Chapter 7

Periodic Tasks Scheduling

Periodic tasks

We consider a simplified programming environment satisfying the following hypotheses:

- The number of tasks to be executed is fixed.
- Each task is characterized by a distinct and constant priority.
- The execution requests for each task occur periodically, i.e., with a constant delay between two successive requests.

In particular, the timing of execution requests for a task cannot depend on operations performed by other tasks.

• The execution time of each task is constant.

• The following real-time constraint must be satisfied:

Each execution of a task must finish before or at the same time as the next request for executing this task.

• Context switches are instantaneous and preemptive.

Critical instants and critical zones

In addition to its priority, each task τ_i is characterized by

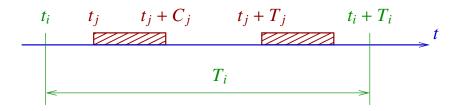
- its period T_i , and
- its execution time (for each period) C_i .

Definitions:

- The response time of an execution request for τ_i is the delay between this request and the end of the corresponding execution of this task.
- A critical instant for the task τ_i is an occurrence of an execution request for τ_i that leads to the largest possible response time for this task.
- A critical zone for τ_i is an interval of duration T_i that starts at a critical instant (for τ_i).

Theorem 1: A critical instant for τ_i occurs when an execution request for this task coincides with requests for executing all the tasks that have a higher priority than τ_i .

Proof: Assume that an execution request for τ_i occurs at $t = t_i$, and that an execution request for a higher-priority task τ_i is received at $t = t_i$.



Advancing the request for τ_i from t_i to t_i can never decrease the response time of τ_i .

(Indeed, for each instruction *I* of τ_i , advancing τ_j by one instruction either leaves unchanged the execution time of *I*, or postpones it.)

The same reasoning can be applied to all the tasks that have a higher priority than τ_i .

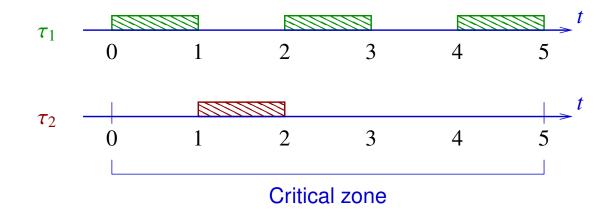
Schedulable tasks

Definition: A set of tasks is schedulable (with respect to a given assignment of priorities) if the response time of each task τ_i is always less than or equal to its period T_i .

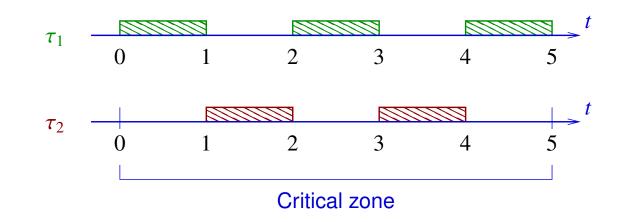
Thanks to Theorem 1, checking whether a given set of tasks is schedulable reduces to simulating the scheduling strategy in the particular case of simultaneous execution requests for all tasks at t = 0.

Examples: Consider two tasks τ_1 and τ_2 , with $T_1 = 2$, $T_2 = 5$, $C_1 = 1$ and $C_2 = 1$.

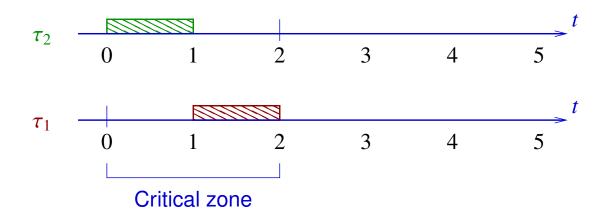
• If τ_1 has a higher priority than τ_2 .



The tasks are schedulable, and remain schedulable even if the execution time of τ_2 is increased by one time unit ($C_2 = 2$):



• If τ_2 has a higher priority than τ_1 .



The tasks are schedulable.

Note: In this case, the execution time of τ_1 and τ_2 cannot be increased anymore.

Rate-Monotonic Scheduling

In the previous example, the best strategy was to assign the highest priority to the task that has the smallest period.

Definition: Given a set of tasks $\tau_1, \tau_2, ..., \tau_n$ with respective periods $T_1, T_2, ..., T_n$, the Rate-Monotonic Scheduling (RMS) strategy consists in assigning distinct priorities $P_1, P_2, ..., P_n$ to the tasks, such that for all i, j:

 $T_i < T_j \implies P_i > P_j.$

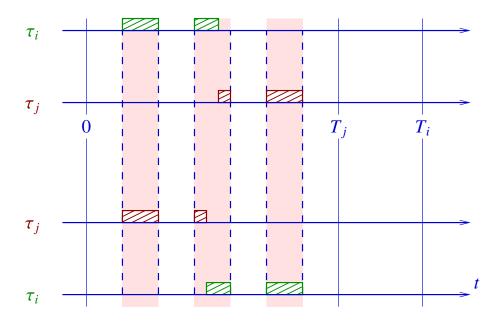
The following result establishes that the RMS strategy is optimal:

Theorem 2: If a set of tasks is schedulable with respect to some priorities assignment, then it is schedulable as well with respect to priorities defined by the RMS strategy.

Proof: Consider a set of tasks $\tau_1, \tau_2, ..., \tau_n$ for which there exists a priorities assignment $P_1, P_2, ..., P_n$ that makes them schedulable.

Let τ_i and τ_j two tasks with adjacent priorities P_i and P_j , such that $P_i > P_j$.

If $T_i > T_j$, then the priorities of τ_i and τ_j can be swapped:



The resulting set of tasks remains schedulable.

By performing repeatedly this operation, one eventually obtains a priorities assignment corresponding to the RMS strategy.

The processor load factor

Consider a set of tasks $\tau_1, \tau_2, ..., \tau_n$ with respective periods and execution times $T_1, T_2, ..., T_n$ and $C_1, C_2, ..., C_n$.

The processor load factor U corresponding to this set of tasks represents the relative amount of CPU time needed for executing them:

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}.$$

Definition: A set of tasks fully uses the processor if

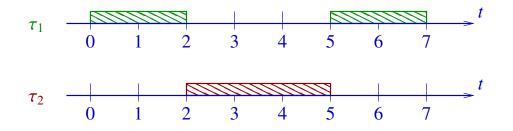
- this set of tasks is schedulable, and
- any increase of the execution time of a task (and hence of the processor load factor) yields a set of tasks that is not schedulable anymore.

Notes:

- Thanks to Theorem 2, checking whether a set of tasks is schedulable or not can be done by assigning RMS priorities to those tasks.
- A set of tasks that has a processor load factor less than 1 is not necessarily schedulable:

Example:

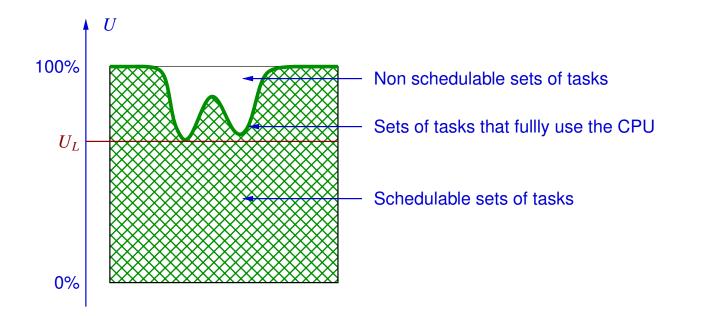
$$\begin{array}{l} \tau_1: \quad T_1 = 5, \ C_1 = 2\\ \tau_2: \quad T_2 = 7, \ C_2 = 4 \end{array} \right\} \ U = \frac{2}{5} + \frac{4}{7} \approx 97\%$$



Classifying sets of tasks

The set of sets of tasks can be partitioned into three classes:

- The non schedulable sets of tasks.
- The sets of tasks that fully use the processor.
- The schedulable sets of tasks that do not fully use the processor.



The best lower bound U_L on the processor load factor of the sets of tasks that fully use the processor is such that:

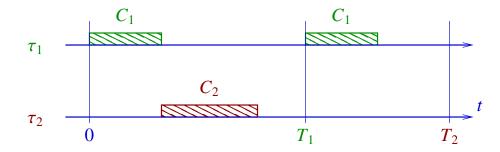
- If the processor load factor of a set of tasks is less than or equal to U_L , then this set of tasks is schedulable (regardless of the periods and execution times of the tasks!).
- If the processor load factor of a set of tasks is greater than U_L , then this set of tasks may or may not be schedulable, depending on the details of the tasks.

U_L : Case of two tasks

Let τ_1 and τ_2 be two tasks with respective periods and execution times T_1 , T_2 and C_1 , C_2 . We assume $T_1 < T_2$. According to the RMS strategy, we assign a higher priority to τ_1 .

During a critical zone of τ_2 , the number of execution requests for τ_1 is equal to $\left[\frac{T_2}{T_1}\right]$.

• If all the executions of τ_1 in the interval $[0, T_2]$ terminate earlier than or at $t = T_2$.



The following condition is satisfied:

$$C_1 \le T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

For a given value of C_1 , the largest possible value of C_2 is given by

$$C_2 = T_2 - C_1 \left[\frac{T_2}{T_1} \right]$$

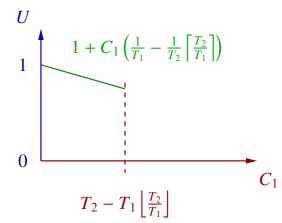
It follows that the highest possible processor load factor is equal to

$$U = \frac{C_1}{T_1} + \frac{C_2}{T_2}$$

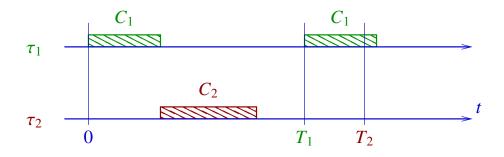
= $1 + C_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right] \right)$

Note that we have
$$\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right] \le 0.$$

Therefore, for given values of T_1 and T_2 , the maximum processor load factor decreases with C_1 .



• If an execution of τ_1 is still unfinished at $t = T_2$.



The following condition is satisfied:

$$C_1 > T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor$$

For a given value of C_1 , the largest possible value of C_2 is given by

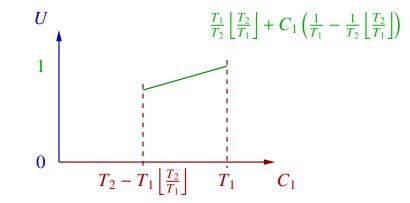
$$C_2 = (T_1 - C_1) \left\lfloor \frac{T_2}{T_1} \right\rfloor$$

Hence, the highest possible processor load factor is equal to

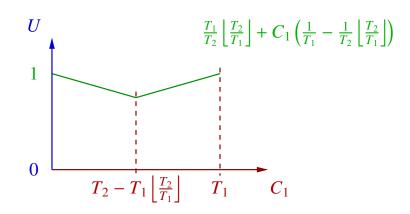
$$U = \frac{T_1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor + C_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor \right).$$

For given values of T_1 and T_2 , this expression increases with C_1 , since

$$\frac{1}{T_1} - \frac{1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor \ge 0.$$



Summary:



The smallest value of U corresponds to the boundary between the two cases, where we have

$$C_1 = T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

By introducing this value in the expression of U, one obtains

$$U = \frac{T_1}{T_2} \left[\frac{T_2}{T_1} \right] + \left(T_2 - T_1 \left[\frac{T_2}{T_1} \right] \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right] \right)$$
$$= \frac{T_1}{T_2} \left[\frac{T_2}{T_1} \right] + \frac{T_2}{T_1} - 2 \left[\frac{T_2}{T_1} \right] + \frac{T_1}{T_2} \left[\frac{T_2}{T_1} \right]^2.$$

Let us define
$$I = \left\lfloor \frac{T_2}{T_1} \right\rfloor$$
 and $f = \frac{T_2}{T_1} - \left\lfloor \frac{T_2}{T_1} \right\rfloor$.

The previous expression becomes

$$U = \frac{I}{I+f} + (I+f) - 2I + \frac{I^2}{I+f}$$

= $1 - f\frac{1-f}{I+f}$.

The smallest possible value of U is obtained with I = 1. We then have

$$U = 1 - f \frac{1 - f}{1 + f},$$

and

$$\frac{dU}{df} = \frac{f^2 + 2f - 1}{(1+f)^2}.$$

The best lower bound U_L on U is thus obtained with I = 1 and $f = -1 + \sqrt{2}$:

$$U_L = 1 - (\sqrt{2} - 1) \left(\frac{2 - \sqrt{2}}{\sqrt{2}} \right) = 2(\sqrt{2} - 1) \approx 0.83.$$

Case of two tasks: Conclusions

Theorem 3: If a set of two periodic tasks has a processor load factor that is less than or equal to $2(\sqrt{2}-1)$, then this set of tasks is schedulable.

Notes:

- This sufficient criterion is independent from the periods and execution times of the tasks.
- In the particular case where T_2 is an integer multiple of T_1 , one has f = 0, hence

$$U_L = 1.$$

All pairs of tasks satisfying this condition (and such that $\frac{C_1}{T_1} + \frac{C_2}{T_2} \le 1$!) are thus schedulable.

U_L : Case of *n* tasks

The goal is now to compute the value of U_L

- for a given number *n* of tasks, and
- for any number of tasks.

The first step is to establish an intermediate result:

Lemma 1: Let $\tau_1, \tau_2, ..., \tau_n$ be periodic tasks with the respective periods and execution times $T_1, T_2, ..., T_n$ and $C_1, C_2, ..., C_n$, such that

- This set of tasks fully uses the processor,
- $0 < T_1 < T_2 < \dots < T_{n-1} < T_n < 2T_1$,
- The processor load factor of this set of tasks is minimum among all sets of tasks that fully use the processor.

In this case, one has

$$C_{1} = T_{2} - T_{1},$$

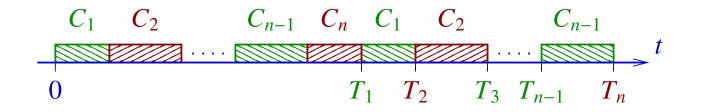
$$C_{2} = T_{3} - T_{2},$$

$$\vdots$$

$$C_{n-1} = T_{n} - T_{n-1},$$

$$C_{n} = T_{n} - 2(C_{1} + C_{2} + \dots + C_{n-1})$$

$$= 2T_{1} - T_{n}.$$



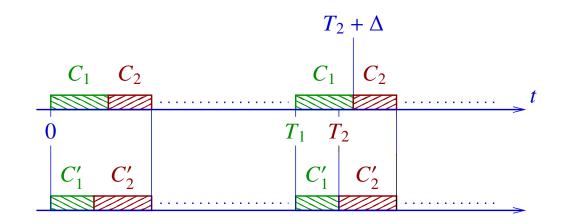
Proof: By contradiction, let us show that we must have $C_1 = T_2 - T_1$.

• If $C_1 = T_2 - T_1 + \Delta$, with $\Delta > 0$.

We modify the execution time of tasks in the following way:

$$C'_{1} = C_{1} - \Delta,$$

 $C'_{2} = C_{2} + \Delta,$
 $C'_{3} = C_{3},$
 \vdots
 $C'_{n-1} = C_{n-1},$
 $C'_{n} = C_{n}.$



After the modification, the new set of tasks still fully uses the processor. However, the processor load factor now becomes

$$U' = U - \frac{\Delta}{T_1} + \frac{\Delta}{T_2} < U,$$

which contradicts the hypothesis that U is minimum.

• If $C_1 = T_2 - T_1 - \Delta$, with $\Delta > 0$.

We now modify the execution time of tasks as follows:

$$C_{1}'' = C_{1} + \Delta,$$

$$C_{2}'' = C_{2},$$

$$C_{3}'' = C_{3},$$

:

$$C_{n-1}'' = C_{n-1},$$

$$C_{n}'' = C_{n} - 2\Delta$$

The resulting set of tasks fully uses the processor. The processor load factor becomes

$$U' = U + \frac{\Delta}{T_1} - \frac{2\Delta}{T_n}.$$

Since we have by hypothesis $T_n < 2T_1$, this property contradicts U' < U.

By similar reasoning, one obtains successively

$$C_2 = T_3 - T_2,$$

 $C_3 = T_4 - T_3,$
:
 $C_{n-1} = T_n - T_{n-1}$

Since the processor is fully used, one finally gets

$$C_n = T_n - 2(C_1 + C_2 + \cdots + C_{n-1}).$$

Corollary: For each set of tasks that satisfies the hypotheses of Lemma 1, the processor load factor is equal to

$$U = \frac{T_2 - T_1}{T_1} + \frac{T_3 - T_2}{T_2} + \dots + \frac{T_n - T_{n-1}}{T_{n-1}} + \frac{2T_1 - T_n}{T_n}$$
$$= \frac{T_2}{T_1} + \frac{T_3}{T_2} + \dots + \frac{T_n}{T_{n-1}} + 2\frac{T_1}{T_n} - n.$$

For each i = 1, 2, ..., n - 1, let us define $q_i = \frac{T_{i+1}}{T_i}$. We then have $U = q_1 + q_2 + \dots + q_{n-1} + \frac{2}{q_1 q_2 \cdots q_{n-1}} - n$,

and thus for each *i*,

$$\frac{\partial U}{\partial q_i} = 1 - 2 \frac{q_1 q_2 \cdots q_{i-1} q_{i+1} \cdots q_{n-1}}{(q_1 q_2 \cdots q_{n-1})^2}.$$

The best lower bound U_L of U therefore corresponds to

$$\frac{\partial U}{\partial q_i} = 0$$

$$1 - \frac{1}{q_i} \cdot \frac{2}{q_1 q_2 \cdots q_{n-1}} = 0.$$

For each *i*, one has

$$q_i = \frac{2}{q_1 q_2 \cdots q_{n-1}},$$

hence

$$q_1 = q_2 = \dots = q_{n-1} = 2^{\frac{1}{n}}.$$

By introducing these values in the expression of U, one obtains

$$U_L = (n-1)2^{\frac{1}{n}} + \frac{2}{2^{\frac{n-1}{n}}} - n$$

= $(n-1)2^{\frac{1}{n}} + 2^{\frac{1}{n}} - n$
= $n(2^{\frac{1}{n}} - 1).$

We thus have the following result:

Theorem 4: If the periods T_1, T_2, \ldots, T_n of a set of *n* tasks are such that

$$0 < T_1 < T_2 < \dots < T_{n-1} < T_n < 2T_1,$$

with a processor load factor that is less than or equal to $n(2^{\frac{1}{n}} - 1)$, then this set of tasks is schedulable.

In the hypotheses of Theorem 4, the constraint over the task periods is actually not necessary:

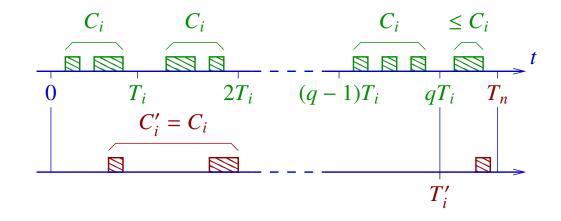
Theorem 5: If a set of *n* periodic tasks has a processor load factor that is less than or equal to $n(2^{\frac{1}{n}} - 1)$, then this set of tasks is schedulable.

Proof: Let $\tau_1, \tau_2, ..., \tau_n$ be tasks with respective periods and execution times $T_1, T_2, ..., T_n$ and $C_1, C_2, ..., C_n$. We assume that this set of tasks fully uses the processor.

If there exists $i \in \{1, 2, ..., n-1\}$ such that $2T_i \leq T_n$, then we define $q = \left\lfloor \frac{T_n}{T_i} \right\rfloor$ and $r = T_n - qT_i$ (we thus have q > 1 and $r \geq 0$).

We modify the set of tasks in the following way:

- We replace τ_i by τ'_i with the period $T'_i = qT_i$ and the execution time $C'_i = C_i$.
- We replace τ_n by τ'_n , with the period $T'_n = T_n$ and an execution time C'_n chosen so as to fully use the processor.



In the critical zone of τ_n , the difference between the execution times needed by τ_i and τ'_i is at most equal to $(q-1)C_i$. Therefore, one has

$$C'_n - C_n \le (q-1)C_i.$$

After modifying the set of tasks, the processor load factor U' becomes equal to

$$U' \le U + \frac{C'_i}{T'_i} - \frac{C_i}{T_i} + \frac{(q-1)C_i}{T_n}$$

where U is the processor load factor of the initial set of tasks.

One then obtains

$$U' \leq U + C_i \left(\frac{1}{qT_i} - \frac{1}{T_i} + \frac{q-1}{T_n} \right).$$

Since we have $qT_i \leq T_n$, this leads to

$$\frac{1}{qT_i} - \frac{1}{T_i} + \frac{q-1}{T_n} \leq \frac{1}{qT_i} - \frac{1}{T_i} + \frac{q-1}{qT_i}$$
$$\leq 0.$$

As a consequence, we have $U' \leq U$. This implies that our modification of the set of tasks did not increase the processor load factor.

By repeatedly performing such a modification, one eventually obtains a set of tasks to which Theorem 4 can be applied.

The limit processor load factor

The value of U_L decreases with the number *n* of tasks. Indeed,

$$\frac{dU_L}{dn} = \left(1 - \frac{\ln 2}{n}\right)2^{\frac{1}{n}} - 1$$
$$= (1 - x)e^x - 1,$$

 $(1-x)e^x < 1$

by defining $x = \frac{\ln 2}{n}$. Let us show that we have

for all x > 0 (which implies $\frac{dU_L}{dn} < 0$ for all n > 0).

For all x > 0, we have $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, hence

$$(1-x)e^{x} = (1-x) + (1-x)x + (1-x)\frac{x^{2}}{2!} + (1-x)\frac{x^{3}}{3!} + \cdots$$
$$= 1 - \left(1 - \frac{1}{2!}\right)x^{2} - \left(\frac{1}{2!} - \frac{1}{3!}\right)x^{3} - \left(\frac{1}{3!} - \frac{1}{4!}\right)x^{4} + \cdots$$
$$< 1.$$

For an asymptotically large number of tasks, we obtain

$$\lim_{n \to \infty} U_L(n) = \lim_{n \to \infty} n(2^{\frac{1}{n}} - 1)$$
$$= \lim_{n \to \infty} \frac{2^{\frac{1}{n}} - 1}{\frac{1}{n}}$$
$$= \lim_{n \to \infty} \frac{\frac{\ln 2}{n^2} 2^{\frac{1}{n}}}{\frac{1}{n^2}}$$
$$= \ln 2$$
$$\approx 0.69$$

In summary, we have the following result:

Theorem 6: If a set of periodic tasks has a processor load factor that is less than or equal to In 2, then this set of tasks is schedulable.

Conclusion: The following algorithm can be used for checking efficiently whether a set of n periodic tasks with a processor load factor equal to U is schedulable or not:

- 1. If U > 100%, then the set of tasks is not schedulable;
- 2. If $U \leq 69\%$, then the set of tasks is schedulable;
- 3. If $U \le n(2^{\frac{1}{n}} 1)$, then the set of tasks is schedulable;
- 4. Otherwise, one performs an exact scheduling simulation, based on a RMS priorities assignment.

Notes

- In situations where U ≤ 69% for the periodic tasks, the processor does not have to remain unused during 31% of the time! One can instead run low-priority tasks that are not bound by real-time constraints.
- For some specific class of sets of tasks, one can obtain $U_L = 100\%$, which guarantees that every set of tasks for which $U \le 100\%$ is schedulable.

Example: Let $\tau_1, \tau_2, \ldots, \tau_n$ be a set of tasks with respective periods and execution times T_1, T_2, \ldots, T_n and C_1, C_2, \ldots, C_n , such that

- $0 < T_1 \le T_2 \le \cdots \le T_n,$
- $\forall i, j : i < j \implies T_j$ is an integer multiple of T_i ,

$$- U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le 1.$$

Let us show that this set of tasks is schedulable.

The critical zone of τ_2 contains $\frac{T_2}{T_1}$ complete executions of τ_1 :

$$\tau_1 \qquad 0 \qquad T_1 \qquad 2T_1 \qquad - \frac{1}{(k-1)T_1} \qquad kT_1 \qquad T_2$$

Similarly, for each $j \in \{2, 3, ..., n\}$, the critical zone of τ_j contains $\frac{T_j}{T_1}$ complete executions of τ_1 , : $\frac{T_j}{T_{j-1}}$ complete executions of τ_{j-1} .

The condition that must be satisfied in order to finish the execution of τ_j before the end of its critical zone is thus

$$C_j \le T_j - \frac{T_j}{T_1}C_1 - \frac{T_j}{T_2}C_2 - \dots - \frac{T_j}{T_{j-1}}C_{j-1}$$

After simplification, this condition becomes

$$\frac{C_1}{T_1} + \frac{C_2}{T_2} + \dots + \frac{C_j}{T_j} \le 1,$$

which immediately follows from the hypothesis $U \leq 1$.