
Chapter 5

Real-time operating systems

72



Introduction

An operating system (OS) is a software component responsible for coordinating the
concurrent execution of several tasks, by

• managing the system resources (processor(s), memory, access to peripherals, . . . );

• providing services (communication, synchronization, . . . ).

An OS is implemented by a kernel (an autonomous program), together with a library of
functions for accessing conveniently its services.

Real-time operating systems (RTOS) are operating systems specifically suited for
embedded applications:

• They are usable on hardware with limited resources.

73



• The scheduling strategy is precisely documented.

• The internal mechanisms (e.g., the longest interval during which interrupts are
disabled by the kernel, the implementation of system calls, . . . ) are engineered so as
to minimize latencies.

• The user can implement urgent operations as interrupt routines.

• The OS provides time-oriented services: one-shot or periodic timers, periodic
execution of tasks, . . .

• Complex protection mechanisms against invalid user code may be absent.

• Dynamic memory allocation is usually optional.

• The kernel configuration can be parameterized in detail by the programmer.

74



Execution levels

At a given time, the instruction currently executed by the processor can either be

• a kernel operation (possibly located in an interrupt routine),

• an instruction belonging to an interrupt routine programmed by the user, or

• an instruction of a user task.

75



Process states

Each task managed by the OS is represented by a process. At a given time, a process is in
one out of four possible states:

• Ready: The task is ready to execute instructions, but is not currently running.

• Active: The instructions of the task are now being executed by the processor.

• Blocked: The execution of the task is suspended while waiting for a signal, a timeout,
or for a resource to become available.

• Interrupted: The task is executing an interrupt routine programmed by the user.

76



Possible transitions between the states of a process:

Blocked

Ready Active

Interrupted

Non Running Running

scheduling

blocking
syscall

event
unblocking

interrupt
event

unblocking

77



The scheduler

The scheduler is the kernel component responsible for managing the state of the
processes, i.e., for assigning the processor to processes.

Principles:

• Each task is characterized by a priority (either constant or variable during its
execution).

• The scheduler always assigns the processor to one of the running tasks with the
highest priority.

If several tasks share the highest priority, then the task that is selected can be chosen in
several ways:

• The time slicing approach consists in assigning the processor in turn to each of these
tasks, in order to execute a bounded sequence of instructions.

78



• One can alternatively assign the processor to a task that is chosen arbitrarily.

• Another solution is to forbid different tasks to share the same priority.

Note: With the first two strategies, computing the deadline of a task can become difficult.

79



Preemption

If a task T2 has a higher priority than the active task T1 and switches from the blocked to
the ready state, then there are two possible scheduling strategies:

• The task T2 remains non running (in ready state) until completion of T1. The scheduler
is said to be non-preemptive.

t

The resource expected by
T2 becomes available

T1

routine
Interrupt

T2

80



Drawback: The latency of a task is influenced by the behavior of tasks with a lower
priority.

• The scheduler turns the task T1 ready, and assigns the processor to T2. The
scheduler is said to be preemptive.

T2

t

The resource expected by
T2 becomes available

T1

routine
Interrupt

Preemption

81



Context switching

The scheduler performs a context switch when it transfers the processor from a process to
another.

Principles:

• The suspended task must be able to resume its execution later. The state of the
processor thus has to be saved when the task becomes non running.

The kernel memory maintains for each process a context storage area for this purpose.

82



Illustration:

T1

T1

T2

T2

t
...

Kernel

83



• The working data of the suspended task has to be preserved until its execution can be
resumed.

This data is located on the runtime stack of the task, which contains

– the context (return address, stack register values) of the active function calls, and

– the arguments and local variables of these function calls.

84



Example:

c = g(a);

e = g(f); context
g call

context
g call

context
f call

a, b

c

f(int a, int b)

int c;

g(int d)

int e, f;

d

e, f

d

e, f

{

...

...
}

{

...

...
}

...

B

SP

85



Notes:

– Since a task can become non running at any time, it is necessary for each process
to manage its own stack.

– In general the stack pointers (e.g., top of stack, base of current stack frame) are
particular processor registers. Those pointers are therefore saved, together with
the other registers, during a context switch.

– The kernel also manages its own stack.

86



Reentrancy

With a preemptive scheduler, calling the same function from different tasks can be
problematic.

Example:

aux

x1

y1

x2

y2

1

2

2

3

void swap(int *p1, int *p2)
{
aux = *p1;

static int aux;

*p1 = *p2;
*p2 = aux;

}

y1← 2

aux← 1

x1← 2

swap(&x2, &y2)

aux← 2

x2← 3

y2← 2

swap(&x1, &y1)

87



Definition: A function is said to be reentrant if it can be simultaneously called by several
tasks without possibility of conflict.

Examples:

• Reentrant function:
void swap(int *p1, int *p2)
{
int aux;

aux = *p1;
*p1 = *p2;
*p2 = aux;

}

• Non-reentrant function:

volatile int is_new; /* modified by another task */

void display(int v)
{
if (is_new)
{
printf(" %d", v);
is_new = 0;

}
else
printf(" ---");

}

88



Note: The second function is non-reentrant for three reasons:

– The test and assignment operations over the global variable is_new are performed
by different instructions.

– The operations involving is_new are not necessarily atomic.

– The function printf might not be reentrant.

89



Communication between tasks

Organizing data transfers between processes is more difficult than between tasks and
interrupt routines:

• Context switches can occur unpredictably at any time.

• Context switches can only be disabled in software, by modifying the scheduling policy.

Solution: One can use services provided by the kernel, aimed at

• synchronizing the operations of concurrent tasks, and

• coordinating data transfers from a process to another.

Note: Using incorrectly communication or synchronization services can lead to deadlocks,
when every task is blocked waiting for resources that can only be provided by other tasks.

90



Semaphores

A semaphore s is an object that

• has a value v(s) ≥ 0,

• over which the two following operations can be performed:

– wait(s):

∗ if v(s) > 0, then v(s)← v(s) − 1;

∗ if v(s) = 0, the task is suspended (in blocked state).

– signal(s):

∗ if at least one task is blocked as the result of an operation wait(s), unblock one of
them (making it ready or active);

∗ otherwise, v(s)← v(s) + 1.

91



Notes:

• The operations that test and modify the value of a semaphore must be implemented
atomically.

• Binary semaphores are semaphores with a value restricted to the set {0, 1}.

• There are several possible strategies for selecting a task blocked on a semaphore in
order to unblock it: arbitrary choice, FIFO policy, highest priority, . . .

In most applications, acquiring a semaphore represents the access right to a resource.

Example: Mutual exclusion between two tasks (binary semaphore s initialized to 1).

void task1(void)
{
for (;;)
{
wait(s);
!! critical section;
signal(s);
!! other operations;

}
}

void task2(void)
{
for (;;)
{
wait(s);
!! critical section;
signal(s);
!! other operations;

}
}

92



Message queues

A message queue is an object that implements synchronous or asynchronous data
transfers between tasks.

Principles:

• The maximum capacity of a queue (i.e., the maximum number of messages that have
been sent to and not yet received from the queue) and the size of each message are
fixed.

• Send and receive operations are performed atomically.

• A task that is waiting to receive data from a queue is suspended by the scheduler (in
blocked state).

Variants:

• Several data access policies are possible: FIFO order, arbitrary selection, highest
priority.

93



• Sending data to a saturated message queue can either discard the new message,
block the sender, block the sender during a bounded amount of time, . . .

• When a task is blocked waiting for data from an empty queue, a timeout (i.e., a
maximum suspension delay) can be specified.

• The maximum capacity of a queue can be reduced to zero (rendez-vous
synchronization).

• Queues of capacity one are sometimes called mailboxes.

94



Programming with interrupts

The scheduler and the interrupt mechanism are both able to move the control point from
one location in the program code to another. One must take care of avoiding conflicts
between those mechanisms.

First rule:

An interrupt routine is not allowed to call an OS service if this service can block
the current task (e.g., acquiring a semaphore (wait), receiving data from a
message queue, waiting for some amount of time, . . . ).

95



• Indeed, if this rule is not respected, then an interrupt routine can get blocked, which
amounts to assigning to this interrupt routine an effective priority smaller than the one
of a task.

Example:

T2

Interrupt
routine

T1

T3

t

T1 is resumed

End of interrupt

T1 becomes active

T1 is suspended

96



• Moreover, the interrupt routine might get called again before its completion. If this
routine is not reentrant, then erroneous behaviors are possible (e.g., overwriting a
saved processor context).

T1

routine
Interrupt

T2

t

T1 is suspended

Reentrant call

End of interrupt

End of interrupt

T1 is resumed

97



Second rule:

If an interrupt routine calls an OS service that can lead to a context switch, then
the scheduler must be informed that this system call is performed inside an
interrupt routine.

If this rule is not respected, then the scheduler can suspend the execution of an interrupt
routine.

Example:

t

End of interrupt

T1 is preempted

T1

routine
Interrupt

T2

98



Solution 1: Call dedicated OS services at the beginning and the end of interrupt routines,
informing the kernel that the processor is currently running an interrupt routine. Between
those calls, preemption of the current task is inhibited.

Notes:

• This approach increases interrupt latency.

• In the case of multiple interrupt priorities, nested interrupt routine calls must be
correctly handled.

• At the end of an interrupt routine, context has to be switched to the appropriate task.

99



Example (µCOS-III):

Enter notification

Leave notification

T1

Possible preemption

Interrupt request

Kernelroutine
Interrupt

Context is saved onto current stack

OsIntNestingCtr++

if (OsIntNestingCtr == 1)

!! update kernel context for the current task

System call

T1 is preempted

OsIntExit()

Context switch

t

T2

100



If T1 is not preempted:

Enter notification

Leave notification

t

T1

Possible preemption

Interrupt request

Kernelroutine
Interrupt

Context is saved onto current stack

OsIntNestingCtr++

if (OsIntNestingCtr == 1)

!! update kernel context for the current task

System call

OsIntExit()

Context is restored

(No preemption)

End of interrupt

101



Solution 2: Use alternate versions of OS services in interrupt routines, that do not induce
preemption.

Note: There must exist a mechanism for switching the current task immediately after
returning from an interrupt routine, if this task must be preempted.

102



Example (FreeRTOS):

Leave notification

T1

Interrupt request

Kernelroutine
Interrupt

Context is saved

System call

Possible preemption

portYIELD FROM ISR(...)

(Software interrupt flag is raised)

routine
interrupt
Software

Context is
restored

End of
interrupt

T2

t

(Context switch)

103



Notes:

• The software interrupt routine implementing the context switch is part of the kernel,
and has the lowest interrupt priority.

• If the interrupt leave service is not called, preemption will only occur the next time that
the scheduler is called.

104



Priority inversion

Priority inversion happens when a task is blocked waiting for a resource controlled by
another task with a lower priority.

Example:

t

T1 is preempted

T2 is preempted

T3 is suspended

T2 terminates

T1

T3

T2

T3 is resumed

wait(s)

wait(s)

signal(s)

105



Problem:

In such a situation, the effective priority of T3 becomes equal to the one of T1.

Solution:

The priority of T1 can be momentarily increased (becoming equal to that of T3) during all
the time that T3 is suspended waiting for the semaphore acquired by T1.

This priority inheritance mechanism is automatically applied by some operating systems
(e.g, FreeRTOS, with a special form of semaphores called mutexes).

106



Illustration:

T2

T1

T3

Priority = 3

t

wait(s)

wait(s)

signal(s)

107



Time-oriented services

The real-time operating systems offer timed services, for instance for suspending a task for
a predefined amount of time, or specifying a timeout for services that can block the current
task.

Principles:

• A dedicated component triggers periodic requests for an interrupt that

– has a low priority, and

– is serviced by a routine implemented by the kernel. This routine

∗ updates the state of the tasks that need to be woken up (or delegates this
operation to a kernel task),

∗ manages time slicing, and

∗ invokes the scheduler, possibly triggering a context switch.

• The delay during which a task is suspended is expressed in the number of
occurrences (ticks) of this interrupt request signal.

108



Note: The precision is limited. Asking to suspend the task during k ticks only ensures that
the suspension delay is greater than or equal to the interval between k − 1 invocations of
the tick interrupt routine.

Example:

delay(2)

Tick interrupt requests

Timed task

Tick interrupt routine

Higher-priority interrupts

Higher-priority tasks

delay(2)

∆

∆ < · < 2∆ > 2∆

109


