources in this thesis is a fixed budget in terms of
CPU time.

We will assume in the following that the CPU time required by all the operations
performed by the approach proposed in this work (e.g., drawing points from the con-
tingency space or computing the parameters of a sampling distribution) is negligible
with respect to the amount of CPU time required to evaluate the objective function. In-
deed, this evaluation requires running a security analysis for a contingency, even with
a simple analysis tool such as a DC load-flow, turns out to be computationally much
more demanding than the operations we make for drawing points and fitting distri-
butions. We will also assume that the security analyses have more or less the same
running time, whatever the contingency. This assumption allows us to translate the
computational resources into a number of contingencies analyses that can be carried
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out (either parallelly or sequentially), which also corresponds to the maximal number
of evaluations of the objective function that can be performed.

1.2.3 Problem statement

The objective of the research work presented in this thesis is to identify, with bounded
computational resources, as many dangerous contingencies as possible in a large scale
power system security assessment problem.

As explained in the previous subsection, a contingency is defined as dangerous
if its value of the objective function exceeds a user-defined threshold γ . According
to this practical definition of dangerous contingencies, the problem statement can be
rephrased as:

Identify, with bounded computational resources (expressed here as a given number
of evaluations of the function O), a maximal number of contingencies x such that
O(x)≥ γ .

Note that our approach does not pretend to identify all the dangerous contingencies
in the considered problem, which could be done with an exhaustive screening of all
potential contingencies. Rather it aims at taking better advantage of the given number
of contingency analyses that can be carried out and identifying more dangerous con-
tingencies than if the contingencies to be analyzed were drawn from the contingency
space using a classical Monte Carlo sampling process.

1.2.4 Proposed procedure

As formulated in the previous subsection, the dangerous contingency identification
problem addressed in this thesis can be seen in some ways as an optimization problem.
In particular, if the parameter γ is set equal to the maximal value of the objective
function, our problem can be parented to a classical optimization problem – apart from
the fact that we do not only want to identify one maximum of the objective function
but as many as possible, ideally all of them.

In practice, it is more likely that γ takes a lower value than the maximum of the
objective function, which makes our problem even more different from an optimization
problem. We however propose to address it using a method derived from the field of
optimization (more specifically, from Derivative-Free Optimization), by exploiting the
fact that these algorithms come across a significant number of contingencies such that
O(x)≥ γ while searching for a maximum of the objective function.
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We propose in this work an iterative sampling framework inspired from these algo-
rithms to efficiently identify contingencies with a value of the objective function greater
than or equal to γ . This approach performs successive samplings of the contingency
space with probability distributions that evolve along the iterations. Each time a new
sample is drawn, it is analyzed by evaluating the objective function for each of its ele-
ments so as to extract the information it contains. Depending on the properties of the
elements of this sample, the parameters of the sampling distribution according to which
the following sample will be drawn are adjusted in order to give strong preference to
the elements with high values of the objective function.

1.2.5 Related approaches
Several approaches to large scale power system security assessment when the avail-
able computational resources are bounded (in other words, approaches proposing al-
ternatives to an exhaustive screening of wide contingency spaces) have already been
published in the literature.

These methods usually encompass a prior filtering process based on some light
computations or some prior knowledge of the network, followed by a detailed analysis
of the selected contingencies in order to evaluate the consequences they would have on
the security of the system.

It is for instance what is done by the unified approach to transient stability contin-
gency filtering, ranking and assessment introduced in [9]. Using the SIngle Machine
Equivalent (SIME) method (described in [10] and [11]), this procedure first screens the
contingencies and assesses them approximately to discard the most stable ones, and
then assesses the potentially interesting ones in a detailed way. Thanks to this filtering
process, only little CPU time is spent to analyze stable contingencies and the computa-
tional resources are essentially used for accurately assessing the less stable ones.

A different pre-processing of the contingency space is used in [12] and [13], which
propose a framework based on event trees to identify contingencies that would lead to
large system disturbances due to voltage collapse. The considered contingency space
comprises in particular all the potential system failures modes based on incorrect pro-
tection operation, and is therefore very wide. The sequences of events that may lead
to large system disturbances are studied by building event trees, which represent the
possible disturbance developments in a given base case. In order to limit the size of
such trees, a vulnerability region is associated to each possible initial fault location and
only sequences including events happening in the vulnerability region of the equipment
affected by the initial fault are developed. All the other potential sequences of events
are excluded from the analysis, based on the assumption that it is a priori less likely
that they would lead to large system disturbances.
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The approach for identifying dangerous contingencies as rare events in large con-
tingency spaces presented in [14] and [15] also makes some assumptions to restrict the
subset of contingencies covered by the study: based on the rare event approximation
(see [16]) and on existing statistics, contingencies with a priori too low probability of
occurrence (with respect to a user-specified threshold) are cut off. The total number
of considered contingencies, from which the proposed algorithm extracts a list of high
risk contingencies, is thus limited to a number that is linearly proportional to the scale
of the system.

In the field of static security assessment, [17] has proposed a two-stage procedure
for identifying dangerous N− k line tripping contingencies. In this approach, a prior
selection of a subset of candidate lines to which the security of the system is sensi-
tive allows to limit the number of N− k contingencies to be analyzed. The screening
and selection process performed in the first stage of this approach relies on both graph
partitioning and optimization methods, and use simplified models so that the analysis
remains tractable in spite of the size of the contingency space. The second stage con-
sists in a deeper analysis (with detailed models) of the N− k contingencies involving
the selected candidate lines, which are much less numerous than the potential N− k
contingencies.

All these approaches overcome the combinatorial aspect of large scale power sys-
tem security assessment problems by bringing initial restrictions to the set of consid-
ered potential contingencies, according to some simplified simulations, or to their a
priori probability of occurrence or their a priori consequences. To the contrary, our
framework draws samples from the whole contingency space, and uses the observed
characteristics of the contingencies contained in these samples (i.e., the value of the
objective function for each contingency they contain) to determine on which areas to
focus in the following iterations. As we will see, this procedure is efficient enough to
come across dangerous contingencies while using bounded computational resources.
Moreover, it can allow to identify contingencies that would be excluded from the study
by the adopted filtering criteria, but that are however dangerous for the system.

1.3 Main contributions of this work

The contributions exposed in this dissertation are the following:

• The main contribution of this thesis is the development of a framework using
iterative sampling to search in large contingency spaces for identifying a maxi-
mal number of dangerous contingencies with bounded computational resources.
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This contribution is briefly detailed hereafter in Section 1.4 and fully reported in
Chapter 2.

• The second contribution of this work introduces several ways for embedding a
discrete contingency space in a Euclidean space over which a metric is defined.
This contribution is summarized in Section 1.5 and detailed in Chapter 3.

• As third contribution of this thesis, we propose strategies to select on-line which
iterative sampling algorithm to execute in the case where several of them are
available, so as to identify as many dangerous contingencies as possible while
respecting a given computational budget. This contribution is briefly described
in Section 1.7 and fully developed in Chapter 5.

• The fourth contribution of this thesis is an algorithm inspired from the cross-
entropy method for rare-event simulation for estimating the probability of oc-
currence of the set of dangerous contingencies and estimating its size if the con-
tingency space is discrete. This contribution is summarized in Section 1.8 and
presented in Chapter 6.

• As fifth contribution, we provide extensive simulation results throughout the
whole manuscript and especially in Chapter 4, where different case studies are
presented. A detailed overview of these case studies is given in Section 1.6.

Short technical summaries of the different chapters of the present dissertation are
provided in the following sections of this introduction.

1.4 Chapter 2: an iterative sampling approach based
on derivative-free optimization methods

This chapter begins with an analysis of the similarities of the problem addressed in
this thesis with an optimization problem. Derivative-free optimization methods are
introduced and a particular instance of an iterative sampling method for derivative-
free optimization, the cross-entropy method, is presented. The framework we propose
in this thesis for efficiently identifying dangerous contingencies in a large scale se-
curity assessment problem is an iterative sampling approach derived from this latter
method. A tabular version of this algorithm as well as a detailed explanation are pro-
vided, followed by a further version adapted to the case where the available computa-
tional resources are bounded. These two algorithms are written in the case where the
contingency space is a Euclidean space.
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Before providing a preliminary and simple illustration of this approach, we discuss
the role and form of the objective function and present different ways to define it.

1.5 Chapter 3: embedding the contingency space in a
Euclidean space

While our iterative sampling approach is first introduced in Chapter 2 for investigating
Euclidean contingency spaces, the contingency spaces considered in most power sys-
tem security assessment problems are discrete. In order to apply the developed iterative
sampling process, it is hence necessary to embed the contingency space in a Euclidean
space, over which a metric is defined. We propose in this chapter several ways to do
so, depending on the nature of the considered contingencies and on the properties of
the considered electricity transmission networks.

1.6 Chapter 4: case studies

This chapter report results obtained when applying this approach to different security
analysis problems and different networks. Section 4.1 presents results obtained on the
IEEE 118 bus test system for an N− 3 analysis. Section 4.2 collects results of simu-
lations performed on the Belgian transmission system, for an N− 1 security analysis
when the objective function is based on a local criterion (the loading rate induced by
each contingency on a specific targeted transmission line). Section 4.3 finally reports
the results of an N−2 analysis, also carried out on the Belgian transmission system but
using here a global objective function (the maximal loading rate induced by a contin-
gency on any transmission line).

1.7 Chapter 5: on-line selection of iterative sampling
algorithms

We consider in this chapter that several iterative sampling algorithms have been built
on the same dangerous contingency identification problem. We propose two strategies
for combining them in order to identify as many dangerous contingencies as possible
while respecting a given computational budget.
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1.8 Chapter 6: estimating the probability and cardinal-
ity of the set of dangerous contingencies

The first chapters of this thesis focus on the identification of a maximum number of
dangerous contingencies under computational constraints. We may also imagine that,
in some settings, the system needs to compute the probability of occurrence of a dan-
gerous contingency and, only if this probability is above a certain threshold, to decide
to take preventive control actions. This could be done in principle by identifying all the
dangerous contingencies and summing their probabilities. However, this problem can
also be seen as a rare-event problem and specific algorithms for tackling this problem
could be used. This chapter describes one of these algorithms and its application to the
problem of estimating the probability of occurrence of a dangerous contingency un-
der computational constraints. Its also explains how the obtained estimate can be used
to compute the number of dangerous contingencies in the case where the contingency
space is discrete.

1.9 Chapter 7: conclusion

Chapter 7 finally discusses the methodology and the obtained results, proposes future
work and presents concluding remarks.

1.10 Appendix A: pseudo-geographical representations
of power system buses by multidimensional scal-
ing

This appendix proposes new ways to visualize power systems, based not only on the
geographical coordinates of the equipments but also on some physical information re-
lated to them. The pseudo-geographical representations thus created, that were derived
from our research about the definition of a metric on the contingency space (presented
in Chapter 2), can help to gain insights into the physical properties of the network.

1.11 List of publications

The work presented in this thesis has already been published in several articles:
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In Proceedings of the 2010 IREP Symposium - Bulk Power Systems Dynamics
and Control - VIII, Buzios, Rio de Janeiro, Brazil, August 1-6, 2010. (8 pages).

• “Pseudo-geographical representations of power system buses by multidimen-
sional scaling.” F. Fonteneau-Belmudes, D. Ernst and L. Wehenkel. In Proceed-
ings of the 15th International Conference on Intelligent System Applications to
Power Systems (ISAP 2009), Curitiba, Brazil, November 8-12, 2009. (6 pages).

• “A rare event approach to build security analysis tools when N − k (k > 1)
analyses are needed (as they are in large scale power systems).” F. Fonteneau-
Belmudes, D. Ernst and L. Wehenkel. In Proceedings of the 2009 IEEE Bucharest
PowerTech Conference, Bucharest, Romania, June 28 - July 2, 2009. (8 pages).

• “Cross-entropy based rare event simulation for the identification of dangerous
events in power systems.” F. Belmudes, D. Ernst and L. Wehenkel. In Proceed-
ings of the 10th International Conference on Probabilistic Methods Applied to
Power Systems (PMAPS-08), Rincon, Puerto Rico, May 25-29, 2008. (7 pages).
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2

An iterative sampling approach
based on derivative-free
optimization methods

We first analyze in this chapter the similarities of the problem addressed in this the-
sis (under the formulation proposed in the introduction) with an optimization problem.
This analysis is followed by an introduction to the general concepts behind derivative-
free optimization methods, which would be used to solve the optimization problem our
problem stands the closest to. A detailed description of one such algorithm, the cross-
entropy method, follows. Afterwards, we present an iterative sampling algorithm de-
rived from this method for solving the problem addressed in this thesis and propose
a way to take into account the fact that the available computational resources are
bounded. The properties of the objective function are then discussed and several ex-
amples are provided for defining it so as to adapt our approach to the power system
security assessment problem at hand. To close this chapter, the proposed approach is
illustrated on a very simple security assessment problem.

For clarity reasons, the approach introduced in this chapter is based on the as-
sumption that the contingency space is Euclidean. The – more common – case where it
is discrete will be addressed in Chapter 3.
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2.1 Comparison with an optimization problem

An optimization problem is usually stated as follows:
given a search space X and a real-valued function f : X → R, identify an element
x0 ∈X such that f (x0)≥ f (x) ∀x ∈X .

As a reminder, the problem addressed in this thesis is the following:
given a search space X , an objective function O : X →R and a real number γ , iden-
tify a maximal number of points x∈X such that O(x)≥ γ with bounded computational
resources (expressed here as a given number of evaluations of the function O).

This latter problem shares many similarities with the typical formulation of an op-
timization problem. The contingency space X can be seen as the search space, and the
objective function O plays the exact same role as the function f (which is also named
“objective function” in the field of optimization). However, as highlighted in the intro-
duction, we do not want in our problem to identify only one point of the search space
maximizing the objective function, but all the points x such that O(x) ≥ γ . Note that
setting γ equal to the maximum of the function O would make the problem equivalent
to an optimization problem whose goal would be to identify as many maxima of the
objective function as possible and not only a single one.

The specificities of the “optimization-like” problem this work aims at solving are
the following. First, the size of the search space is combinatorial in the large scale
security assessment problem we address.

Second, while the objective function can be defined in many different ways accord-
ing to the performed study, we want to propose a generic framework for solving the
problem stated in Chapter 1.2.3 whatever the contingency space and objective func-
tion at hand. The objective function can therefore not be expected to have a particular
structure, and especially to be linear or convex, so that the developed framework can be
applied in the very frequent (but not systematic) case where this function is nonlinear
and nonconvex.

Moreover, no derivative of this function is available and the problem can only be
solved using the pairs (x,O(x)) composed of a contingency and its value of the objec-
tive function.

Finally, the constraint our problem is subjected to is the given bound on the avail-
able computational resources, which is expressed as a maximal number of evaluations
of the objective function that can be performed. This implies that the number of differ-
ent pairs (x,O(x)) that can be formed is restricted.
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2.2 Derivative-free optimization methods
Optimization problems can either be solved by evaluating Hessians (like in New-
ton’s method), or by computing gradients (as done, among others, by Quasi-Newton’s
method or gradient descent), or based only on the values taken by the objective func-
tion when no derivative of this function is available (using for instance pattern search
methods). We will focus in this chapter on this latter type of optimization methods
(named derivative-free optimization methods), which are adapted to solve the opti-
mization problem our dangerous contingency identification tends to be similar to, i.e.
an optimization problem where only values taken by the objective function for different
points of the search space can be used to search for a maximum of this function.

Derivative-Free Optimization (DFO) methods either build a model of the objec-
tive function based on samples of its values, as the interpolation methods presented in
[18], or they directly exploit sets of values of the objective function without building
an explicit model and iteratively try to improve a candidate solution of the considered
optimization problem (see [19]). Such “direct” methods are usually called metaheuris-
tics, or simply iterative sampling methods (which will be the denomination adopted in
this thesis). They are often considered as methods of last resort, that is, applicable to
problems where the search space is large, complex and poorly understood. Note that
these are precisely the properties of the problem addressed in this thesis, in which the
search space is large by definition and can be considered as poorly understood in the
sense that the profile of the objective function over this space is not known a priori.

Many iterative sampling methods have been proposed in the literature, such as
genetic algorithms ([20]), evolution strategies ([21]), distribution estimation methods
([22]) and the cross-entropy method ([23]).

In the following subsections, we first present the generic algorithmic behavior of
iterative sampling methods and then focus on a particular DFO algorithm, from which
we will derive a framework addressing the dangerous contingency identification prob-
lem considered in this thesis.

2.2.1 General principle of iterative sampling methods for derivative-
free optimization

Iterative sampling algorithms navigate in the search space towards points with the high-
est values of the objective function. From an algorithmic point of view, these meth-
ods combine random sampling with an iterative process allowing to “learn” the best
sampling scheme for the problem at hand. When applied to a classical optimization
problem with search space X and objective function f , the different steps of such
algorithms would be the following:
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• define an initial sampling distribution over the search space;

• at each iteration:

– generate a subset of potential solutions over the search space by using the
current sampling distribution;

– evaluate the objective function for each point in the current sample;

– use the pairs {point, value of the objective function} in the current sample
so as to determine a new sampling distribution better targeting points with
high values of the objective function;

• halt the iterative process when the computational resources have been exhausted,
or when the current sample is sufficiently pure in terms of objective function
distribution, or when the variations of some sample statistics have not changed
significantly over a certain number of iterations;

• return the point with the highest value of the objective function encountered
during the whole execution of the algorithm.

This algorithm generates over the iterations a sequence of sampling distributions
defined on the search space which progressively target subsets of points with growing
values of the objective function.

2.2.2 A particular instance of iterative sampling methods: the cross-
entropy method

The cross-entropy method for optimization (see [23]) applied to a Euclidean search
space proceeds as follows:

• define a hypothesis space of candidate sampling densities pλ defined over X
and indexed by a parameter vector λ . This space of distributions may be chosen
in a problem specific way, for example by taking into account properties such as
linearity, gaussianity or the possibility of multiple modes;

• set λ to its initial value λ0 (λ0 will typically be chosen so as to let the distribution
pλ0 cover the complete space X );

• at each iteration i, draw a sample Si of size s of points in X according to the cur-
rent distribution defined by the current value λi (s is a parameter of the algorithm)
and evaluate the value of the objective function f for each of these points;
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• keep the subset S′i of Si corresponding to the m < s best solutions (m is another
parameter of the algorithm), i.e. to the highest values of the objective function;

• use the sample S′i to determine a new value λi+1. λi+1 is typically chosen such
that the likelihood of the sample S′i is maximal with respect to the selected space
of distributions;

• stop when the chosen stopping criterion (e.g., no more computational resources
available or no significant change in the variations of some sample statistics over
the last iterations) is met;

• return the point of X with the highest value of the objective function among all
samples Si drawn over all the iterations that have been performed.

2.2.3 An interesting property of derivative-free optimization meth-
ods

While navigating through the search space towards a maximum of the objective func-
tion, iterative sampling methods as the cross-entropy method presented in the previous
subsection come across points with increasing values of the objective function over the
iterations.

To illustrate this property, we have implemented the cross-entropy algorithm on a
simple optimization problem with R as search space, the function f (x) =−0.1x2 +10
as objective function, and parameters s = 30 and m = 5. The average values taken by
the objective function in the successive samples drawn during a typical run of this al-
gorithm are represented on Figure 2.1. The horizontal axis of this figure represents the
number of the current iteration of the algorithm while each vertical bar represents the
average plus and minus the standard deviation of the objective function in the sample
of 30 points generated during a given iteration.

We observe that the average value of the objective function in each of these samples
rapidly grows over the iterations to its maximal value (10) while its standard deviation
decreases as rapidly, which shows that the samples of points drawn from R contain
more and more points with high values of the objective function over the iterations.

We propose in this work to exploit this property so as to identify the contingen-
cies with a value of the objective function greater than the threshold γ . To do so, we
use exactly the same algorithmic structure as the cross-entropy method, and, after each
evaluation of the objective function for a point drawn from the contingency space, we
check if the obtained value is greater than or equal to γ . If it is the case, the corre-
sponding contingency is stored in a set Xdang gathering the dangerous contingencies
identified throughout the execution of the algorithm.
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Figure 2.1: Evolution of the mean and standard deviation of the values taken by the
objective function in the samples drawn over the iterations of a typical run of the cross-
entropy algorithm. The problem addressed here is a simple optimization problem.

2.3 A basic iterative sampling algorithm for dangerous
contingency identification

We propose in this section an iterative sampling algorithm, inspired from the cross-
entropy method for identifying dangerous contingencies in a Euclidean space of di-
mension n. For the sake of clarity, the constraint on the available computational re-
sources is not taken into account in this first algorithm – which is hence characterized
as basic – and will be implemented in the comprehensive iterative sampling approach
to be presented in the following section.

The inputs of this basic iterative sampling algorithm are a Euclidean contingency
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space X , an objective function O and a threshold γ ∈R defining the dangerous contin-
gencies, a contingency x being dangerous if O(x)≥ γ . It outputs a set of contingencies
whose value of the objective function is greater than γ .

The algorithm uses as sampling distributions Gaussian laws defined on the search
space X (denoted in the algorithm by GaussX (·,λi)). The parameters λ0 = [µ0,Σ0] of
the initial sampling distribution (µ and Σ refer to the mean and the covariance matrix
of the distribution, respectively) are chosen such that the initial sampling distribution
covers well the entire contingency space.

At each iteration i, a sample of s elements is drawn according to GaussX (·,λi). Af-
terwards, the different values that the objective function takes over these contingencies
are computed. The contingencies which lead to the m highest values of the objective
function are then used to compute the mean and covariance matrix µi+1 and Σi+1 of
the next sampling distribution. µi+1 is thus set equal to the mean of the coordinates of
the m best scoring contingencies, and Σi+1 to their covariance matrix. Usually, in the
cross-entropy framework (see [23]), the value of s is chosen one order of magnitude
larger than the number of elements parameterizing the sampling distributions and the
parameter m is chosen 10 to 20 times smaller than s.

The information extracted from the data sampled at each iteration i is stored as a
set Pi of pairs (x,o) gathering a contingency x and the corresponding value o = O(x) of
the objective function.

Different stopping conditions can be chosen, as for instance checking if some statis-
tics of the current sample are below a certain threshold or if the decreasing of these
statistics is too slow. In this detailed algorithm, we will for illustrative purposes stop
the algorithm when a specific number of iterations imax has been reached.

The fully specified version of this basic iterative sampling algorithm is provided in
a tabular form in Figure 2.2.

To illustrate this description of the proposed algorithm, the series of figures (Fig-
ures 2.3 to 2.9) inserted after the fully specified version of the algorithm presents the
different steps of an execution of the iterative sampling algorithm. In the toy problem
treated here, the contingency space is a rectangular subpart of the plane, the objec-
tive function is a two-dimensional Gaussian defined on this space, and there is only
one dangerous contingency (the one corresponding to the maximum of the objective
function on the contingency space).
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Problem definition: a Euclidean contingency space X , an objective function O :
X → R and a threshold γ ∈ R.

Algorithm parameters: the parameters λ0 = [µ0,Σ0] of the initial Gaussian sam-
pling distribution, the size s of the sample drawn at each iteration, the number m of
best solutions chosen at each iteration and the maximal number imax of iterations to
be done.
Output: a set Xdang of elements of X such that O(x)≥ γ .
Algorithm:

Step 1. Set i = 0, set Xdang to the empty set.
Step 2. Set Si, Pi and S′i to empty sets.
Step 3. Draw independently s elements of X according to the probability
distribution GaussX (·,λi) and store them in Si .

Step 4. For every element x ∈ Si, compute o = O(x) and add the pair (x,o) to
Pi .
Step 5. Identify in Pi the pairs for which o≥ γ and set their x values in Xdang
if they are not already in it.
Step 6. Identify in Pi the m pairs with the highest values of o and set their x
values in S′i .

Step 7. If i < imax−1, set µi+1[ j] =
1
m ∑

x∈S′i

x[ j] for j = 1, . . . ,n ,

Σi+1 = 1
m ∑

x∈S′i

(x− µi+1)(x− µi+1)
T and λi+1 = [µi+1,Σi+1] . Set i← i+ 1

and go to Step 2.
Else, go to Step 8.
Step 8. Output Xdang and stop.

Figure 2.2: A basic iterative sampling algorithm for identifying the elements such that
a function O : X → R exceeds a threshold γ when the space X is Euclidean.
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Figure 2.3: Contingency space (every little square represents a different contingency).
The targeted dangerous contingency is represented by the red square.

Figure 2.4: Profile of the values of the objective function. Color scale: from yellow
(lowest values) to red (highest values).
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Figure 2.5: First iteration, sample drawn from the contingency space.

Figure 2.6: First iteration, evaluation of the value of the objective function for the
points contained in the sample.
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Figure 2.7: First iteration, selection of the points with the highest values of the objective
function. Their coordinates are then used to update the current sampling distribution to
better target the area they are located in.

Figure 2.8: Second iteration, new sample drawn from the contingency space. We
oberve that, after one iteration, the sampling process has already been oriented towards
the dangerous contingency.
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Figure 2.9: Last sample drawn from the contingency space before stopping the algo-
rithm. The current sampling distribution is now centered around the sought contin-
gency.

2.4 A comprehensive iterative sampling approach for
dangerous contingency identification with bounded
computational resources

2.4.1 A fully specified algorithm
We provide in the following a comprehensive iterative sampling algorithm to identify
dangerous contingencies while respecting a given computational budget. As already
explained in the introduction, the amount of available computational resources is ex-
pressed as a maximal number of times it is possible to evaluate the objective function,
or, in other words, as a maximal number of contingencies that can be analyzed. We
propose to implement this constraint by bringing the following changes to the basic
iterative sampling algorithm that was presented in the previous section:

• first, an additional stopping condition is introduced so as to end the execution of
the algorithm when the available computational resources are exhausted. More
precisely, the algorithm stops analyzing the contingencies contained in the cur-
rent sample when the amount of remaining computational resources is equal to
zero. Then it checks if there are some dangerous contingencies among the con-
tingencies in the current sample that have been analyzed before the exhaustion
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of the computational resources. These dangerous contingencies are sent to the
set Xdang and the algorithm finally stops.

• second, if the computational budget has not been exhausted when the basic iter-
ative sampling algorithm stops by itself, this algorithm is re-run (with a different
“random number” seed) until this budget is reached so as to make the best use of
the available resources. In the case when a new run (named “sub-run” in the fol-
lowing) of the algorithm is performed, the set Xdang of dangerous contingencies
identified is of course not re-initialized.

• finally, the amount of available computational resources is decremented by 1
each time the objective function is evaluated for a contingency and the algorithm
checks before any new evaluation of the objective function if there are still some
computational resources available.

A tabular fully specified version of the comprehensive iterative sampling approach
to dangerous contingency identification resulting from these changes is provided here-
after in Figure 2.10.

2.4.2 Use of parallel computing
In order to improve the speed of execution of the algorithm, the values of the objective
function for all the contingencies contained in the sample drawn from the contingency
space at each iteration can be computed parallelly, instead of sequentially as proposed
in Figure 2.10. In this case, it is necessary to declare the amount resavailable of available
computational resources as a global variable. This variable has to be checked before
carrying out any new contingency analysis and updated after each contingency analysis
(exactly as if the contingency analyses were performed sequentially), in order to make
sure that the available computational budget is respected.
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Problem definition: a Euclidean contingency space X , an objective function O :
X → R and a threshold γ ∈ R.

Algorithm parameters: the parameters λ0 = [µ0,Σ0] of the initial Gaussian sam-
pling distribution, the size s of the sample drawn at each iteration, the number m of
best solutions chosen at each iteration and the maximal number imax of iterations to
be done within one “sub-run” of the algorithm.
Input: the amount resavailable of available computational resources.
Output: a set Xdang of elements of X such that O(x)≥ γ .
Algorithm:

Step 1. Set i = 0 and set Xdang to the empty set.
Step 2. Set Si, Pi and S′i to empty sets.
Step 3. Draw independently s elements of X according to the probability
distribution GaussX (·,λi) and store them in Si .

Step 4. For every element x ∈ Si:
If resavailable > 0, compute o = O(x), set resavailable = resavailable−1 and add
the pair (x,o) to Pi .

Step 5. Identify in Pi the pairs for which o≥ γ and set their x values in Xdang
if they are not already in it.
Step 6. If resavailable = 0, go to Step 10. Else, go to Step 7.
Step 7. Identify in Pi the m pairs with the highest values of o and set their x
values in S′i .

Step 8. If i < imax−1, set µi+1[ j] =
1
m ∑

x∈S′i

x[ j] for j = 1, . . . ,n ,

Σi+1 = 1
m ∑

x∈S′i

(x− µi+1)(x− µi+1)
T , λi+1 = [µi+1,Σi+1] , set i← i+ 1 and

go to Step 2.
Else, go to Step 9.
Step 9. Set i = 0, set Si, Pi and S′i to empty sets and go to Step 3.
Step 10. Output Xdang and stop.

Figure 2.10: A comprehensive iterative sampling algorithm for identifying the elements
such that a function O : X →R exceeds a threshold γ when the space X is Euclidean,
while respecting a computational budget resavailable.
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2.4.3 Multimodal objective function

Repeating the basic iterative sampling algorithm several times is not only a way to take
better advantage of the available computational resources, but also a solution to deal
with the potential multimodality of the objective function.

Depending on the security assessment problem at hand, it is indeed probable that
the objective function has several local maxima, and, subsequently, that some danger-
ous contingencies (i.e., some points such that O(x) ≥ γ) are located in different areas
of the search space, around some of these maxima. Note that the algorithm does not
know a priori the number of maxima of the objective function.

As the basic iterative sampling algorithm uses simple Gaussian laws as sampling
distributions, one run of this algorithm will converge towards one of these maxima.
It usually identifies during its execution some dangerous contingencies located in the
neighborhood of this maximum and possibly a few dangerous contingencies located in
other areas encountered over the iterations (but neither numerous nor severe enough
with respect to the other dangerous contingencies found to direct the sampling process
towards their location). With such an algorithm, there is a risk of missing some danger-
ous contingencies corresponding to the other maxima of the objective function if this
function is multimodal.

Different frameworks can be found in the literature to adapt the cross entropy
method, from which our basic iterative sampling algorithm for dangerous contingency
identification is inspired, to the case where the objective function is multimodal. It is
for instance possible to use the Fully Adaptive Cross-Entropy (FACE) algorithm in-
troduced in [23], or to use mixture distributions instead of Gaussian laws in the cross-
entropy algorithm as proposed in [24].

The strategy of re-launching the basic iterative sampling algorithm as long as the
available computational resources have not been exhausted also allows to avoid missing
a maximum of a multimodal objective function. Thanks to the stochastic aspect of the
basic iterative sampling algorithm, we can expect that, when it is executed several
times, it converges towards some different local maxima. Even if one of the “sub-runs”
of the comprehensive iterative sampling approach converges towards an extremum that
has already been reached by one or several of the previous “sub-runs”, we also hope
that this will allow to identify more dangerous contingencies located in this area (if
there are still dangerous contingencies in this area that have not been identified yet).
Repeating the basic iterative sampling algorithm several times thus helps increasing the
number of dangerous contingencies identified, whatever the region of the search space
each “sub-run” converges to.
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2.5 The objective function
This section reminds the role of the objective function in the developed iterative sam-
pling algorithm and proposes several ways to define it in a general context, indepen-
dently from the considered search space (which can be either a Euclidean space as in
the problem addressed in this chapter or a discrete space as in the problem addressed
later in Chapter 3).

2.5.1 Role and definition
The objective function O is a function defined over the contingency space, taking values
larger than the threshold γ for the dangerous contingencies. This function as well
as the threshold γ are chosen beforehand by the user, based among others on how
dangerous contingencies are defined. The value O(x) of the objective function for a
given contingency x is referred to as its severity.

The function O is used at every iteration of our iterative sampling algorithm to
select the most severe contingencies in the current sample and direct the next sampling
distribution towards them, based on the assumption that contingencies with similar
severities are located close to each other in the search space. Note that, to do so,
the algorithm does not exploit the values of the objective function for themselves but
rather the order relation between the severities of the contingencies in each sample.
As a consequence, the performances of our iterative sampling framework are invariant
with respect to any monotonic transformation applied to the chosen objective function
(the value of γ being adjusted accordingly).

We propose to define the value of the objective function for a given contingency
based on the results of the simulation of the occurrence of this contingency with the
available algorithmic tool. The different simulation tools that can be used have been
presented in the introduction. Sorted by growing algorithmic complexity, they include
DC power flow, AC power flow, voltage stability analysis and transient stability anal-
ysis. The system operator usually chooses among them the one corresponding to the
complexity of the studied phenomena (as an example, in the first case study presented
in Chapter 4, AC load-flows are executed to evaluate the severity of N − 3 contin-
gencies). From there, he can build an objective function relying on either global or
equipment-based criteria.

2.5.2 Global criteria
When assessing the security of a power system, it is very useful to have global indi-
cators of the security level of the system, which allows quick diagnosis and decision
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making. It comes naturally to use such a global criterion to evaluate the severity of a
contingency in the problem addressed in this thesis. Some detailed examples of ways
to define the objective function are provided below.

2.5.2.1 Example 1: impact of unsupplied energy

A natural approach used by the TSOs to quantify the severity of a contingency is to
evaluate its impact on unsupplied energy. To do so, the value of load disconnections
may be estimated using customer damage functions (see [25] and [26]). Another way
of costing load interruptions is to use the Value of Lost Load (VOLL), defined as the
average value that customers attach to the loss of one kilowatt for one hour (see [27]).
In order to reflect the impact of unsupplied energy, the value of the objective function
can be computed in a straightforward way by multiplying the value of the amount of
load disconnected by the time required to resynchronize and load (or directly replace)
the lost units. If a contingency does not result in any load loss, its value of the objec-
tive function is simply set equal to 0. Depending on the security assessment problem
addressed by the user, the threshold γ can be set equal to a value slightly superior to 0
or to a larger value in order to define the dangerous contingencies.

2.5.2.2 Example 2: distance of the system variables to their limits

The objective function can be built by evaluating the distance between the values of
the system variables, such as bus voltages or line flows, and their operating limits. For
instance, when focusing on line flows, such an approach would first require to check
for each line in the system if the maximal flow the line is admitted to carry is reached,
and, if it is the case, to subtract this limit from the flow in the line so as to quantify
the limit violation. These values would then have to be summed or averaged so as to
obtain a unique value that could be used as objective function.

2.5.2.3 Example 3: voltage stability indices

Many methods have been proposed in the literature to determine indices of voltage
stability based on the distance of the post-contingency state to voltage collapse. Some
of them are listed in [28] and [4]. Such indices are either based on load-flow feasibility,
like the L indicator introduced in [29], or on a steady-state stability analysis, like the
smallest singular value of the Jacobian matrix of the power flow equations (see [30]).

In order to apply our iterative sampling approach for performing a voltage stability
study, the objective function can easily be derived from one of these indices.
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2.5.2.4 Example 4: exploiting algorithmic properties of the simulation tools

We investigated in this work a way to take advantage of the algorithmic properties of the
simulation tools used in the analysis part of the security assessment task. In particular,
we chose to relate the value of the objective function to the number of iterations that
are needed by an AC load-flow to converge when run in the post-contingency situation.
It is indeed likely that the closer an event is from instability, the more the load-flow
algorithm has to iterate to reach convergence.

This is illustrated by Figure 2.11, depicting the relationship between the global
system load and the number of iterations needed by the AC load-flow computation
using Newton’s algorithm. If for some contingencies the load-flow diverges or has
not converged when the maximum number of iterations (equal to 10 here) has been
reached, the value of the objective function for these contingencies is set equal to this
maximum number of iteration plus one. This ensures that the function O takes its
maximum values on the dangerous contingencies.

This definition of the objective function has been used in one of the case studies
reported in Chapter 4 (concerning an N − 3 security analysis on IEEE 118 bus test
system).

2.5.3 Equipment-based criteria

As proposed in the previous section, using global criteria to define an objective function
required by the approach is the most intuitive way to proceed. It provides the user with
a synthetic vision of the security level of the system and of the contingencies that would
degrade it, which facilitates efficient decision making.

However, in some cases, the user may want to have a precise insight on the oper-
ating conditions of some specific equipments playing a key role in the security of the
system, like long transmission corridors, cross-border lines, or older system elements
that were not dimensioned for today’s requirements, whose loss might initiate cascades
that would quickly propagate to the rest of the system, such a situation becoming dif-
ficult to mitigate. TSOs may then want to be able to identify the contingencies that
would specifically affect these critical equipments.

Moreover, the computation of a global severity index introduces a risk of masking
some dangerous situations. With a global criterion based on state variables of the
equipments of the system as the one introduced in Subsection 2.5.2.2, it is indeed
possible that a contingency leading to a small increase in the level of stress of several
equipments has a higher value of the objective function than a contingency resulting in
a higher degradation of the state of one single equipment. The system might be closer to
instability after the occurrence of this latter contingency, whereas the objective function
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Figure 2.11: Evolution of the number of iterations to convergence of the AC load-flow
algorithm when the load increases monotonically. The considered test system is the
IEEE 118 bus system.

would not reflect this.
All these reasons suggest that it may also be relevant to adopt an equipment-based

objective function. It can for instance reflect the post-contingency operating conditions
(e.g., line flows or bus voltages) of one particular equipment identified by the user as a
weak-point of the system, or of a small set of such equipments.

2.5.3.1 Example 1: nodal voltage collapse proximity indicator

When performing a voltage stability analysis, the objective function can be defined by
focusing on one particular load bus and computing its voltage collapse proximity in-
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dicator (see [31]). The value of this indicator is based on the change of the reactive
consumption of the considered load bus and on the change of the total reactive genera-
tion in the system after the occurrence of the considered contingency. For the ith load
bus of the considered system, it can be computed using the following equation:

VCPIi =
∑ j∈ΩG

∆QG j

∆Qi
(2.1)

where ΩG is the set of generator buses in the system, ∆QG j is the change of reactive
generation of the jth generator and ∆Qi is the change of reactive consumption at the ith

load bus.
It has been shown in [31] that this indicator takes values comprised between 5 and

10 when the state of the system is far from voltage collapse, and takes significantly
higher values (tending to infinity) when the system is approaching voltage collapse.
The threshold γ above which a contingency is considered as dangerous could thus be
set equal to 10.

2.5.3.2 Example 2: post-contingency line flows

In two of the case studies proposed in Chapter 4, we focus on a single weak transmis-
sion line and allocate to the objective function the value of the loading rate induced by
a contingency on the considered line. A contingency is thus considered as dangerous
if this value exceeds the threshold defined by the operator according to the physical
properties of the line.

2.6 Illustration on a simple power system security as-
sessment problem

We now propose a preliminary illustration of the proposed iterative sampling algorithm
on a small and simple dangerous contingency identification problem.

2.6.1 Setting

We have chosen to run this first experiment on the IEEE 30 bus system (described in
[32]). The problem addressed here, which was also studied in [33], is the identification
of dangerous contingencies for static voltage security, and more specifically for static
loadability.
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In this setting, a contingency is defined as being an homothetic increase or decrease
of the load with respect to the base case, modeled by a coefficient x ∈ [0.25;2.5] multi-
plying the total load in the base case. The contingency space considered here is made
up of a set of configurations of this system characterized by their respective load pat-
terns. These different configurations are obtained by multiplying the load in the base
case by a real coefficient x in [0.25;2.5]. Each contingency is modeled by the corre-
sponding value of x, and the contingency space considered in this problem is thus the
interval [0.25;2.5].

The objective function chosen in this illustration is based on the algorithmic be-
havior of an Optimal Power Flow (OPF) solver. Here, the OPF algorithm is used to
optimize the generation dispatch and the generator voltages to minimize generation
cost (see [34]). To evaluate the objective function for a contingency x, an OPF algo-
rithm is run on the configuration of the system obtained when multiplying the global
load in the base case by x. If the algorithm converges towards a feasible solution, the
value of the objective function is set equal to the number of iterations required to reach
this solution. In all other cases, the value of the objective function is set equal to an
arbitrary large value (1000), chosen greater than the maximal number of iterations of
the algorithm. The choice to define the objective function this way is based on the
assumption that, the higher the number of iterations, the more the system is stressed
and the closer it operates from its stability limits – which are considered to be reached
when the algorithm does not converge.

We thus define a contingency as non-dangerous if the corresponding demand level
can be served by the available active and reactive generation capacity while respecting
voltage constraints (i.e., if the OPF problem corresponding to this variation of the load
is feasible). This contingency is considered as dangerous if it is not the case (i.e., if
the OPF algorithm does not converge or diverges). The maximal number of iterations
performed by the algorithm being equal to 500, an appropriate value for γ is any value
in ]500;1000].

For the sake of simplicity, we chose to apply the iterative sampling algorithm that
was provided in Figure 2.2, which does not take into account any constraint on the
available computational resources. The algorithm parameters used in these simulations
are the following: λ0 = [1,1], s = 20, m = 5 and imax = 7.

2.6.2 Results

When applied to this problem, our iterative sampling algorithm outputs a set of real
values for x corresponding to dangerous contingencies.

Figure 2.12 illustrates the behavior of the algorithm during a typical run. At the
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end of each iteration, we have computed the ratio between of dangerous contingencies
contained in the current sample and the sample size. The corresponding values are rep-
resented in dark blues on the figure. As a comparison, we have also drawn iteratively
7 samples of 20 points from the contingency space using a classical Monte Carlo sam-
pling process, and also computed the rate of dangerous contingencies in each of these
samples, represented in light blue on the figure.

Figure 2.12: Evolution of the rate of dangerous contingencies contained in the succes-
sive sample drawn from the contingency space with our iterative sampling approach
and with a classical Monte Carlo sampling.

We observe that the rate of dangerous contingencies in the current sample rapidly
grows from 0.1 at the first iteration to 0.85 at the second iteration and 1 at the third
one with our iterative sampling method, which significantly outperforms the classical
Monte Carlo sampling that only comes across on average 18 % of dangerous contin-
gencies in each of the samples drawn from the contingency space (which is also the rate
of dangerous contingencies within the contingency space). These results are due to the
fact that, at the end of each iteration, the mean and variance of the normal sampling
distribution to be used in the following iteration are adjusted according to the 5 more
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severe contingencies contained in the current sample, which are almost all dangerous
at iterations 1 and 2 and then all dangerous at the following iterations. Contrary to the
iterative sampling approach, the Monte Carlo sampling process does not exploit the
properties of the previously drawn samples when drawing the following one, and is
therefore not able to yield samples whose rate of dangerous contingencies exceeds the
one of the entire contingency space.

Note: in practice, a possible engineering approach that could be adopted to solve such
a problem would be to assume that there is a threshold on the values of x above which
all the contingencies are dangerous and under which all the contingencies are non-
dangerous. The value of this threshold could then be estimated thanks to a dichotomy
approach. By using such an approach, we found out that this threshold is equal to
2.1. This assumption is coherent with the results of the iterative sampling algorithm,
since neither a dangerous contingency with a value of x under this threshold nor a non-
dangerous contingency with a value of x above it has been encountered. Note that, if
the objective function was rather oscillating several times around one such threshold,
our iterative sampling approach would be able to identify dangerous contingencies
corresponding to these oscillations.
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3

Embedding the contingency
space in a Euclidean space

While the iterative sampling approach described in Chapter 2 was meant to be applied
to a Euclidean search space, the contingency spaces met in practice are rather discrete.
In order to apply an iterative sampling algorithm in such a context, we propose in this
chapter to embed the contingency space in a Euclidean space, over which continuous
sampling distributions can be defined.
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3.1 Introduction
In most dangerous contingency identification problems, the studied contingency space
is discrete. It is obvious when performing an N − k security analysis. It is also the
case when a discrete number of different generation and consumption patterns likely to
occur (due for instance to the uncertainties about the amount of power produced with
renewable sources) is used as contingency space.

The iterative sampling algorithm that was introduced in Figure 2.10 cannot be ap-
plied as such to a discrete contingency space since it requires the existence of a metric
and works with sampling distributions that are defined on a Euclidean space. It is
therefore necessary to embed the contingency space in a Euclidean space, denoted by
Y in the following. A simple and intuitive choice for such an embedding space is for
instance the plane, R2, and Rn (n > 2) can also be adopted in more complex problems.

Such an embedding procedure requires to define functions allowing to navigate
between the original contingency space and its Euclidean embedding space, and con-
versely.

3.1.1 Projection operator
The first parts of this embedding process is the definition of a projection operator on
the contingency space, denoted by Pro j : X → Y . This operator calculates for each
contingency a point in the chosen metric space ideally in such a way that contingencies
which are projected on nearby points have similar values of the objective function.

As an example, a contingency consisting of one single equipment outage can be
projected in R2 as a point whose coordinates represent the location of this equipment
in the geographical map of the system.

3.1.2 Pre-image function
The second part of the embedding process consists in a reverse mapping (that we also
name pre-image computation) of the embedding space, so as to associate to each point
of this latter space an element of the original discrete contingency space. We name the
function fulfilling this role the pre-image function, and denote it by PreImage : Y →
X in the following. In the case where the contingency space is discrete, our iterative
sampling algorithm will be run on the embedding space Y . In order to evaluate the
severity of the points drawn from this space by the algorithm, the objective function
(defined on the space X ) will have to be composed with the pre-image function.

We propose to define this pre-image function in a very simple way, by associating
to each point of the Euclidean embedding space the contingency from which it stands
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the closest according to the chosen metric. This procedure partitions the embedding
space into the Voronoi diagram of the set of points associated to the contingencies,
each surface of this diagram corresponding to a different contingency.

3.1.3 Whole metrization process

What we will refer to as the metrization process in the following includes the three
following steps: choosing an adapted Euclidean space, associating to each contingency
a point of this space and defining the pre-image function that allocates to each point
of this space an element of the original contingency set. Figure 3.1 gives a schematic
view of the relationships between the two different spaces involved in this process.

Figure 3.1: Schematic representation of the embedding of a discrete contingency space
in a Euclidean space.

Two detailed examples of metrization procedures will be presented in the following
sections to embed the set of all N− k line tripping contingencies in R2k.
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3.2 Example 1: embedding the space of all N − k line
tripping contingencies in R2k by exploiting the geo-
graphical coordinates of the buses

In order to explain the strategy we have chosen to embed this specific contingency
space in R2k, we will first show how to embed the set of all N−1 line tripping contin-
gencies in the plane (R2).

To define the projection operator between this contingency space and the plane,
we propose to represent each N− 1 line tripping contingency in R2 by the midpoint
of the segment modeling the lost branch in the two-dimensional map of the system.
This leads to an easily interpretable representation since the user is familiar with the
geographical position of the branches in the studied system.

As for the pre-image function, it is defined as proposed in the previous section:
we associate to each point of the plane the contingency whose projection it stands
the closest to. This implicitely defines the Voronoi diagram of the set of projected
contingencies, and every point of a Voronoi cell is associated by the pre-image function
to the same contingency (the contingency whose projection is the center of the cell).

The rationale behind this procedure is based on the assumption that, if two points
are close to each other in the plane, the contingencies they are associated with by the
pre-image function are likely to have similar effects on the post-contingency steady-
state. In the case treated here of an N − 1 study limited to branch outages, we thus
expect that two neighboring points of the plane will be associated to the tripping of two
branches of the system that are geographically close to each other, and that the effect
of these two outages on the security of the system are similar in some sense.

Figure 3.3 illustrates this approach on the IEEE 14 bus test system, whose classical
one-line diagram is reminded on Figure 3.2 to enable comparison. The red crosses on
this figure correspond to the projection of the N−1 contingencies in the plane (as the
midpoint of the lost line). The black lines delimit the zones of the plane associated to
each contingency by the pre-image process, i.e. the Voronoi cells of the red crosses
representing the contingencies in R2.
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Figure 3.2: One-line diagram of the IEEE 14 bus test system.

Figure 3.3: Representation of the N−1 contingencies as the midpoints of the lost line
and corresponding Voronoi diagram (IEEE 14 bus test system).
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The above embedding procedure may be easily extended to embed N− k (k > 1)
line tripping contingencies in R2k.

The projection of an N−k line tripping contingency, denoted by the k-tuple (l1, l2,
. . . , lk) where every li refers to a transmission line, in R2k is defined as the 2k-tuple
(y1, y2, . . . , y2k), whose kth pair of components corresponds to the coordinates of the
midpoint of line lk in the geographical (two-dimensional) representation of the system.

Once such a projection operator between the contingency space and R2k has been
built, the pre-image (l1, l2, . . . , lk) of a point y of the Euclidean space R2k with coordi-
nates (y1, y2, . . . , y2k) might be computed as follows. To identify the component l1, we
take the two first components of the 2k-dimensional vector and consider them as the
coordinates of a point in the plane. From there, we identify the first element of the tuple
(l1, l2, . . . , lk) as if we were dealing with an N−1 contingency: we use the projection
of the contingencies in the plane as the midpoints of the corresponding lost branches
and search among them for the one standing the closest to the point of coordinates (y1,
y2). By taking the two second components of the 2k-dimensional vector, we identify l2
using the same procedure, and then similarly (l3, . . . , lk).

In order to make sure that the obtained k-tuple is made of distinct branches, we have
slightly modified the pre-image computation procedure as follows. First, we consider
that the elements of a k-tuple are identified sequentially. At every step j, we check
after having identified l j whether there exists in X a k-tuple whose first j elements
are (l1, l2, . . ., l j), whatever their order. If it is not the case, we choose as l j the second
closest branch to the considered point of the Euclidean space. There is again a similar
checking on this new l j and the procedure repeats if necessary.

Note: this procedure for computing the pre-image of a point of the Euclidean em-
bedding space does not necessary yield the point of X whose projection is the nearest
neighbor the considered point of Y . However, the greedy nature of the pre-image com-
putation is essential for keeping the computational complexity of the algorithm linear
with respect to the number of contingency analyses (in accordance with the hypothesis
formulated in Chapter 1.2.2.3) in spite of the combinatorial structure of X .
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3.3 Example 2: embedding the space of all N − k line
tripping contingencies in R2k by computing “elec-
trical” coordinates of the buses

3.3.1 An alternative to the geographical bus coordinates: “electri-
cal” coordinates

When projecting N−k line tripping contingencies as points of R2k, we expect that two
neighboring points of R2k will be associated to two N− k contingencies with similar
effects on the security of the system. However, one main drawback of the strategy
based on the geographic coordinates of the midpoints of the branches is that this latter
assumption might not always be justified. Indeed, the geographical distance between
two equipments may be very poorly correlated with their electrical distance, that seems
to be a more natural distance. For instance, the loss of two different neighboring lines
might have very different consequences for the security of the system, and conversely
some outages on two lines that are geographically remote from each other might have
similar effects if these lines are not that distant from an electrical point of view.

To circumvent this problem while still having the possibility to define a projection
operator based on the location of the midpoints of the lines in a two-dimensional space,
we suggest to represent the buses (and subsequently the midpoints of the segments
modeling the transmission lines) differently on the plane: rather than positioning them
according to their geographical location, we propose to represent them in a way such
that the distance between every pair of buses is correlated to their electrical distance.

A relevant way to define such an electrical distance between two buses is to com-
pute the reduced impedance of the network between them. This is done by reducing
the admittance matrix of the system to these two buses and by computing the modulus
of the inverse of this value.

Assuming that a distance matrix collecting the inter-bus electrical distances com-
puted as proposed above is available, we now propose an algorithm for computing
two-dimensional bus coordinates (independent from the geographical ones) such that
the distances between every pair of buses in this representation reflect these electrical
distances. This approach is based on an optimization algorithm, borrowed from the
multidimensional scaling (MDS) literature (see [35]), known as the SMACOF algo-
rithm (see [36]). The acronym SMACOF stands for Scaling by Majorizing a Compli-
cated Function. This algorithm aims at minimizing the sum of the squared differences
between the Euclidean distances between the computed “electrical” coordinates and
the given electrical distances.

If we denote by D ∈ Rn×n the matrix containing the inter-bus electrical distances,
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by di j the element of this matrix corresponding to the electrical distance between buses
i and j and by X ∈Rn×2 the vector of “electrical” bus coordinates we want to compute,
the problem solved by this algorithm can thus be written as:

argmin
X

f (X) , (3.1)

where

f (X) =
n−1

∑
i=1

n

∑
j=i+1

(√√√√ 2

∑
k=1

(xik− x jk)2 − di j

)2

. (3.2)

The function f defined in Equation (3.2) can be expanded as follows:

f (X) =
n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

(xik− x jk)
2 +

n−1

∑
i=1

n

∑
j=i+1

(
di j
)2

−2
n−1

∑
i=1

n

∑
j=i+1

(√√√√ 2

∑
k=1

(xik− x jk)2

)
di j . (3.3)

The first term of this sum can also be written:

n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

(xik− x jk)
2 = tr(X ′AX) , (3.4)

with A ∈ Rn×n being such that aii = n−1 and ai j = a ji =−1.
The second term of f (X) does not depend on X and can be seen as a constant, so

we set:

k0 =
n−1

∑
i=1

n

∑
j=i+1

(
di j
)2

. (3.5)

In the third term of f (X), we denote by disti, j(X) the Euclidean distance between
buses i and j: √√√√ 2

∑
k=1

(xik− x jk)2 = disti, j(X) . (3.6)
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Given (3.4), (3.5) and (3.6), Equation (3.3) can be written concisely as:

f (X) = tr(X ′AX) + k0− 2
n−1

∑
i=1

n

∑
j=i+1

disti, j(X)di j . (3.7)

The third term of this expression is non-convex and makes the resolution of the
problem (3.1) difficult. To address this problem, it is possible to majorize this term by
a convex expression to get a new objective function, easier to minimize. The SMACOF
algorithm exploits the following majorization, based on the Cauchy-Schwartz inequal-
ity:

2

∑
k=1

(xik− x jk)(yik− y jk) ≤
( 2

∑
k=1

(xik− x jk)
2
)1/2

×
( 2

∑
k=1

(yik− y jk)
2
)1/2

≤ disti j(X)disti j(Y ) , (3.8)

where Y ∈ Rn×2 can be interpreted as another set of coordinates for the buses.
If we multiply both sides of the inequality by (−1) and divide by disti j(Y ), we

obtain:

−disti j(X)≤ ∑
2
k=1(xik− x jk)(yik− y jk)

disti j(Y )
. (3.9)

By summing over i = 1 . . .n and j = i+1 . . .n we obtain the majorizing expression:

−2
n−1

∑
i=1

n

∑
j=i+1

disti, j(X)di j ≤ −2
n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

di j

disti j(Y )

×(xik− x jk)(yik− y jk)

≤ −2tr(X ′B(Y )Y ) , (3.10)

with B(Y ) ∈ Rn×n being such that:

bi j =

−
di j

disti j(Y )
for i 6= j and disti j(Y ) 6= 0

0 for i 6= j and disti j(Y ) = 0

bii =−
n

∑
j=1, j 6=i

bi j . (3.11)
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By combining (3.7) and (3.10), the function f itself can be majorized:

f (X)≤ tr(X ′AX) + k0−2tr(X ′B(Y )Y ) = g(X) . (3.12)

The function g is a quadratic function of X . The minimum of the function g is
obtained when its derivative is equal to zero, i.e.:

∇g(X) = 2AX − 2B(Y )Y = 0 . (3.13)

The value of X minimizing g(X) is such that:

AX = B(Y )Y . (3.14)

As the inverse A−1 does not exist since A is not full rank, this linear equation
in X cannot be solved by premultiplying both sides of (3.14) by A−1. The Moore-
Penrose inverse, given by A+ = (A+ 1n,n)

−1− n−2 1n,n (where 1n,n is the matrix such
that 1n,n(i, j) = 1 ∀(i, j) ∈ {1, . . . ,n}2), is used in the SMACOF algorithm. The matrix
X minimizing g(X), and subsequently f (X), is the following:

X = A+B(Y )Y . (3.15)

It can be shown that the solution computed from (3.15) is such that f (X) ≤ f (Y ).
The SMACOF algorithm exploits this property to iteratively compute solutions with
decreasing values of f . The solution computed at iteration i, denoted by Xi, is equal to
A+B(Xi−1)Xi−1. The tabular version of the procedure used in our simulations is given
in Figure 3.4.
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Problem definition: an n-by-n distance matrix for the set of n power system buses
considered.
Algorithm parameters: a small positive value ε , which is the minimum decrease
of f after an iteration for not stopping the iterative process, and a maximal number
of iterations imax.

Output: a matrix Xelec ∈ Rn×2 of “electrical” bus coordinates.
Algorithm:

Step 1. Set X0 to a random n×2 matrix.
Set iteration counter i = 0.
Step 2. Compute f0 = f (X0). Set f−1 = f0.

Step 3. While i = 0 or
(
( fi−1− fi)> ε and i≤ imax

)
do:

Set i← i+1.
Compute B(Xi−1) by using Equation (3.11).
Set Xi = A+B(Xi−1)Xi−1.
Compute fi = f (Xi).
Set Xi+1 = Xi.

Step 4. Set Xelec = Xi. Output Xelec.

Figure 3.4: A tabular version of the SMACOF algorithm for computing two-
dimensional coordinates of a set of n buses based on their electrical distances.

3.3.2 Illustration: representation of the buses of the IEEE 14 bus
test system according to their electrical distances

We illustrate the procedure described previously on the IEEE 14 bus test system. The
one-line diagram of this network is reminded on Figure 3.5a. Figure 3.5b represents
on the plane the position of the buses of the IEEE 14 bus system as outputted by the
algorithm 3.4, as well as the lines connecting these buses.

Obviously, the positions of the buses on the classical one-line diagram do not give
a good image of their electrical distances. For example, nodes 1, 2, 4 and 5 are much
closer from an electric point of view than they appear on the original one-line diagram.
It is also worth noticing that node 8, which is connected to nodes 4 and 9 through a
three windings transformer, appears quite remote on the one-line diagram drawn on
Figure 3.5b while it is not the case on the other diagram. This was expected since the
windings of a transformer generally have a reactance whose value is in the range of the
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reactance value of a few tens of kilometers long transmission line.
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(a) The “classical” one-line diagram
(b) One-line diagram that positions buses

according to their electrical distances

Figure 3.5: Representation of two one-line diagrams of the IEEE 14 bus test system.
Figure (a) gives the classical one-line diagram, as published in the literature. The
diagram represented on Figure (b) positions the nodes according to their electrical dis-
tances by using the algorithm provided in Figure 3.4.

3.3.3 Using such an “electrical” representation to embed the con-
tingency space in a Euclidean space

Once the studied network has been represented according to the electrical inter-bus
distances, we propose to adopt a procedure similar to the one presented in the previous
section for embedding the contingency space in a Euclidean space.

In the case of an N−1 analysis, the contingencies can be projected in the plane as
the midpoints of the segments representing the corresponding lost line in the “electrical
map” (the map built from the electrical distances). The pre-image function associates
to each point of R2 drawn by the iterative sampling algorithm the contingency whose
projection it is the closest to.

Figure 3.6 shows the projection of the N−1 contingencies in the plane when work-
ing with the one-line diagram of IEEE 14 bus test system introduced on Figure 3.5b
(i.e., a representation of this system based on the electrical distances between buses).
As in Section 3.2, each N− 1 contingency is projected on the plane as the midpoint
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of the tripped transmission line. The sub-areas of the plane associated to each of these
contingencies by the pre-image process are also represented.

Figure 3.6: Representation of the N−1 contingencies as the midpoints of the lost lines
and of the area of the plane associated to each of them (IEEE 14 bus test system, while
considering here that the buses are no longer positioned according to their geographical
coordinates but rather to their electrical distances).

This embedding process can be extended exactly like in the previous section when
performing an N− k analysis when k > 1.

3.4 Updated version of our basic and comprehensive it-
erative sampling algorithms

When searching for dangerous contingencies in a discrete contingency space, the same
basic and comprehensive iterative sampling approach as the ones proposed in Chapter

51



2.4 can be applied once this space has been embedded in a Euclidean space.
A fully specified version of our basic iterative sampling algorithm adapted to dis-

crete search spaces is provided in Figure 3.7. From an algorithmic point of view, the
differences between this algorithm and the one that was presented in Figure 2.2 are
listed hereafter:

• the definition of the problem to which this algorithm is applied now includes
the pre-image function in addition to the contingency space X , the objective
function O and the value γ ∈R defining a contingency x as dangerous if O(x)> γ;

• the space in which the successive samplings are performed is now the Euclidean
embedding space;

• the probability distributions the algorithm works with are defined on the Eu-
clidean embedding space;

• it is no longer the objective function as such that is applied to points drawn
from this space at each iteration, but rather its composition with the pre-image
function, O◦PreImage (that is defined over the Euclidean embedding space);

• in order to save computational effort, the results of the evaluations of the objec-
tive function performed throughout the execution of the algorithm are stored in
a set denoted by P under the form of pairs (x,o), where x is a contingency and
o = O(x) is the corresponding value of the objective function. These results can
thus be reused each time the current sample drawn from the contingency space
contains a contingency that has been analyzed previously;

• the information extracted from the data sampled at each step i is now stored as a
set Ti of triplets (y,x,o) where y corresponds to a point drawn from the Euclidean
embedding space, x to its pre-image in the contingency space and o to the value
of the objective function for the contingency x;

• for the sake of clarity (and for an easier definition of the comprehensive iterative
sampling algorithm based on successive calls of this basic algorithm), the basic
iterative sampling algorithm now takes as input the set Xdang of dangerous con-
tingencies that have been identified during the previous runs, the set P of pairs
(x,o) formed during these runs and the amount resavailable of computational re-
sources that remain available. It returns as output the updated versions of these
three variables.

• a new stopping conditions is introduced in this fully specified algorithm: instead
of stopping when the maximal number of iterations imax has been reached, the
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algorithms stops either when the available computational resources have been ex-
hausted or when the pre-image of all the points of the current sample correspond
to the same contingency (i.e., when all the values of x in the triplets contained in
Ti are identical).

In the basic iterative sampling algorithm described in Figure 3.7, we consider that
Rn is chosen as Euclidean embedding space for the contingency space X . The sam-
pling distributions the algorithm works with in this setting are n-dimensional Gaussian
laws (referred to by GaussRn(·,λi)). The parameters of these distributions are denoted
by λi = [µi,Σi] where µi and Σi refer to the mean vector and covariance matrix of the
distribution, respectively. The parameters λ0 and Σ0 of the initial sampling distribution
are usually chosen so as to cover well the subpart of the embedding space in which the
projected contingencies are located.

A fully specified version of the comprehensive iterative sampling for identifying
dangerous contingencies that was proposed in Figure 2.10, adapted to the case where
the contingency space is discrete and has to be embedded in a Euclidean space, is pro-
vided in Figure 3.8. Is is also built by repeating the basic iterative sampling introduced
in Figure 3.7 (referred to as BIS) as long as the available computational resources have
not been exhausted.
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Problem definition: a contingency space X , a pre-image function PreImage :
Rn→X , an objective function O : X → R and a threshold γ ∈ R.

Algorithm parameters: the parameters λ0 = [µ0,Σ0] of the initial n-dimensional
Gaussian sampling distribution, the size s of the sample drawn at each iteration, the
number m of best solutions chosen at each iteration.
Input: a set P collecting the pairs (x,O(x)) formed during previous executions of
iterative sampling algorithms, the set Xdang of dangerous contingencies (i.e., points
of X such that O(x) ≥ γ) that have been identified over the previous runs and the
amount resinitial of available computational resources.
Output: the updated version of Xdang including the new dangerous contingencies
identified, the updated version of P including the new pairs (x,O(x)) formed during
this run and the amount res f inal of remaining computational resources.
Algorithm:

Step 1. Set i = 0 and res = resinitial .
Step 2. Set Si, Ti and S′i to empty sets.
Step 3. Draw independently s elements from Rn according to the distribution
GaussRn(·,λi) and store them in Si.

Step 4. For every element y ∈ Si :
Compute x = PreImage(y).
If x ∈ P, extract from P the corresponding value of o and add the triplet
(y,x,o) to Ti. Else, if res > 0, compute o = O(x), add the pair(x,o) to P, set
res← res−1 and add the triplet (y,x,o) to Ti.

Step 5. Identify in Ti the triplets for which o ≥ γ and set their x values in
Xdang if they are not already in it.

Step 6. If res = 0, go to Step 9. Else, go to Step 7.
Step 7. Identify in Ti the m triplets with the highest values of o and set their
y values in S′i.

Step 8. If none of the stopping conditions (res = 0 or all values of x in Ti

identical) is met, set µi+1[ j] =
1
m ∑

y∈S′i

y[ j] for j = 1, . . . ,n ,

Σi+1 =
1

m−1 ∑
y∈S′i

(y−µi+1)(y−µi+1)
T and λi+1 = [µi+1,Σi+1] . Set i← i+1

and go to Step 2.
Else, go to Step 9.
Step 9. Set res f inal = res. Output Xdang, P, res f inal and stop.

Figure 3.7: Fully specified version of a basic iterative sampling (BIS) algorithm for
identifying the elements such that a function O : X → R exceeds a threshold γ when
the available computational resources are bounded, Rn being chosen as Euclidean em-
bedding space.
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Problem definition: a discrete contingency space X , a pre-image function
PreImage : Rn → X , an objective function O : X → R and a threshold γ ∈ R.

Algorithm parameters: the parameters λ0 = [µ0,Σ0] of the initial n-dimensional
Gaussian sampling distribution, the size s of the sample drawn at each iteration and
the number m of best solutions chosen at each iteration.
Input: the amount resavailable of available computational resources.
Output: a set Xdang of elements of X such that O(x)≥ γ .
Algorithm:

Step 1. Set t = 1 and res = resavailable.
Step 2. Set P and Xdang to empty sets.
Step 3. While res > 0, do:

(Xdang,P,res) = BIS(Xdang,P,res) (see Figure 3.7)
t← t +1

end while
Step 4. Output Xdang and stop.

Figure 3.8: Fully specified version of a comprehensive iterative sampling algorithm
for identifying the elements such that a function O : X → R exceeds a threshold γ

when the available computational resources are bounded, Rn being chosen as Euclidean
embedding space.
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3.5 Discussion
The comprehensive iterative sampling algorithm that has been provided on Figure 3.8
allows to identify dangerous contingencies within a discrete contingency space, pro-
vided that there exists a procedure allowing to embed this space in a Euclidean space.
Two examples of such a procedure have been proposed in the case where the considered
contingency space is exclusively composed of N− k line outage contingencies. This
framework can easily be extended to other kinds of contingency spaces by adapting the
metrization procedure to the performed study.

For instance, if the contingency space gathers N− k contingencies combining dif-
ferent types of equipment outages, it can also be embedded in R2k by projecting each
single equipment outage contingency in the plane according to the equipment’s coor-
dinates (either geographical or electrical), and by using the same pre-image function as
the one defined in this chapter for N− k line outage contingencies.

When considering other types of contingencies, such as shifts in the load pattern, a
measure of distance has to be defined between each pair of contingencies, for example
by computing the Euclidean distance between vectors concatenating post-contingency
system state variables. The multidimensional scaling algorithm provided in this chapter
can then be used for computing coordinates for the contingencies in a low-dimensional
Euclidean space, on which the comprehensive iterative sampling algorithm can be ex-
ecuted. In this case, the pre-image function would simply associate to a point of this
latter space the nearest contingency.
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4

Case studies

In this chapter, the iterative sampling approach that was proposed in Chapter 3 is il-
lustrated on three different case studies. We first report the results of an N−3 analysis
performed on the IEEE 118 bus test system, followed by those of N−1 and N−2 anal-
yses carried out on the Belgian transmission system.
The simulation results presented in this Chapter have been published in [37] and [38].
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4.1 Results on the IEEE 118 bus test system for N− 3
security analysis

4.1.1 Problem

In this section, we apply the proposed methodology on the IEEE 118 bus test system
(described in [39]), which has been vastly used as benchmark test system in the litera-
ture.

The contingency space considered in this study is the set of all potential N−3 “line
outage” contingencies. The IEEE 118 bus test system counting 186 branches, there

exist
(

186
3

)
= 1055240 such contingencies.

We define the objective function as the number of iterations needed by an AC load-
flow (using Newton’s method) to converge when applied to the post-contingency situa-
tion. The motivations for such a choice have been described earlier in Chapter 2.5.2.4.
If, for some contingencies, the load-flow algorithm diverges or does not converge after
the maximal number of iterations (10) has been reached, the corresponding value of
the objective function is set equal to the maximal number of iterations plus one (11).

The threshold γ on the values of the objective function above which a contingency
is considered as dangerous is set equal to 11. In other words, a contingency is defined
as dangerous if an AC load-flow run on the post-contingency situation diverges or has
not converged after 10 iterations. In order to evaluate the results of our approach, we
first screened the whole contingency space and thus found out that there were 187 dan-
gerous contingencies. The ratio between the dangerous contingencies and all possible
contingencies is equal to 1.77 ·10−4.

The pre-image function we adopt for embedding the contingency space in a Eu-
clidean space is the one that was defined in Chapter 3.3 (based on the inter-bus elec-
trical distances). The space of the considered N− 3 line outage contingencies is thus
embedded in R6.

The simulation results presented hereafter have been obtained with the following
algorithm parameters: the number s of points drawn from the contingency space at each
iteration is set equal to 200 and the number m of points with highest values of the objec-
tive function that are used to define the sampling distribution to be used during the next
iteration is chosen equal to 10. These values follow the recommendations provided
in Chapter 2.3, according to which the parameter s should be one order of magnitude
larger than the number of elements parametrizing the sampling distributions the al-
gorithm works with (equal to 42 here since the mean vectors parametrizing Gaussian
distributions defined on R6 comprise 6 elements and the covariance matrices 36 ele-
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ments) and the parameter m should be 10 to 20 times smaller than s. We chose among
the range of values satisfying these conditions those yielding the best performances.

The maximal number imax of iterations to be done during each “sub-run” of the
iterative sampling algorithm if none of the other stopping conditions is reached is set
equal to 60.

4.1.2 Simulation results
We will mostly use this case study to illustrate how rapidly our approach navigates in
the contingency space towards a dangerous contingency with respect to a naive Monte
Carlo sampling procedure.

To show the efficiency of our methodology, we have studied the speed at which
it can identify one single dangerous contingency when assuming that the available
computational resources are unlimited. This speed has then been compared with the
one corresponding to a classical Monte Carlo sampling of the event space. For the
iterative sampling method, we ran the algorithm 100 times and stored for each of them
the number of contingencies that had been screened when the first dangerous one was
found. For the Monte Carlo sampling method, we took 100 random permutations of the
1 055 240 N− 3 contingencies and studied for each of these permutations the number
of contingencies to screen before encountering the first dangerous one. The results of
these simulations are collected in the histograms reported in Figure 4.1 for our iterative
sampling algorithm and Figure 4.2 for the Monte Carlo sampling method. The height of
each vertical bar on these figures corresponds to the number of runs of the considered
sampling method during which the first dangerous contingency was identified after
having screened a number of contingencies belonging to the range specified on the
horizontal axis.

We observe that the number of contingencies screened before identifying the first
dangerous one is centered around 1 403 with a standard deviation equal to 941 for
the iterative sampling algorithm, and centered around 5 070 with a standard deviation
equal to 4 553 for the Monte Carlo method. The average number of contingencies
screened when the first dangerous one is found is more than 4 times smaller for our
iterative sampling method, which means that it is significantly more efficient than the
classic Monte Carlo method as regards the search of one dangerous contingency. This
result is explained by the fact that our approach exploits during each iteration i > 1
the information contained in the previously drawn sample to compute a new sampling
distribution which is more likely to give more weight to events leading to high values
of O.
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Figure 4.1: Repartition of the number of contingencies screened before identifying the
first dangerous one over 100 runs of our iterative sampling algorithm.

Figure 4.2: Repartition of the number of contingencies screened before identifying the
first dangerous one over 100 runs of the Monte Carlo sampling method.
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This property of our algorithm is illustrated on Figure 4.3, which shows the average
values taken by the objective function on the successive samples drawn during a typical
execution of the first “sub-run” of our iterative sampling approach. The horizontal axis
of this figure represents the number of the iteration while each vertical bar represents
the average plus or minus the standard deviation of the values of the objective function
in the sample of 200 points generated at a given iteration.
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Figure 4.3: Evolution of the range of values that the objective function takes on the
successive 200 point samples generated during a typical execution of the first “sub-
run” of our comprehensive iterative sampling approach.
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4.2 Results on the Belgian transmission system: N−1
analysis

4.2.1 Problem

This section presents the performances of the proposed approach on real data. We
consider here the Belgian transmission system, and more specifically its equipments
operated at a voltage level of 150 kV and above (i.e., 597 buses and 635 transmission
lines).

The contingency space in which we want to identify dangerous contingencies in-
cludes all the N− 1 line tripping contingencies, the initial operating conditions being
the same for all these contingencies.

The objective function adopted in this analysis relies on an equipment-based crite-
rion. As proposed in Chapter 2.5.3.2, we choose to focus on one single equipment, the
line Bruegel-Courcelles (2) 380 kV (a non-border 380 kV transmission line between
Bruegel and Courcelles). The value of the objective function for a given contingency is
defined as being equal to the loading rate (expressed as the percentage of the maximal
admissible loading rate) of this target transmission line in the post-contingency steady-
state. The security analysis tool we adopt to simulate these post-contingency steady-
states is a DC load-flow, whose complexity is well adapted to the problem treated here.

The threshold γ on the value of the objective function defining the dangerous con-
tingencies is set equal to 22.4 (it is a percentage), which is twice the value of the loading
rate of line Bruegel-Courcelles (2) 380 kV in the base case, equal to 11.2%.

Given our definitions of O and γ , the contingency space comprises 634 contingen-
cies and there are 6 dangerous contingencies among them (this latter number can be
computed by simulating each of the potential contingencies). These dangerous contin-
gencies are presented on Table 4.1, in which they are sorted by decreasing severity and
numbered from 1 to 6 for easier referral. Note that the ratio between the number of
dangerous contingencies and the total number of contingencies is equal to 9.46 ·10−3.

The contingency space is embedded in the plane by following the procedure ex-
plained in Chapter 3.2 for embedding a set of N− 1 line outage contingencies in R2.
Each contingency is thus projected on the plane as the midpoint of the segment rep-
resenting the disconnected transmission line in the geographical map of the Belgian
transmission system. The pre-image function associates to each point of the plane the
closest projected contingency.

Figure 4.4 presents the profile of the objective function on this embedding space.
The color scale goes from dark blue for its lowest values to dark red for the highest
ones. Each colored surface corresponds to the “influence zone” (which is actually a
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Table 4.1: List of the dangerous contingencies with respect to the transmission line
Bruegel-Courcelles (2) 380 kV, sorted by decreasing severity, where the severity of a
contingency is the loading rate it induces on the target transmission line.

Dangerous Severity
contingency (loading rate of line

number Bruegel-Courcelles (2) 380 kV)
1 32.2%
2 26.1%
3 25.9%
4 25.4%
5 25.1%
6 22.6%

Voronoi cell) of a contingency, i.e. the area in which each point is associated to the
same contingency by the pre-image function. This profile has been built by evaluating
the objective function for all the N − 1 contingencies. The areas of the map corre-
sponding to the 6 dangerous contingencies are those colored in shades of orange and
red. Note that the profile of the objective function is reported here for information but
is not an input of the problem. The targeted transmission line is also represented on
this figure.

As a complement of information, Figure 4.5 shows the projection of all the con-
sidered N− 1 contingencies on the plane as the midpoint of the tripped line. The red
crosses correspond to the dangerous contingencies, numbered as in Table 4.1, and the
black diamond locates the midpoint of the target transmission line.

The algorithm parameters adopted to generate the simulations reported in the next
section are the following: the number s of points drawn from the contingency space at
each iteration is set equal to 50 and the number m of points with highest values of the
objective function that are used to define the sampling distribution to be used during
the next iteration is set equal to 5.

Here again, these values follow the recommendations provided in Chapter 2.3: the
number of elements parametrizing the sampling distributions computed by the algo-
rithm being equal to 6 in this problem (since a Gaussian distribution defined on R2 is
parametrized by a 2-by-1 mean vector and a 2-by-2 covariance matrix), we chose s one
order of magnitude larger and m 10 times smaller than s. The maximal number imax of
iterations to be done during each “sub-run” of the iterative sampling algorithm if none
of the other stopping conditions is reached is set equal to 10.
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Figure 4.4: Profile of the objective function over the Euclidean embedding space.
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Figure 4.5: Representation of all N−1 contingencies (by the midpoint of the lost line)
in R2. The dangerous contingencies are represented by the red crosses. The black
diamond represents the midpoint of line Bruegel-Courcelles (2) 380 kV, chosen as
target transmission line.

4.2.2 Implementation details

The model of the Belgian transmission system used in for this study was provided by
Elia, the Belgian TSO. The DC load-flow tool we worked with is also the one used by
Elia. It is one of the functionalities of their security assessment software, Plaire, that
was developed by Tractebel.

We used a script written in Perl in order to run this tool in batch mode and thus
compute the value of the objective function for any given contingency. Our iterative
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sampling algorithm has been implemented in Python and internally calls this Perl script
when it is necessary to evaluate the objective function for a contingency.

4.2.3 Simulation results
We will first study in this subsection a typical run of the developed comprehensive
iterative sampling algorithm applied to the problem described previously, with a com-
putational budget equal to the total number of contingencies in the contingency space
(634) so as to have a clear view of the behavior of the algorithm. The results of the
first “sub-run” of this typical run are presented on Figure 4.6. The black points on
each sub-figure represent the set of 50 points drawn from the search space during, re-
spectively, the first 6 iterations. Among these points, those corresponding to dangerous
contingencies are represented as red crosses.

These figures show that the successive sampling distributions built at each iteration
of the first “sub-run” of the algorithm rapidly concentrate to an area corresponding to
the dangerous contingency number 1. Moreover, the dangerous contingencies number
3 and 6, located in the neighborhood of this latter one, have also been identified.

The following “sub-run” of this typical run has converged towards one of the other
dangerous contingencies not yet identified, and did not come across any other danger-
ous contingency during its execution. The third “sub-run” only saw dangerous contin-
gencies that had already been seen and no new one. The last two dangerous contingen-
cies have been identified during the fourth sub-run, after having screened 403 contin-
gencies since the launching of the algorithm. These results show that re-running the
basic iterative sampling algorithm several times allows to leverage the performances of
one single run of this basic algorithm, and to exploit the fact that this basic algorithm
can converge towards different maxima of the objective function from one execution to
the other.
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Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

Figure 4.6: Representation of the successive samples of 50 points drawn from the
contingency space over the iterations during the first sub-run of the comprehensive
iterative sampling algorithm.
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We now propose to study the number of dangerous contingencies our approach is
able to identify depending on the allocated computational budget. To do so, we ran our
iterative sampling framework as well as a classical Monte Carlo sampling approach 100
times with various computational budgets comprised between 0 and 634 possible eval-
uations of the objective function, and plotted on Figure 4.7 the mean of the number of
dangerous contingencies identified over these 100 runs versus the amount of available
computational resources. Figures 4.8 and 4.9 also show the standard deviation of the
number of dangerous contingencies identified over 100 runs of our iterative sampling
approach and of a classical Monte Carlo sampling algorithm, respectively.

Figure 4.7: Mean of the number of dangerous contingencies identified over 100 runs
of our iterative sampling approach (solid line) and of a classical Monte Carlo sam-
pling (dotted line) versus the available computational budget, when considering an
N−1 security analysis where the objective function is the loading rate of line Bruegel-
Courcelles (2) 380 kV.

68



Figure 4.8: Mean (solid line) plus and minus standard deviation (grey area) of the
number of dangerous contingencies identified over 100 runs of our iterative sampling
approach versus the available computational budget, when considering an N−1 secu-
rity analysis where the objective function is the loading rate of line Bruegel-Courcelles
(2) 380 kV.

Figure 4.9: Mean (dotted line) plus and minus standard deviation (grey area) of the
number of dangerous contingencies identified over 100 runs of a classical Monte Carlo
sampling versus the available computational budget, when considering an N−1 secu-
rity analysis where the objective function is the loading rate of line Bruegel-Courcelles
(2) 380 kV.
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This figures shows that our iterative sampling approach identifies on average a
much higher number of dangerous contingencies than a classical Monte Carlo sam-
pling (for instance, twice more when the amount of available computational resources
is set to 200 contingency analyses), especially when the available computational bud-
get is lower than half the size of the contingency space. As explained before, this is
due to the fact that, during each of its “sub-runs”, our approach uses the information
contained in the data sampled from the contingency space so as to direct the search
towards the dangerous contingencies over the iterations. Moreover, the standard de-
viation of the number of dangerous contingencies identified is slightly smaller for our
iterative sampling method than for a classical Monte Carlo sampling method.

In the following, we will adopt a computational budget of 150 contingency anal-
yses, which is a relevant setting to reproduce the context where the available com-
putational resources are bounded and do not allow to screen exhaustively the whole
contingency space.

Table 4.2 presents the probabilities of identification of the six dangerous contin-
gencies in this context. These probabilities have been computed over 100 runs of the
iterative sampling algorithm by counting in how many runs each of these contingencies
were identified. The performances of the proposed procedure are compared in this table
to those of a classical Monte Carlo sampling of the contingency space. For this latter
method, we took 100 random sets of 150 N− 1 contingencies from the 634 potential
ones, and counted how many times each of the six dangerous contingencies appeared
in these sets. The results collected in Table 4.2 correspond to the conversion of these
numbers into probabilities.

Table 4.2: Probabilities of identification of the six dangerous contingencies (w.r.t. the
transmission line Bruegel-Courcelles (2) 380 kV) during one run.

Probability of identification
Contingency number

Iterative sampling Monte Carlo
1 0.91 0.22
2 0.41 0.14
3 0.74 0.21
4 0.36 0.22
5 0.51 0.29
6 0.83 0.26
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We observe that our iterative sampling framework allows to identify the most dan-
gerous N− 1 contingency with a very satisfying probability (0.91), two others of the
six dangerous contingencies with a probability greater than 0.7, and the three last ones
with a probability of 0.36 to 0.51. Even these last figures are still higher than the per-
formances of the Monte Carlo method, with which all the contingencies are identified
with a probability 0.20 in expectation.

In addition to these results, Table 4.3 shows the probabilities of identifying at least
n dangerous contingencies (when n varies between 1 and 6) with the iterative sampling
algorithm and the Monte Carlo method. These probabilities are still computed over 100
runs for each method and with a computational budget of 150 contingency analyses.

Table 4.3: Probabilities of identifying at least n dangerous contingencies (w.r.t. trans-
mission line Bruegel-Courcelles (2) 380 kV) during one run of our iterative sampling
approach.

Probability of identifying at least
n n dangerous contingencies

Iterative sampling Monte Carlo
1 0.99 0.69
2 0.90 0.31
3 0.76 0.09
4 0.47 0.04
5 0.20 0
6 0.04 0

The probabilities of identifying at least n dangerous contingencies are much higher
with our approach than with a Monte Carlo sampling (1.4 to 10 times better for n = 1
to 4). Note that none of the 100 runs of a Monte Carlo sampling method that were per-
formed to compute these statistics allowed to identify 5 or 6 dangerous contingencies.

Finally, we can add to these results that the average number of dangerous contin-
gencies identified during one run of the iterative sampling method with a computational
budget of 150 contingency analyses is equal to 3.4, which shows a large improvement
with respect to the 1.1 dangerous contingencies identified on average by the Monte
Carlo method with the same amount of computational resources.

All these results highlight the interest of our importance sampling approach, which
is able to identify the contingencies that are dangerous for a target transmission line
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with a rather high probability and while screening less than one fourth of the whole
contingency space.

4.3 Results on the Belgian transmission system: N−2
analysis

4.3.1 Problem
We now focus on the problem of an N − 2 security analysis, also on the part of the
Belgian transmission system operated at 150 kV and above. This network includes 635

transmission lines, and there are therefore
(

635
2

)
= 201295 potential N− 2 contin-

gencies.
The objective function adopted in this study is a global criterion inspired from the

common engineering practice of the Belgian TSO. For a given contingency, it is set
equal to the maximal loading rate (expressed as a percentage) observed over all the
transmission lines of the system in the post-contingency steady-state. To evaluate its
value, the post-contingency steady-state is first simulated using a DC load-flow, so as to
determine the loading rate induced by the considered contingency on all the lines that
remain connected. The maximal value among these loading rates is then computed.

A contingency is considered as dangerous if its value of the objective function
exceeds γ = 170, i.e. if it induces on any line of the network an overload greater
than 170 %. An exhaustive analysis of the contingency space has shown that there
are 210 such dangerous contingencies. The ratio between the number of dangerous
contingencies and the total number of contingencies is equal to 1.04 ·10−3.

Here again, mainly for interpretability reasons, the contingency space is embedded
in a Euclidean space by following the procedure proposed in Chapter 3.2, based on
the geographical coordinates of the system equipments. As we consider N− 2 (line
outage) contingencies here, R4 is used as Euclidean embedding space.

The algorithm parameters chosen for this study are the following: the size s of
each sample drawn by the current sampling distribution is set equal to 100 (one order
of magnitude larger than the number of elements parametrizing Gaussian distributions
defined on R4, equal to 20), and the number m of best scoring contingencies used to
define at the end of each iteration the parameters of the next sampling distribution is
set equal to 10 (10 times smaller than s).

The maximal number imax of iterations to be done during each “sub-run” of the
iterative sampling algorithm if none of the other stopping conditions is reached is set
equal to 20.
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The other implementation details are the same as those of the N− 1 analysis pre-
sented in the previous section.

4.3.2 Simulation results

To study the performances of our iterative sampling approach on this setting, we first
compared the empirical mean and standard deviation (over 100 runs of our iterative
sampling algorithm) of the number of dangerous contingencies it identifies given dif-
ferent computational budgets. These results are collected in Figure 4.10, in which they
are compared with the ones obtained by a classical Monte Carlo sampling approach.
For this latter method, we drew 100 random sets of a number of different contingencies
corresponding to the considered computational budget, counted how many dangerous
contingencies appeared in each of these sets and plotted the mean and standard devia-
tion of these numbers.

Figure 4.10: Mean (solid line for our iterative sampling approach, dotted line for a
classical Monte Carlo sampling) plus and minus standard deviation (grey areas) of the
number of dangerous contingencies identified over 100 runs of each method versus the
available computational budget, when considering an N−2 security analysis where the
objective function is the maximal overload induced by a contingency on all the lines of
the sytem.
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We observe that the our iterative sampling approach brings a significant improve-
ment to the results of a classical Monte Carlo sampling. Indeed, it allows to identify up
to 60 times more dangerous contingencies, with a much lower standard deviation. The
iterative sampling algorithm especially outperforms the Monte Carlo sampling when
the available computational budget is low with respect to the size of the contingency
space (up to 25 smaller).

To deepen the analysis of the performances of our iterative sampling framework, we
also computed an empirical estimate of probability of identifying at least n dangerous
contingencies with both this framework and a Monte Carlo sampling method. These
results are reported in Table 4.4.

Table 4.4: Probabilities of identifying at least n dangerous contingencies while analyz-
ing 750 different contingencies with our iterative sampling approach and by screening
the same number of contingencies picked up from the contingency space using the
Monte Carlo method (these probabilities are computed empirically from 100 runs of
each approach).

Probability of identifying at least
n n dangerous contingencies

Iterative sampling Monte Carlo
1 1 0.49
2 1 0.20
3 1 0.03
4 1 0.01
5 0.99 0
10 0.95 0
20 0.75 0
30 0.51 0
40 0.26 0
50 0.13 0
100 0 0
210 0 0

These results show the ability of our iterative sampling approach to identify at least
30 dangerous contingencies with a high probability (and up to more than 50 of them
with lower probabilities), while a classical Monte Carlo sampling method is unable to
identify more than 4 of them while screening the same number of contingencies.
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5

On-line selection of iterative
sampling algorithms

In the comprehensive iterative sampling algorithm developed in this thesis, we have
chosen to repeat the same basic iterative sampling algorithm as long as there were
some computational resources available in order to identify a maximal number of dan-
gerous contingencies. We now assume that several basic iterative sampling algorithms
are available. The differences between such algorithms can for instance come from the
choice of some parameters like the initial sampling distribution, the number of points
in a sample or the number of best solutions used at the end of each iteration to com-
pute the next sampling distribution. Considering that these algorithms are executed
sequentially, this chapter proposes an on-line method for determining which one to
call so as to maximize the number of different dangerous contingencies identified over
the sequence of calls (and while respecting the available computational budget).
We will show that the method we propose for reaching this goal shares some similari-
ties with algorithms that are used to solve multi-armed bandit problems.
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5.1 Introduction

The choice of the parameters of a basic iterative sampling algorithm, and in particular
the choice of the initial sampling distribution, strongly influences the obtained results.
For instance, if the initial sampling distribution of a basic iterative sampling algorithm
focuses on a small subpart of the plane, it is more likely that this algorithm identifies
only some dangerous contingencies localized in this specific area. To a lesser extent,
the values of the parameters s and m also affect the performances of the algorithm.
All these parameters are usually chosen in a heuristic fashion and/or based on expert
knowledge so that the algorithm yields good performance.

We choose in this chapter to work not only with one single basic iterative sampling
algorithm, but rather with several of them. Each such algorithm uses different sets of
parameters seeming relevant with respect to the security assessment problem at hand.
In particular, an interesting way to define a set of basic iterative sampling algorithms
on a given problem consists in splitting the contingency space into several sub-areas
and defining as many algorithms as there are such sub-areas, with initial sampling
distributions respectively focused on each of these sub-areas. All these algorithms
share the same parameters s and m, and of course, are applied to the same problem (i.e.,
with the same contingency space, pre-image function, objective function and threshold
γ). From a technical point of view, they are implemented as explained previously in
Figure 3.7.

In this context where several different iterative sampling algorithms are available,
we focus on the problem of selecting in a dynamic way iterative sampling algorithms
from this set so as to maximize the number of different dangerous contingencies iden-
tified over a finite sequence of runs of these methods.

One simple illustration to show the interest of selecting iterative sampling algo-
rithms in a dynamic way could be the following. If, after several runs of one algorithm
of the pool, we observe that always the same dangerous contingencies are identified, it
would then be wise to stop exploiting this algorithm and to switch to another one.

Note that, in the case where the available iterative sampling algorithms only differ
by their initial sampling distributions, the selection strategy proposed in this chapter is
another way to deal with the potential multimodality of the objective function. Running
different iterative sampling algorithms, each of them focusing on one specific subpart
of the search space, indeed maximizes the probability to come across all the local
maxima of the objective function.

76



5.2 Problem formulation and sketch of our solutions
We consider here the case where we have a set of n iterative sampling algorithms IS1,
IS2, . . ., ISn, and that the available computational resources are bounded. The problem
we want to address is the scheduling of the calls to these algorithms so as to iden-
tify, before the computational resources are exhausted, as many different dangerous
contingencies as possible.

We will assume here that only one iterative sampling algorithm can be run at a time.
The next one can only be launched when the previous one has reached its terminal con-
ditions and outputted its results. Therefore, a scheduling strategy can possibly exploit
information obtained from the previous runs so as to decide which new algorithm to
call.

In the following, we will explore two (families of) strategies for scheduling these
calls:

A strategy looping over the iterative sampling algorithms. Such a strategy calls se-
quentially the n algorithms IS1, IS2, . . ., ISn. Once this whole sequence has been
run, it starts again to call the same sequence, and so on and so forth until the
computational resources are exhausted.

A discovery rate-based strategy. This strategy will score each iterative sampling al-
gorithm according to its ability to discover new dangerous contingencies, and
sequentially pick up the strategy with the highest score as long as some compu-
tational resources are available.

5.3 Detailed algorithm: strategy looping over the avail-
able set of iterative sampling algorithms

Figure 5.1 provides a fully specified algorithm to schedule a sequence of calls of the
available iterative sampling algorithms by looping over them and while respecting the
computational resources available. This strategy calls successively the n available it-
erative sampling algorithms, stores the dangerous contingencies identified and stops
when the available computational resources have been exhausted.
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Problem definition: a contingency space X , a pre-image function PreImage :
Rn→X , an objective function O : X → R and a threshold γ ∈ R.
In addition to these usual characteristics of the dangerous contingency search prob-
lem addressed in this thesis, we assume that a set of n iterative sampling algorithms
IS1, IS2, . . ., ISn defined on the problem stated before is available. Each of these
algorithms is characterized by its own parameters λ0, s and m (chosen by the user).

Input: the amount resavailable of available computational resources (i.e., the maxi-
mal number of times the objective function can be evaluated).
Output: a set Xdang of elements of X such that O(x)≥ γ .
Algorithm:

Step 1. Set i = 1 and res = resavailable.
Step 2. Set Xdang and P to empty sets.

Step 3. While res > 0 do:
(Xdang,P,res) = ISi(Xdang,P,res) (see Figure 3.7).

If i < n then: i← i+1
else: i = 1
end if

end while

Step 4. Output Xdang and stop.

Figure 5.1: A detailed strategy for looping over a set of iterative sampling algorithms
while respecting a given budget of computational resources.

5.4 Detailed algorithm: discovery rate-based strategy
Whereas the previous strategy scheduled the calls of the available iterative sampling
algorithms by repeating them sequentially in the same order, we now propose a strategy
that analyzes the results obtained after each algorithm call in order to schedule these
calls in a more efficient way.

This strategy works as follows. It first calls once each algorithm of the available
set to perform initialization. Then, at each step t > n, it computes for each algorithm
ISi an index Di

t−1 ∈ R evaluating its performances over the previous runs. If di
T (t) is

the number of new dangerous contingencies identified by algorithm ISi during its last
T executions, computed at step t, and ni(t) the number of times algorithm ISi has been
called up to step t included, this index (that we name “discovery factor”) is defined as
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follows:

Di
t−1 =

{
di

T (t−1) if T ≤ ni
t−1

di
ni(t−1)(t−1) if T > ni

t−1
(5.1)

The discovery factor of algorithm ISi represents the number of new dangerous con-
tingencies it has been able to identify over its T previous runs. It has been designed
based on the following empirical observation we made: given a sequence of t−1 runs
of an iterative sampling algorithm, the run t is likely to identify new dangerous con-
tingencies if the most recent runs (say, the last T runs) have been able to identify new
dangerous contingencies.

In the simulations we have carried out, we have observed that the value of T = 2
was giving the best results. Very large values of T did not perform well at all probably
because they were biasing too much the choice of the IS algorithm to run towards the
one that had identified the largest number of dangerous contingencies over the whole
process, even if it was unable anymore to identify new ones.

Like the procedure presented in the previous section, this strategy stores the danger-
ous contingencies and stops when the available computational resources are exhausted.
The fully specified algorithm corresponding to this discovery rate-based strategy is
presented on Figure 5.2.
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Problem definition: a contingency space X , a pre-image function PreImage :
Rn→X , an objective function O : X → R and a threshold γ ∈ R.
In addition to these usual characteristics of the dangerous contingency search prob-
lem addressed in this thesis, we assume that a set of n iterative sampling algorithms
IS1, IS2, . . ., ISn defined on the problem stated before is available. Each of these
algorithms is characterized by its own parameters λ0, s and m (chosen by the user).

Input: the amount resavailable of available computational resources (i.e., the maxi-
mal number of times the objective function can be evaluated).
Output: a set Xdang of elements of X such that O(x)≥ γ .
Algorithm:

Step 1. Set t = 1 and res = resavailable.
Step 2. Set Xdang and P to empty sets.
Step 3. While t ≤ n and res > 0 do:

(Xdang,P,res) = ISt(Xdang,P,res) (see Figure 3.7).
t← t +1

end while
Step 4. While res > 0 do:

t← t +1
Compute Di

t−1 for i ∈ {1, . . . ,n} according to Equation (5.1).
Call ISk with k such that k = argmax

1≤i≤n
Di

t−1 . If this maximizer is

not unique, draw k at random among the maximizers.
end while

Step 5. Output Xdang and stop.

Figure 5.2: A discovery rate-based algorithm for selecting on-line a sequence of iter-
ative sampling algorithms among the available set so as to maximize the number of
different dangerous contingencies identified over this sequence.
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5.5 Illustration on the Belgian transmission system

5.5.1 Problem addressed
The simulation results treated in this chapter are related to the power system security
assessment problem already addressed in Chapter 4.2: we consider the high voltage
Belgian transmission system (equipments operated at 150 kV and above, which repre-
sents 600 buses and 635 transmission lines), and we want to identify among all poten-
tial N−1 line tripping contingencies those that would induce the highest overloads on
one specific transmission line.

Here we choose the line named Ruien-Wortegem 150 kV, a 150 kV line between
Ruien and Wortegem (whose midpoint is represented by a black diamond on Figure
5.4 in the following section), as target transmission line. We define the value of the
objective function for a contingency x as being the loading rate of this target line in
the post-contingency steady-state. This loading rate is expressed as a percentage of the
maximal flow acceptable on this line.

We consider that a contingency is dangerous if it induces an overload on this line,
i.e. a loading rate greater than 100% of the maximal acceptable flow. An exhaustive
N − 1 shows that there are 6 dangerous contingencies (over the 634 potential ones)
according to this definition. These dangerous contingencies are listed in Table 5.1
where they are sorted by decreasing severity.

Table 5.1: List of the dangerous contingencies (with respect to transmission line Ruien-
Wortegem 150 kV), sorted by decreasing severity (the severity of a contingency is the
loading rate it induces on the target transmission line).

Dangerous Severity
contingency (loading rate of line

number Ruien-Wortegem 150 kV)
1 124.9%
2 120.4%
3 117.1%
4 115.1%
5 108.7%
6 103.8%

In our simulations, we will purposely work with a large amount of computational
resources (we allow 500 contingencies to be analyzed), so that we can examine the be-
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havior of the proposed strategies over a long sequence of iterative sampling algorithm
executions.

5.5.2 Set of iterative sampling algorithms at hand
In this illustration, we split the plane (modeled hereafter as a rectangle) into 9 sub-
areas (numbered as shown on Figure 5.3), and we define 9 different iterative sampling
algorithms, respectively initialized in each of these sub-areas.

1 2 3
4 5 6
7 8 9

Figure 5.3: Partition of the contingency space into 9 sub-areas.

Practically, the algorithm ISk (for k ∈ {1, ...,n}) is defined such that its initial sam-
pling distribution is concentrated on sub-area k. The parameters λ i

0 are thus chosen
such that µ i

0 corresponds to the geometrical center of sub-area k, and that the jth
component of σ i

0 is equal to half the size of sub-area k alongside its jth dimension.
Parameters s and m are set respectively to 30 and 3 for all these algorithms.

Figure 5.4 shows, in addition to this partition of the plane, the location of the con-
tingencies in R2 when representing them by the midpoint of the tripped line. The red
crosses correspond to the dangerous contingencies, and the black diamond locates the
midpoint of line Ruien-Wortegem 150 kV (chosen as target transmission line).

We observe that 5 of these dangerous contingencies are located in sub-area 1 (only
four distinct red crosses are visible since dangerous contingencies 3 and 6 correspond
to the loss of lines joining the same nodes) and 1 in sub-area 4. If we knew the po-
sition and number of the dangerous contingencies (which is of course not the case in
our dangerous contingency search context), we may reasonably expect that running
IS1 and IS4 would identify them. Here we do not know a priori where the dangerous
contingencies are located and, as explained in 5.2, we want to schedule how to succes-
sively call these algorithms so as to identify as many dangerous contingencies while
respecting the available computational budget.
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Figure 5.4: Representation of all N−1 contingencies (by the midpoint of the lost line)
in R2. The dangerous contingencies are represented by the red crosses. The black
diamond represents the midpoint of line Ruien-Wortegem 150 kV, chosen as target
transmission line.

5.5.3 Sequential selection strategy looping over the set of iterative
sampling algorithms at hand

Table 5.2 presents the results of a particular run of the strategy looping over the set of
iterative sampling algorithms available (presented in Section 5.3) on this problem.

We observe that, on the whole, 6 executions of IS1 and 5 calls of IS4 are performed
before having identified the 6 dangerous contingencies. Note that one execution of
these algorithm does not necessarily identify some new dangerous contingencies. As
all others iterative sampling algorithms are called in-between, the identification of all
the dangerous contingencies requires 46 steps (i.e., 46 calls of an iterative sampling
algorithm) of this strategy.
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Table 5.2: A particular run of the strategy looping over the available set of iterative
sampling algorithms.

Index of the Number of Number of
Step IS algorithm dangerous contingencies contingencies

executed identified analyzed
1 1 3 26
2 2 3 51
3 3 3 60
4 4 3 115
5 5 3 143
6 6 3 147
7 7 3 115
8 8 3 143
9 9 3 147

10 1 3 151
11 2 3 176
12 3 3 184
13 4 4 199
. . . . . . . . . . . .
37 1 5 335
. . . . . . . . . . . .
46 1 6 353

5.5.4 Sequential selection strategy focused on the discovery of new
dangerous contingencies

The results of a particular run of the discovery rate-based strategy proposed in Sec-
tion 5.4 are presented in Table 5.3. Contrary to the strategy looping over the available
IS algorithms, this discovery rate-based strategy can start from taking advantage of
the previously obtained results from after step 9, the 9 first steps corresponding to the
“initialization sequence”. As both algorithms IS1 and IS4 have identified one new dan-
gerous contingency during their first execution, they have the same discovery factor at
step 10 and the algorithm called after this first sequence has to be drawn at random
between them. IS4 is thus executed at step 10, but it does not identify any new danger-
ous contingency (which could have been expected since there is only one dangerous
contingency in sub-area 4). Then IS1 is selected at step 11 (drawn at random among

84



IS1 and IS4 which still have the same discovery factor) and it finds 3 more new dan-
gerous contingencies. It is executed once again at step 12 since it now has the highest
discovery factor, and identifies the 6th dangerous contingency.

With this discovery rate-based strategy for selecting on-line which algorithm to
execute, only 12 steps (i.e. 12 executions of an iterative sampling algorithm) have been
necessary here before having identified all the dangerous contingencies. On the whole,
IS1 was run 3 times and IS4 2 times when the 6th dangerous contingency is found.
This is better than with the strategy looping over the available algorithms, which had
required to analyze 353 contingencies before the 6th dangerous one was found.

Table 5.3: A particular run of the discovery rate-based strategy for selecting on-line
which of the available iterative sampling algorithms to execute.

Index of the Number of Number of
Step IS algorithm dangerous contingencies contingencies

executed identified analyzed
1 1 1 31
2 2 1 55
3 3 1 63
4 4 2 94
5 5 2 136
6 6 2 167
7 7 2 171
8 8 2 176
9 9 2 199

10 4 2 209
11 1 5 220
12 1 6 224

5.5.5 Statistics over 100 runs of these two strategies

Figure 5.5 compares the average performances of the looping and discovery rate-based
strategies for on-line iterative sampling algorithm selection. It reports the mean value
(computed over 100 runs of each strategy) of the number of dangerous contingencies
identified depending on the available computational resources, i.e. the number of con-
tingencies it is possible to analyze.

85



Figure 5.5: Mean value of the number of dangerous contingencies identified over 100
runs of our discovery rate-based (solid line) and looping (dotted line) strategies versus
the available computational budget, when considering an N−1 security analysis where
the objective function is the loading rate of line Ruien-Wortegem 150 kV.

The performances of these two approaches are similar when the computational bud-
get is lower than 150 contingency evaluations since they both call the available iterative
sampling algorithms in the same order during their 9 first steps. We observe in partic-
ular that the number of dangerous contingencies identified grows very rapidly within
the first 35 contingency evaluations, which correspond to the execution of the the al-
gorithm IS1. This algorithm is indeed the one likely to generate the highest number
of dangerous contingencies since four of them are located in sub-area 1. For larger
values of the computational budget, the discovery rate-based strategy allows to identify
slightly more dangerous contingencies than the looping strategy. This improvement in
the results is due to the introduction of the discovery factor to select at each step t > 9
the algorithms that obtained the best results in their previous executions.

The standard deviation of the number of dangerous contingencies identified by
these two approaches is reported on Figures 5.6 and 5.7. These latter figures show
the mean value plus and minus standard deviation (grey area) of the number of dan-
gerous contingencies identified over 100 runs of the discovery rate-based and looping
strategies, respectively, versus the available computational budget.
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Figure 5.6: Mean (solid line) plus and minus standard deviation (grey area) of the
number of dangerous contingencies identified over 100 runs of our discovery rate-based
strategy versus the available computational budget, when considering an N−1 security
analysis where the objective function is the loading rate of line Ruien-Wortegem 150
kV.

Figure 5.7: Mean (dotted line) plus and minus standard deviation (grey area) of the
number of dangerous contingencies identified over 100 runs of our looping strategy
versus the available computational budget, when considering an N−1 security analysis
where the objective function is the loading rate of line Ruien-Wortegem 150 kV.
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We observe that, for both strategies, the standard deviation of the number of dan-
gerous contingencies identified is rather high. This is due to the fact that these selection
strategies increase the variance of the performances of the basic iterative sampling al-
gorithms that they call.

5.6 Comparison with multi-armed bandit problems
This section highlights the connection that exists between the problem tackled in this
chapter and the so-called K-armed bandit problem, that has been well-studied in ma-
chine learning and statistics (see [40], [41] and [42]).

5.6.1 Description of the multi-armed bandit problem
A K-armed bandit (K ∈ N) is a machine learning problem based on an analogy with
the traditional slot machine (one-armed bandit) but with more than one arm. Such a
problem is defined by the K-tuple (p1, p2, ..., pK) ∈ PK , P being the set of all reward
distributions. When pulled at time t ∈ N, each arm k ∈ {1, ...,K} provides a reward rt
drawn from a distribution pk associated with the arm k.

The objective is to maximize the cumulated sum of rewards through iterative pulls.
It is generally assumed that no initial knowledge about the arms is available. The
crucial trade-off the gambler faces at each trial is between exploitation of the arm that
has the highest observed reward and exploration to get more information about the
expected rewards of the other arms. Naturally, the reward distributions (p1, p2, ..., pK)
are not supposed to be the same. We denote by µ1, . . . ,µK the expected values of the
reward distributions p1, . . . , pK .

Let bt ∈ {1, . . . ,K} denote the machine selected at a time t, and let ht be the history
vector available to the gambler at instant t, i.e.:

ht = [b0,r0,b1,r1, . . . ,bt−1,rt−1].

We denote by H the set of all possible histories of any length.
A policy π : H → {1, . . . ,K} is a decision process that associates an arm bt to a

given history ht−1:
bt = π(ht−1) .

The cumulated regret of a policy π at time t (after t pulls) is defined as follows:

Rt = tµ∗−
t−1

∑
t ′=0

rt ′ ,
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where µ∗ = max
k∈{1,...,K}

µk refers to the expected reward of the optimal arm to play at any

time.
The objective is to find a policy that minimizes the expected cumulated regret, given

as follows:

E [Rt ] =
K

∑
k=1

(µ∗−µk)E [Tk(t)] , (5.2)

where µ∗−µk is the expected loss of playing arm k, and Tk(t) refers to the number of
times the arm k has been played from instant 0 to instant t−1.

A common approach for designing policies consists in assigning a numerical value,
called index, to each arm based on its history hk

t gathered at time t. The approach is
the following:

• during the first K iterations, the arms 1, . . . ,K are sequentially played;

• at each subsequent time step t, for every machine k ∈ {1, . . . ,K}, an index is
computed based on its history hk

t ;

• the arm with the largest index is selected to be pulled at time t.

One of the most famous such “index-based” policies is UCB1, proposed in [41].

5.6.2 Analysis of the similarities and differences with our problem

5.6.2.1 Similarities

Our problem of on-line selection of iterative sampling algorithms can be seen in some
ways as a multi-armed bandit problem. Indeed, the set of different iterative sampling
algorithms available in this context is the analog of the set of reward distributions avail-
able in the bandit context. An iterative sampling algorithm can be assimilated to a
probability distribution since it identifies each dangerous contingency with a specific
probability (defined intrinsically by the chosen parametrization of the algorithm). We
also face the problem of selecting at one instant which is the best distribution given a
history of observations. The approach used for solving our problem is also similar to
an index-based bandit algorithm since, after having first called each of the n iterative
sampling algorithms available, we compute at each step a score for each algorithm (the
discovery factor) in order to select which one to call.
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5.6.2.2 Differences

If we just wanted to pick up a maximum number of dangerous contingencies, the prob-
lem tackled in this chapter would actually be a bandit problem. However, by having as
goal to pick a maximum number of different dangerous contingencies, it departs away
from the standard multi-armed bandit problem. Indeed, it is as if we were dealing with
a “new type” of multi-armed bandit problem where, once an arm has produced an event
that was associated with a good reward, the reward associated to this event in future
plays would be equal to zero, whatever the arm generating this event.

5.6.2.3 Discussion

Viewed in the light of these comparisons, the problem addressed in this chapter can be
seen as a practical motivation for defining a new type of multi-armed bandit problem,
which can be solved by the looping and discovery rate-based strategies we have devel-
oped. Moreover, it is likely that some of the results in this field could be used in future
work to better understand the properties of the two strategies that have been proposed
in this chapter or even to design more efficient ones.

Note that power system security assessment problems closed to the one considered
here have already inspired a new sequential decision making problem in [43]. In par-
ticular, this latter paper proposes an algorithm for solving this problem based on the
optimistic paradigm and the Good-Turing missing mass estimator. This algorithm has
been shown to uniformly attain the optimal discovery rate in a macroscopic limit sense
by using proof techniques developed for multi-armed bandit problems.
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6

Estimating the probability and
cardinality of the set of
dangerous contingencies

We consider here the same context as in the rest of this thesis, i.e. large scale power
system security assessment problems where the available computational resources are
bounded and do not allow an exhaustive screening of the contingency space. We specif-
ically focus on the case where this space is discrete, which is representative of most
power system security assessment problems.
This chapter presents how the cross-entropy method for rare-event simulation can be
used in this context for estimating the probability of the set of dangerous contingencies
and how it is possible to use it for estimating the number of dangerous contingencies
in a discrete search space.
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Let X be a random variable taking its values in an event space X with a prob-
ability density function f (·), let S(·) be a real-valued function defined on X and γ

be a real number. In the rare-event simulation context, one needs to estimate the
probability of occurrence l of an event {S(X) ≥ γ}, i.e. to estimate the expression
EX∼ f (·)

[
I{S(X)≥γ}

]
.1

The problem of estimating the probability of occurrence of a dangerous contin-
gency is exactly a rare-event problem where the event space X is our contingency
space, the function S is our objective function O and the number γ plays the exact same
role as the threshold γ defining a contingency as dangerous if O(x)≥ γ .

We will describe in this chapter how it is possible to estimate the probability of
occurrence of a rare-event. In particular, we will first present importance sampling
methods for rare-event simulation. Afterwards, we will introduce the cross-entropy
method for rare-event simulation and provide a fully specified algorithm for estimating
the probability of occurrence of an event {S(X)≥ γ}. We will then use this algorithm
to adapt the basic iterative sampling algorithm proposed in this thesis and estimate the
probability of occurrence of a dangerous contingency when the available computational
resources are bounded. We will also explain how to use this estimate to compute the
number of dangerous contingencies when considering problems where the contingency
space is discrete, and provide illustrative simulation results.

6.1 Estimating the probability of occurrence of a rare-
event

The material of this first section is largely borrowed from [23], to which we refer the
reader for a complement of information.

6.1.1 Importance sampling for rare-event simulation

In rare-event simulation problems, the probability of occurrence l of an event {S(X)≥
γ} is extremely low, say smaller than 10−6, and estimating it with enough accuracy by
relying on a Crude Monte Carlo (CMC) estimator

l̂ =
1
N

N

∑
j=1

I{S(X j)≥γ} (6.1)

1The function I{logical expression} is defined by I{logical expression}= 1 if logical expression= true and 0 oth-
erwise. If X is finite, the expression EX∼ f (·)

[
I{S(X)≥γ}

]
can be written equivalently as ∑X∈X I{S(X)≥γ} f (X).
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requires to draw a considerably large sample X1, X2, . . ., XN from f (·). For example,

estimating l, with a sample of size N leads to a standard error σl̂ =

√
l(1− l)

N
. Hence,

a sample size of N ' 1010 is required in order to estimate l ' 10−6 with relative error
of 1% (i.e. with a standard error of 0.01 · l).

An alternative to CMC is based on importance sampling. With such an approach, a
random sample X1, X2, . . . ,XN is drawn from an importance sampling distribution g(·)
and the probability of occurrence of the event is estimated via the following estimator2

l̂ =
1
N

N

∑
j=1

I{S(X j)≥γ}
f (X j)

g(X j)
. (6.2)

In this context, the most effective way to estimate l would be to adopt the “ideal”
importance sampling distribution

g∗(X) =
I{S(X)≥γ} f (X)

l
. (6.3)

Indeed, since l is constant, using this “ideal” importance sampling distribution g∗(·)
(6.3) would lead to an estimator (6.2) having a zero variance. Consequently, we would
need to produce only a one element sample to determine l. The obvious difficulty is
that g∗(·) depends on the unknown parameter l.

6.1.2 The cross-entropy method for rare-event simulation
The main idea of the cross-entropy (CE) method for rare event simulation is to find
inside an a priori given set G of probability distributions defined on X , an element
g(·) such that its distance to the “ideal” sampling distribution is minimal. A convenient
measure of distance between two probability distributions a(·) and b(·) on X is the
Kullback-Leibler divergence, which is also named the cross-entropy between a(·) and
b(·). The Kullback-Leibler divergence, which is not a distance in the formal sense
since it is for example not symmetric, is defined as follows:

D(a,b) = EX∼a(·)

[
ln

a(X)

b(X)

]
. (6.4)

The CE method reduces the problem of finding an appropriate importance sampling
probability distribution to the following optimization problem:

argmin
g∈G

D(g∗,g) . (6.5)

2assuming that g(X) 6= 0 whenever I{S(X)≥γ} f (X) 6= 0
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One can show through simple mathematical derivations that solving (6.5) is equivalent
to solve

argmax
g∈G

EX∼ f (·)
[
I{S(X)≥γ} lng(X)

]
, (6.6)

which does not depend explicitly on l anymore.

If l is not too small, CE-based algorithms for rare-event simulations estimate a good
solution of (6.6) by solving its stochastic counterpart

argmax
g∈G

M

∑
j=1

I{S(X j)≥γ} lng(X j) , (6.7)

where the sample X1, X2, . . ., XM is drawn according to f (·). When l is too small, say
l < 10−6, which is often the case in rare-event simulation, the value of M one has to
adopt for having a “good” stochastic counterpart may be prohibitively high and some
specific iterative techniques need to be adopted to solve (6.6). The use of these tech-
niques is often equivalent to solving a sequence of rare event problems using the same
probability distribution f (·) and function S but with increasing values of γ converging
to the value of γ related to the original problem.

Under some specific assumptions on X , f (·) and G , it is possible to solve ana-
lytically the optimization problem (6.7). This property is often exploited in the CE
context.

Let us now suppose that X is Rn and let us denote by GaussRn(·,v), where v =
[µ,σ ] ∈ Rn×Rn, the n-dimensional (diagonal) Gaussian probability distribution

GaussRn(x,v) =
n

∏
i=1

1
σ [i]
√

2π
e
− (x[i]−µ[i])2

2σ [i]2 , (6.8)

where x[i] is the ith component of the random variable X and σ [i] (µ[i]) is the stan-
dard deviation (mean) of the n-dimensional probability distribution alongside the ith
direction.

Then, one can show that if f (·) is a n-dimensional Gaussian probability distribution
and G is the set of all n-dimensional Gaussian probability distributions, the solution
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GaussRn(·,v∗) of (6.7) can be computed analytically:

µ[i] =

M
∑
j=1

I{S(X j)≥γ}X j[i]

M
∑
j=1

I{S(X j)≥γ}

, (6.9)

σ [i] =

√√√√√√√√
M
∑
j=1

I{S(X j)≥γ}(X j[i]−µ[i])2

M
∑
j=1

I{S(X j)≥γ}

. (6.10)

6.1.3 An iterative CE-based rare-event simulation algorithm
As mentioned in the previous subsection, when l is too small, one needs to draw a pro-
hibitively high number of samples to obtain a “good” stochastic counterpart (6.7) of
(6.6). This originates from the fact that, in order to have a “good” stochastic counter-
part, a sufficient number of samples X j for which S(X j)≥ γ needs to be drawn. Iterative
algorithms are therefore used for solving accurately this stochastic counterpart.

The rationale behind these algorithms is the following. First, let us observe that
even if the probability distribution used to draw the sample used for building the
stochastic counterpart was not drawn according to f (·) but well another probability
distribution, called h(·), the stochastic counterpart could still have the same meaning

provided that every term of the sum is weighted by a factor
f (X j)
h(X j)

. Therefore, if one

can identify a probability distribution h(X j) for which the probability of occurrence of
the event {S(X)≥ γ} is not too small, it is very likely that the number of samples that
will have to be drawn to obtain a good stochastic counterpart will have to be relatively
small.

To identify such a distribution, it is of common practice to solve a sequence of
rare-event problems differing only by the values of γ used. The first iteration of this
sequence consists of a rare-event problem based on a small enough value of γ 3 so as
to require only drawing a reasonable number of samples with f for having a “good”
stochastic counterpart4. The probability distribution computed by solving this stochas-
tic counterpart is in general more likely than f to generate events associated with high

3The smaller the value of γ is, the higher the probability of the event {S(X j)≥ γ} is.
4Actually, it is not required to use f to draw the sample at the first iteration, provided that the stochastic

counterpart is corrected appropriately.
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values of S(·). It is then used to generate the sample for solving the stochastic coun-
terpart of the second rare-event problem, which differs only from the first one by a
larger value of γ . This larger value of γ is itself defined from this same distribution
to guarantee that by proceeding like this, not too many samples have to be drawn to
solve accurately the stochastic counterpart at the second iteration. The algorithm pro-
ceeds similarly over the next iterations and stops when the rare-event problem solved
is identical to the original one.

6.1.4 A fully specified algorithm for estimating the probability of
occurrence of a rare-event

Figure 6.1 gives the tabular version of a fully specified CE-based algorithm for esti-
mating the probability of occurrence of an event {S(X) ≥ γ} when X is a bounded
subset of Rn.

This algorithm is based on the iterative scheme described in previous subsection. It
is particularized to the case where G , the set of probability distributions in which one
looks for an element which “stands” the closest to the “ideal” sampling distribution,
is the set of Gaussian distributions “truncated” to values belonging to X . Similarly
to the notation adopted for denoting non-truncated Gaussian distributions, the symbol
GaussX (·,v) is chosen to refer to truncated ones. The value of these truncated distri-

butions at x ∈X is GaussRn(x,v)
EX∼GaussRn (·,v)[I{X∈X }]

· I{X∈X } .

At every iteration t, the algorithm proceeds as follows. First, it draws from the dis-
tribution GaussX (·,vt) computed at the previous iteration a sample named Xt . From
this sample, it computes a value γt which is such that only a small fraction ρ (ρ is a
parameter of the algorithm) of the elements of x∈ Xt lead to a value S(x) larger or equal
to γt . If the value of γt so computed turns out to be larger than γ , then it is replaced
by γ . This value γt is then used together with GaussX (·,vt) to define the rare-event
problem to be solved at iteration t. By defining the rare-event problem in this way, it
is likely that the probability of the event {S(X) ≥ γt} with X ∼ GaussX (·,vt) is not
too small. The stochastic counterpart of the optimization problem (see Equations (6.7)
and (6.6)) can therefore be defined by using a sample which is not too large. The algo-
rithm described in Figure 6.1 uses the already drawn sample Xt to build this stochastic

counterpart (where every term is weighted by f (x)
GaussX (x,vt)

). An analytical solution,

which is an approximation of the solution of the stochastic counterpart, is then used to
compute the parameter vt+1 = [µt+1,σt+1] of the sampling distribution used at the next
iteration.

The algorithm stops when γt is equal to γ . Before stopping, the algorithm com-
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putes an estimate of l by exploiting the importance sampling estimator (6.2) with the
importance sampling distribution GaussX (·,vt+1). It returns both this estimate of l and
GaussX (·,vt+1), which usually gives strong preference to events x such that S(x)≥ γ .

Problem definition: an event space X , a function S : X → R with X ⊂ Rn, a
random variable X ∈X taking its values in X with the distribution f (·) and a real
number γ .

Algorithm parameters: v1 = [µ1,σ1], C, ρ

Output: an estimation of the (small) probability EX∼ f (·)
[
I{S(X)≥γ}

]
and a distribu-

tion GaussX (·,v) giving preference to events x such that S(x)≥ γ .
Algorithm:

Step 1. Set t equal to 1. Set nbElite equal to the largest integer inferior or
equal to ρ×C×n. If nbElite < 1 then set nbElite to 1.
Step 2. Set Xt equal to the empty set and rt to an empty vector.
Step 3. Draw independently N = C× n elements according to the probability
distribution gt(·) = GaussX (·,vt) and store them in Xt .
Step 4. For every element x ∈Xt , compute S(x) and add this value at the end
of the vector rt .
Step 5. Sort the vector rt in decreasing order and set γ̂t = min(γ,rt [nbElite]).

Step 6. For i = 1,2, . . . ,N, set µt+1[i] =
∑

x∈Xt
I{S(x)≥γ̂t }x[i] f (x)/gt (x)

∑
x∈Xt

I{S(x)≥γ̂t } f (x)/gt (x)
and

σt+1 =

√√√√ ∑
x∈Xt

I{S(x)≥γ̂t }(x[i]−µt+1[i])2 f (x)/gt (x)

∑
x∈Xt

I{S(x)≥γ̂t } f (x)/gt (x)
. Set vt+1 = [µt+1,σt+1].

Step 7. If γ̂t = γ , estimate l using the estimator

l̂ = 1
N

N
∑
j=1

f (X j)

GaussX (X j ,vt+1)
· I{S(X j)≥γ} , where the samples X j are drawn from

GaussX (·,vt+1), and return both l̂ and the distribution GaussX (·,vt+1). Else,
set t← t +1 and go to Step 2.

Figure 6.1: A fully specified CE-based algorithm for estimating the probability of oc-
currence of an event {S(X)≥ γ} when the event space is a bounded subset of Rn.
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Let us now elaborate on the role of the parameters of this CE algorithm:

• the parameter C determines the size of the samples Xt in a way that |Xt |=C×n.
The rationale behind adopting a sample Xt whose cardinality is proportional to
the dimension n of the event space X is that usually, the larger the dimension
of event space space is, the larger the sample Xt has to be for the algorithm to
behave well. A default value for this parameter C equal to 10 is usually adopted.

• as explained before, the parameter ρ determines the percentage of elements x of
Xt for which {S(x)≥ γt}. A relevant default value for ρ is 0.1.

• finally, the choice of the Gaussian family of sampling distributions is essentially
guided by practical considerations, namely the fact that it is easy to draw samples
from such distributions and the fact that it leads to closed-form solutions of the
minimization problem (6.7).

6.2 Estimating the probability of the set of dangerous
contingencies

We now go back to the problem of identifying dangerous contingencies within a dis-
crete contingency space and with limited computational resources on which we focus in
this chapter. For the sake of simplicity, we assume that the contingencies are uniformly
distributed in X (with probability p = 1

|X | ).
Figure 6.2 proposes an adapted version of our basic iterative sampling algorithm

(described in Figure 3.7), inspired from the CE-based algorithm for rare-event simu-
lation introduced in Figure 6.1, for estimating the probability of the set of dangerous
contingencies. This algorithm uses the last sampling distribution computed by the ba-
sic iterative sampling algorithm (whose parameters are denoted by λ f inal) to generate
a new sample of s points from the Euclidean embedding space, and then estimates
the probability l with an estimator derived from the one used in the rare-event simu-
lation context. In this estimator, whose formula is provided in Equation (6.11), each
term corresponding to a dangerous contingency is weighted by the ratio between the
probability p of the contingency preImage(y) in X and the probability that this con-
tingency is drawn by the final sampling distribution generated by the algorithm. This
latter probability is equal to

∫
z∈Vy

GaussRn(z,λ f inal)dz, where Vy is the Voronoi cell of
the projection of PreImage(y) in Y .
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l̂ =
1
s ∑

y∈S f inal

I{O(preImage(y))≥γ}
p∫

z∈Vy
GaussRn(z,λ f inal)dz

(6.11)

Problem definition: a discrete contingency space X , a pre-image function
PreImage : Rn → X , an objective function O : X → R and a threshold γ ∈ R.

Algorithm parameters: the parameters λ0 = [µ0,Σ0] of the initial n-dimensional
Gaussian sampling distribution, the size s of the sample drawn at each iteration and
the number m of best solutions chosen at each iteration.
Input: the amount resavailable of available computational resources.
Output: an estimate l̂ of the probability of the event {O(x)≥ γ} (which corresponds
to the probability that a contingency is dangerous).
Algorithm:

Step 1. Set res = resavailable.
Step 2. Set P and Xdang to empty sets.

Step 3. Call (Xdang,P,res) = BIS(Xdang,P,res) (see Figure 3.7).

Step 4. Using the last sampling distribution generated by the basic iterative
sampling algorithm BIS, generate a new sample S f inal of s points of Rn and
estimate l with the estimator
l̂ =

1
s ∑

y∈S f inal

I{O(PreImage(y))≥γ}
p∫

z∈Vy
GaussRn(z,λ f inal)dz

where p = 1
|X | ,

Vy is the (n-dimensional) Voronoi cell of the projection of the contingency
PreImage(y) in Y and λ f inal are the parameters of the final sampling distribu-
tion used by the basic iterative sampling algorithm.
Step 4. Output l̂ and stop.

Figure 6.2: Adaptation of the basic iterative sampling algorithm provided in Figure 3.7
for estimating the probability of occurrence of the set of dangerous contingencies when
these latter belong to a finite discrete space, in which they are uniformly distributed.
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6.3 Estimating the cardinality of the set of dangerous
contingencies

We assume that the discrete contingency space considered in this chapter is finite. Sub-
sequently, the set of dangerous contingencies is finite too, and its cardinality can be
estimated in a straightforward way once the probability of the set of dangerous con-
tingencies has been computed by the algorithm provided in the previous section. As
we assume that the contingencies of X follow a uniform distribution, they all have the
same probability of occurrence p (which is equal to the inverse of the cardinality of
X ). By also assuming that these contingencies are mutually exclusive, the probability
of the set of dangerous contingencies may be computed as:

l =
ndang

∑
i=1

p = ndang · p , (6.12)

where ndang is the total number of dangerous contingencies. This latter number can
thus be estimated from the value of l̂ as follows:

n̂dang =
l̂
p
. (6.13)

6.3.1 Illustration
We have implemented the algorithm given in Figure 6.2 on the case study that was
treated in Chapter 4.3 (an N − 2 analysis on the Belgian transmission system). The
available computational budget has been chosen purposely high (resavailable = 2000)
so that the algorithm stops by itself, when all the points of the current sample are
associated to the same contingency by the pre-image function.

We have performed 100 runs of this algorithm. For each of them, we have derived
the value of n̂dang from the value of l̂ outputted by the algorithm according to Equation
(6.13), and computed the average values of l̂ and n̂dang obtained over these 100 runs

(that we denote by l̂ and n̂dang), as well as the standard deviation of n̂dang. These results
are reported in Table 6.1, where they are compared with those of a classical Monte
Carlo sampling algorithm. The latter results were obtained by drawing 100 random
sets of 749 contingencies (which corresponds to the average number of contingencies
analyzed over the 100 runs of the iterative sampling algorithm when l̂ is outputted). For
each of them, we evaluated the value of l̂ according to Equation (6.1) and subsequently
the value of n̂dang according to Equation (6.13). We finally computed the average values
of l̂ and n̂dang estimated over these 100 runs.
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Table 6.1: Estimation of the probability and cardinality of the set of dangerous contin-
gencies with the iterative sampling algorithm provided in Figure 6.2 and with a classi-
cal Monte Carlo sampling algorithm, for an N−2 analysis of the Belgian transmission
system.

l̂ n̂dang σ(n̂dang)

Iterative sampling 1.03 ·10−3 207.4 6.7
Monte Carlo sampling 5.47 ·10−6 1.1 2.5

We observe that our iterative sampling algorithm significantly outperforms the
Monte Carlo sampling method, given that there are in practice 210 dangerous con-
tingencies. These results illustrate the fact that a crude Monte Carlo estimator requires
to draw a large sample from the contingency space so as to provide an accurate esti-
mate of l and does not yield good results when the sample at hand is too small. To
the contrary, our iterative sampling approach provides a very good estimation of the
number of dangerous contingencies in the search space with the same computational
budget.
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7

Conclusion
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7.1 Contributions of this thesis
The present dissertation gathers research contributions in the field of large scale power
system security assessment.

The main contribution of this work is:

• a comprehensive iterative sampling framework for identifying dangerous contin-
gencies within wide contingency spaces with bounded computational resources.

As sub-contributions linked to the development of this approach, we have also pro-
posed:

• a procedure for embedding a discrete contingency space in a Euclidean space.

• a way to adapt this iterative sampling algorithm in order to estimate the proba-
bility and cardinality of a finite set of dangerous contingencies.

• several ways to define over the contingency space a real-valued function (the
objective function) reflecting the severity of each contingency;

Finally, the case where several such iterative sampling algorithms are available and
can be run sequentially has been considered. For this case, we have designed:

• strategies for selecting on-line which of the available iterative sampling algo-
rithms to execute at each step so as to take better advantage of the available
computational resources and identify as many dangerous contingencies as possi-
ble.

7.2 Further research directions
We propose hereafter several directions to enrich the work that has been done in this
thesis.

7.2.1 Extension of the metrization procedure
It comes as immediate future work to extend the metrization process described in Chap-
ter 3, especially for dealing with various types of contingencies within the same study
(e.g., N− k contingencies involving different values of k, or a mix of N− k equipment
outage contingencies and shifts in the generation and load patterns).
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7.2.2 Development of performance guarantees
The different iterative sampling frameworks proposed in this thesis have been meant
to identify as many dangerous contingencies as possible while minimizing the risk of
missing some dangerous contingencies.

For instance, the algorithms provided in Chapters 2.4 and 3.4 propose to repeat the
basic iterative sampling algorithm that was introduced in Chapter 2.3 several times –
as long as the available computational resources have not been exhausted – which is a
good way to globally reduce the variance of the performances of each run of this algo-
rithm. Besides, we have suggested in Chapter 5 to split the search space into several
sub-areas, define an iterative sampling algorithm initialized in each of these sub-areas
and execute them sequentially in an order determined by the proposed selection strate-
gies. This procedure seems to be a relevant solution to make sure that no subpart of
the search space is undeservedly leaved unexplored, and thus avoid missing too many
dangerous contingencies.

However, these approaches do not come with any performance guarantees. One
way to obtain strict performance guarantees for this approach would be to try to trans-
pose theoretical results obtained in the field of stochastic optimization or sequential
decision making to the problem at hand.

7.2.3 Extension of the simulations to larger systems
The method provided in this thesis to address large scale security assessment problems
has already been implemented on large real problems on which it has proven to effi-
ciently identify dangerous contingencies when the available computational budget is
limited. A straightforward extension of this work would be to apply it to even larger
case studies, like the European interconnected transmission system. This could for
instance allow to identify failure modes that would not have been suspected a priori,
which has not been the case with the security assessment problems studied in this thesis
since they have already been studied very thoroughly.

7.2.4 Integration into TSO’s research environments
The following step in the development of the approach proposed in this thesis would
be to integrate it into TSO’s research environments, in such a way that it could be used
in combination with the other security assessment tools at hand.
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Appendix A

Pseudo-geographical
representations of power system
buses by multidimensional
scaling

This appendix investigates new possibilities for visualizing power systems. The new
representations proposed here were derived from our work when setting up the process
of metrization of the contingency space (presented in Chapter 2).

The work presented in this appendix has been published in the Proceedings of the
15th International Conference on Intelligent System Applications to Power Systems
(ISAP 2009) [44].
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Graphical representations of power systems are systematically used for planning
and operation. The coordinate systems commonly used by Transmission System Op-
erators are static and often reflect the geographical position of each equipment of the
system. We propose in this appendix to position on a two-dimensional map the differ-
ent buses of a power system in a way such that their coordinates also highlight some
other physical information related to them. These pseudo-geographical representations
are computed by formulating multidimensional scaling problems which aim at map-
ping a distance matrix combining both geographical and physical information into a
vector of two-dimensional bus coordinates. We illustrate through examples that these
pseudo-geographical representations can help to gain insights into the power system
physical properties.

A.1 Introduction
Two-dimensional representations of power systems based on the geographical location
of their devices have always been used for power system planning and operation. Orig-
inally, the - now universally-used - one-line diagrams were created as simplified rep-
resentations of three-phase power systems. The need to incorporate in these diagrams
some indications about the physical properties of the system quickly arose. Solutions
using line widths were proposed to represent the power flows in the transmission lines
[45]. Color shadings were used to represent limit violations. Also the availability status
of the equipments was visualized, thanks to full or dotted lines.

As a matter of fact, a considerable effort was made over the last decade to enhance
power system visualizations by exploiting available, both hardware and software, com-
putational resources [46]. For example, color contours are now used to represent volt-
age magnitude variations across wide areas. Flows in transmission lines are visualized
on pie charts, showing their loading, and this information can be supplemented by ani-
mated arrows showing the direction of the flows. These indicators are resized to reflect
the state of the system. In parallel, solutions have recently been developed to match the
one-line diagram of the system and the geographical information about the equipments,
based on satellite views [47].

However, all the currently used representations use static and mostly geographically
based coordinate systems to locate the various devices of the power system in their two-
dimensional geometry.

We propose in this work a new methodology in order to enrich the existing two-
dimensional graphical representations of power systems with any kind of useful infor-
mation about their physical properties, in such a way that the locations of the buses of
the system not only represent their geographical relation but also the variation of these
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physical properties. Our approach is based on using multidimensional scaling as a tool
to transform composite distance measures combining both geographical and physical
information about power system buses into two-dimensional coordinates. The physi-
cal information incorporated into these distance measurements can be diverse. As we
will illustrate, they can for example represent the reduced impedance of the network
between two buses, their electromechanical distance [48] or distances that quantify any
kind of interesting physical information (like, e.g., nodal sensitivity factors) associated
to these two buses.

Such “pseudo-geographical” representations can convey meanings, interpretations
and knowledge on the power system, and therefore facilitate the planning and the op-
eration of the system. As way of example, let us suppose that the distance between the
buses on the map also represents the reduced impedance of the system between each
pair of buses, and that the resulting map shows that the buses are located in two main
zones which are rather distant from each other. This can be an indication that low fre-
quency oscillations may occur between these two zones of the system or that specific
devices should be installed to modulate the power transfer between these zones (e.g.,
Thyristor Controlled Series Capacitor).

To compute the pseudo-geographical coordinates, we rely technically on multi-
dimensional scaling methods which are often used in information visualization for
exploring similarities or dissimilarities in high-dimensional datasets [35]. We have
adapted these methods to be able to control the trade-off between the fidelity of repre-
senting the geographical and the physical information.

The rest of this appendix is organized as follows. Section A.2 describes the op-
timization problem lying behind the construction of these pseudo-geographical repre-
sentations of power system buses. Two concrete application cases are introduced in
Section A.3. In Section A.4, an algorithm is proposed to solve the optimization prob-
lem described previously. Section A.5 presents the representations obtained for the two
illustration cases and conclusions are drawn in Section A.6.

A.2 Problem statement

The first step in the construction of a pseudo-geographical representation of the buses
of a power system is the choice of the data to represent. For this task, the reader can
refer to the illustrations provided in Section A.3. The chosen data have to be expressed
as distances between the buses of the system. If we consider a power system with n

buses, the input data consist of a set of
n(n−1)

2
distances, one distance being defined

for each pair of buses. For the sake of simplicity, we suppose that these distances are
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represented in a distance matrix format. This matrix, denoted by D, is a symmetric
n-by-n matrix of real non-negative elements. An element di j of matrix D corresponds
to the distance between buses i and j. The diagonal terms of this matrix are identically
null since the distance between one bus and itself is equal to zero.

Given this matrix of pairwise distances, it is possible to compute a set of two-
dimensional coordinates

{
(xk,yk)

}n
k=1 for the buses such that the Euclidean distances

between these coordinates approximate the distances given in matrix D. This can be
done by solving the following optimization problem:

argmin
(x1,y1), ... ,(xn,yn)

n

∑
i=1

n

∑
j=i+1

(√
(xi− x j)2 +(yi− y j)2 − di j

)2
. (A.1)

To the set of node coordinates which is solution of this optimization problem, cor-
responds a pseudo-geographical representation of the buses of the power system. There
are several things to comment about the problem expressed in Equation (A.1). First, the
objective function is always positive and, generally, even strictly positive. In the partic-
ular case where the matrix D gathers the geographical distances between buses, its min-
imum is however equal to zero. The solution of (A.1) is also non-unique. Indeed, any
pseudo-geographical map obtained by translating or rotating the pseudo-geographical
map computed when solving (A.1) is also solution of (A.1) since such transformations
leave the inter-bus distances unchanged.

Because we are not really interested to have a pseudo-geographical map that repre-
sents the distances given in D but well the ratio between these distances, we consider
that any pseudo-geographical map obtained by scaling a solution of (A.1) is also as
good as a solution of (A.1). Among the (infinite size) set of pseudo-geographical maps
defined by applying any combination of translation, rotation and scaling operators to a
solution of (A.1), we have decided to select the one in which the pseudo-geographical
coordinates of two particular buses – defined a priori and referred to as reference buses
– coincide with their geographical coordinates. Deciding to have their position fixed
in the pseudo-geographical representation provides the user with a key for interpreting
the diagram.

Later in Section A.4.2, we will carefully describe the similarity transformation
(which is a composition of a translation, a rotation and a homothety) to use to make the
pseudo-geographical position of the two reference buses coincide with their geograph-
ical location.

Even with such a calibration, the resulting representation may be so different from
the geographical one that the users may have difficulties to interpret the obtained map.
In such cases, it would be more desirable to have a map corresponding to a suboptimal
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solution of (A.1) but which looks more alike the geographical map. To address this
problem, we propose to embed the geographical bus coordinates in the input data of
problem (A.1). To do so, we suggest to replace the di j terms that appear in Equation
(A.1) by terms expressing a “mixed” distance, denoted by dm

i j , formed by taking a
convex linear combination of the distance di j and the geographical distance between
buses i and j. If we denote by dgeo

i j this geographical distance, the mixed distance can
be formulated as:

dm
i j = λdi j +(1−λ )dgeo

i j , (A.2)

where the parameter λ ∈ [0,1]. The value assigned to this parameter reflects the im-
portance that is given to the distances di j with respect to the distances dgeo

i j .
The optimization problem lying behind the computation of a representation based

on these mixed distances writes:

argmin
(x1,y1), ... ,(xn,yn)

n

∑
i=1

n

∑
j=i+1

(√
(xi− x j)2 +(yi− y j)2 −

(
λdi j +(1−λ )dgeo

i j

))2
. (A.3)

If we set λ = 0, the coordinates of the buses will only depend on their geograph-
ical distances and, among all solutions of the argmin problem, there will be the set
of geographical coordinates of the buses. To the contrary, if λ is set equal to 1, the
inter-bus geographical distances will not be taken into account, and, as a consequence,
the pseudo-geographical map might be difficult to interpret. When λ increases within
[0,1], the relative weight of the data contained in matrix D with respect to the geo-
graphical distances between buses in the computed representation also increases.

A.3 Examples of application cases
We give in this section two concrete examples of data on which we will illustrate our
approach for creating pseudo-geographical representations.

A.3.1 Visualizing the reduced impedances between buses
The first set of data is the set of the reduced admittances between each pair of buses
of the system. The reduced impedance between two buses is obtained by reducing the
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admittance matrix of the network to these two buses, and by computing the modulus of
the inverse of this value.

For a power system with n buses, this procedure yields n(n−1)
2 values (one for each

pair of buses) from which a distance matrix D can be built. These reduced impedances
can be seen as electrical distances between buses since they provide a good image of
“how distant” two buses are on an electrical point of view.

The electrical distance between two buses reflects for instance how likely their
voltage angles are close or how a short-circuit at a specific bus will affect the currents
arriving at the other buses. Visualizing this information can certainly help to get better
insights into the power system physics.

A.3.2 Visualizing the voltage sensitivities of the buses

For this second example, we choose to work with voltage variations from static secu-
rity analyses. The variations are computed by considering always the same base case
configuration and by running a power flow to compute the voltage drops induced by
the loss of a generator. If we assume that the generators are numbered from 1 to ng
and if we denote by ∆V g

i the variation of the voltage magnitude at bus i when generator
g is lost, we can associate to each bus a vector ∆Vi =

(
∆V g

i

)ng
g=1 collecting its voltage

variations.
In order to create a pseudo-geographical representation of these voltage sensitivi-

ties, the information contained in vectors ∆Vi has to be converted into inter-bus dis-
tances. On this purpose, we compute the Euclidean distance between these “volt-
age variation vectors”. The distance between buses i and j is thus set equal to :

di j =
√

∑
ng
g=1

(
∆V g

i −∆V g
j

)2 .
These distance measurements express the dissimilarities between the voltage vari-

ations at the different buses after a loss of generation.

A.4 Computational method
We describe in this section our approach for solving the optimization problem given
by Equation (A.3) (see Section A.2). We first develop the algorithm used to compute
a solution this problem. Note that this algorithm has already been provided in Chapter
3.3 for computing “electrical” bus coordinates. We explain it again in this appendix
for the sake of clarity. Afterwards, we carefully detail the similarity transformation
to apply to this solution in order to make the pseudo-geographical position of the two
reference buses coincide with their geographical location.
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A.4.1 Resolution of the optimization problem
The first stage of approach is based on an optimization algorithm borrowed from the
multidimensional scaling (MDS) literature. This algorithm is known as the SMACOF
algorithm [36] (the acronym SMACOF stands for “Scaling by Majorizing a Compli-
cated Function”). It will be explained at the end of this section after having introduced
the mathematical background on which it relies.

Let us denote by Xgeo ∈ Rn×2 the matrix of the geographical coordinates of the
buses, by D ∈ Rn×n the matrix containing the inter-bus distance measurements and by
X ∈ Rn×2 the set of pseudo-geographical coordinates we want to compute.

The problem (A.3) can equivalently be written as:

argmin
X

f (X) , (A.4)

where

f (X) =
n−1

∑
i=1

n

∑
j=i+1

(√√√√ 2

∑
k=1

(xik− x jk)2 − dm
i j

)2

. (A.5)

The function f defined in Equation (A.5) has the form of the classical stress func-
tion one commonly seeks to minimize in an MDS problem. It can be expanded as
follows:

f (X) =
n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

(xik− x jk)
2 +

n−1

∑
i=1

n

∑
j=i+1

(
dm

i j
)2

−2
n−1

∑
i=1

n

∑
j=i+1

(√√√√ 2

∑
k=1

(xik− x jk)2

)
dm

i j . (A.6)

The first term of this sum can also be written:
n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

(xik− x jk)
2 = tr(X ′AX) , (A.7)

with A ∈ Rn×n being such that aii = n−1 and ai j = a ji =−1.
The second term of f (X) does not depend on X and can be seen as a constant, so

we set:

k0 =
n−1

∑
i=1

n

∑
j=i+1

(
dm

i j
)2

. (A.8)

113



In the third term of f (X), we denote by disti, j(X) the Euclidean distance between
buses i and j: √√√√ 2

∑
k=1

(xik− x jk)2 = disti, j(X) . (A.9)

Given (A.7), (A.8) and (A.9), Equation (A.6) can be written concisely as:

f (X) = tr(X ′AX) + k0− 2
n−1

∑
i=1

n

∑
j=i+1

disti, j(X)dm
i j . (A.10)

The third term of this expression is non-convex and makes the resolution of the
problem (A.4) difficult. To address this problem, one can majorize this term by a con-
vex expression to get a new objective function, easier to minimize. The SMACOF
algorithm exploits the following majorization, based on the Cauchy-Schwartz inequal-
ity:

2

∑
k=1

(xik− x jk)(yik− y jk) ≤
( 2

∑
k=1

(xik− x jk)
2
)1/2

×
( 2

∑
k=1

(yik− y jk)
2
)1/2

≤ disti j(X)disti j(Y ) , (A.11)

where Y ∈ Rn×2 can be interpreted as another set of coordinates for the buses.
If we multiply both sides of the inequality by (−1) and divide by disti j(Y ), we

obtain:

−disti j(X)≤ ∑
2
k=1(xik− x jk)(yik− y jk)

disti j(Y )
. (A.12)

By summing over i = 1 . . .n and j = i+1 . . .n we obtain the majorizing expression:

−2
n−1

∑
i=1

n

∑
j=i+1

disti, j(X)dm
i j ≤ −2

n−1

∑
i=1

n

∑
j=i+1

2

∑
k=1

dm
i j

disti j(Y )

×(xik− x jk)(yik− y jk)

≤ −2tr(X ′B(Y )Y ) , (A.13)
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with B(Y ) ∈ Rn×n being such that:

bi j =

−
dm

i j

disti j(Y )
for i 6= j and disti j(Y ) 6= 0

0 for i 6= j and disti j(Y ) = 0

bii =−
n

∑
j=1, j 6=i

bi j . (A.14)

By combining (A.10) and (A.13), the function f itself can be majorized:

f (X)≤ tr(X ′AX) + k0−2tr(X ′B(Y )Y ) = g(X) . (A.15)

The function g is a quadratic function of X . The minimum of the function g is
obtained when its derivative is equal to zero, i.e.:

∇g(X) = 2AX − 2B(Y )Y = 0 . (A.16)

The value of X minimizing g(X) is such that:

AX = B(Y )Y . (A.17)

As the inverse A−1 does not exist since A is not full rank, this linear equation
in X cannot be solved by premultiplying both sides of (A.17) by A−1. The Moore-
Penrose inverse, given by A+ = (A+ 1n,n)

−1− n−2 1n,n (where 1n,n is the matrix such
that 1n,n(i, j) = 1 ∀(i, j) ∈ {1, . . . ,n}2), is used in the SMACOF algorithm. The matrix
X minimizing g(X), and subsequently f (X), is the following:

X = A+B(Y )Y . (A.18)

It can be shown that the solution computed from (A.18) is such that f (X)≤ f (Y ).
The SMACOF algorithm exploits this property to iteratively compute solutions with
decreasing values of f . The solution computed at iteration i, denoted by Xi, is equal to
A+B(Xi−1)Xi−1. The tabular version of the procedure used in our simulations is given
in Figure A.1.
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Problem definition: an n-by-n distance matrix, a matrix Xgeo ∈Rn×2 of geograph-
ical coordinates.
Algorithm parameters: a small positive value ε , which is the minimum decrease
of f after an iteration for not stopping the iterative process, and a maximal number
of iterations IterMax.
Output: a matrix XMDS ∈ Rn×2 of pseudo-geographical coordinates.
Algorithm:

Step 1. Set X0 = Xgeo.
Set iteration counter Iter = 0.
Step 2. Compute f0 = f (X0). Set f−1 = f0.

Step 3. While Iter = 0 or
(
( fIter−1 − fIter) > ε and

Iter ≤ IterMax
)

do:
Set Iter← Iter+1.
Compute B(XIter−1) by using Equation (A.14).
Set XIter = A+B(XIter−1)XIter−1.
Compute fIter = f (XIter).
Set XIter+1 = XIter.

Step 4. Set XMDS = XIter. Output XMDS.

Figure A.1: A tabular version of the SMACOF algorithm for solving problem (A.4).
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A.4.2 Geometrical transformation
In our simulation results, the coordinates XMDS computed by the SMACOF algorithm
will not be used as such to plot the data. To these coordinates will be applied suc-
cessively a translation, a rotation and a homothetic transformation to have two buses
matching their geographical position (see Section A.2). These transformations are de-
tailed on Figure A.2 and are further illustrated on an example in Figure A.3.

Problem definition: the coordinates XMDS ∈ Rn×2 computed by the algorithm
given on Figure A.1, the positions of the two reference buses on the geographi-
cal map. These positions are denoted by Bgeo

r1 and Bgeo
r2 . BMDS

r1 and BMDS
r2 refer to

their position defined by XMDS.
Output: a set of coordinates X such that the reference buses are positioned as in
the geographical map.
Algorithm:

Step 1. Translate XMDS along vector v such that v =
−−−−−−→
BMDS

r1 Bgeo
r1 .

Step 2. Apply to the resulting map a rotation around Bgeo
r1 of angle

θ = angle(
−−−−−−−→
BMDS

r1 BMDS
r2 ,
−−−−−→
Bgeo

r1 Bgeo
r2 ) .

Step 3. Apply to the resulting map a homothetic transformation of origin Bgeo
r1

and of dilatation factor k =
length(Bgeo

r1 Bgeo
r2 )

length(BMDS
r1 BMDS

r2 )
.

Figure A.2: A fully specified algorithm for transforming the coordinates outputted by
the multidimensional scaling algorithm so that the position of the reference buses BMDS

r1
and BMDS

r2 coincide with their geographical location.

On this latter figure, the four red crosses correspond to the geographical location of
these points, and the four blue circles to their MDS location as outputted by algorithm
given in Figure A.1. We apply successively the translation, rotation and homothetic
operators defined on Figure A.2 to the blue circles, in order to make the blue circles 1
and 3 coincide with the 1 and 3 red crosses.

Figure A.3 shows the initial representations as well as those obtained after every
stage of the similarity transformation.
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Figure A.3: Illustration of the similarity transformation (successive translation, rotation
and homothety) for generating, from a set of coordinates computed by the SMACOF
algorithm, a set of pseudo-geographical coordinates such that the points 1 and 3 of the
pseudo-geographical map are positioned as in the geographical map.

A.5 Illustrations
We illustrate in this section our approach for computing pseudo-geographical represen-
tations of the two application cases introduced in Section A.3. The benchmark power
system considered in this section is the IEEE 14 bus system [49], which has been vastly
used in the literature as a test problem. Its one-line diagram is shown in Figure A.4. It
is composed of five synchronous machines: two generation units are located at buses
1 and 2 respectively, and the three other machines, connected to buses 3, 6 and 8, are
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synchronous compensators used only for reactive power supply. The 20 transmission
lines of the system are either at 132 kV or 33 kV, the 33 kV part of the network being
located at the top of Figure 4 and the transformers at buses 4, 5 and 7. The total amount
of load is about 259 MW.

Figure A.4: IEEE 14 bus system.
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A.5.1 Pseudo-geographical representation of the reduced impedances
between buses

Figure A.5 reports the pseudo-geographical representations of the reduced impedances
between the buses of IEEE 14 bus test system, for different values of the parameter
λ . The case λ = 0 corresponds to the classical geographical representation of this
network. The case λ = 0.95 corresponds to the representation of the buses according
to a mixed distance as defined in (A.2). The case λ = 1 is a representation exclusively
based on the electrical distances between buses.

Obviously, the geographical positions of the buses do not reflect their electrical
distances. For example, buses 1, 2, 4 and 5 are much closer electrically than they are
geographically. It is also worth noticing that bus 8, which is connected to buses 4
and 9 through a three windings transformer, appears quite close to these buses on the
geographical representation while it is not the case on the pseudo-geographical ones.
This was expected since the windings of a transformer generally have a rather high
reactance whose value is in the range of the reactance value of a few tens of kilometers
long transmission line. Similarly, we observe that the buses in the upper part of the
system, which correspond to the lower voltage level (33 kV), are more remotely located
when taking into account their electrical distances.
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Figure A.5: Pseudo-geographical representations of the IEEE 14 bus system based on
the reduced impedances. Buses 1 and 8 are taken as reference buses.
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A.5.2 Pseudo-geographical representation of the voltage sensitivi-
ties of the buses

Figure A.6 illustrates the results of our experiments when considering the voltage sen-
sitivities of the buses of IEEE 14 bus test system. As in the previous example, the
three subfigures correspond to three increasing values of parameter λ (0, 0.8 and 1
respectively).

These figures clearly show that for large values of λ , the pseudo-geographical rep-
resentations considerably differ from the pure geographical one.

We notice that the system has five synchronous machines controlling the voltage,
which are connected to buses 1, 2, 3, 6 and 8. Since these buses are controlled in voltage
except when considering the loss of the generator which is connected to them, their
sensitivities are quite small and similar. It is therefore not surprising to see that they
all appear next to each other on the map when λ = 1. Another interesting observation
about this map is the far remote location of bus 4 with respect to the other elements
of the system. This shows that the voltage variations caused by the loss of generation
at this bus are different from the ones at the other buses. Notice that, by plotting the
voltage profiles, we have observed that whatever the generator lost, the voltage at bus 4
was the lowest of the bus voltages. Conversely, the bus 13 is located on the far other end
of the representation; it turns out that this bus, which is located in the low voltage part
of the system, experiences also strong voltage variations but which are de-correlated to
those of bus 4.
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Figure A.6: Pseudo-geographical representations of the IEEE 14 bus system based on
the voltage sensitivities. Buses 1 and 4 are taken as reference buses.
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A.6 Conclusion
We have proposed in this appendix a new approach for visualizing power system data
that can be expressed as pseudo-distances between buses of the system. The approach
works by processing these data with a multi-dimensional scaling algorithm to obtain a
two-dimensional map where the different buses are positioned in a way that the distance
between every two buses represents these pseudo-distances. The approach has been
illustrated on two case studies demonstrating the interest of mixing geographical and
physical information to design power system representations. The results have shown
that these pseudo-geographical representations can complement existing visualization
tools for planning and operation of a power system.
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