
Chapter 8

Complex timed systems

169

Introduction

In order to analyze the properties of a complex system, it is not always sufficient to study
the individual behavior of its components.

Example: An embedded system controlling a railroad crossing is composed of the following
elements:

• Two sensors located on the tracks 1000 meters before and 100 meters after the
crossing, aimed at detecting (respectively) that a train approaches or has passed the
crossing.

• A receiver that processes the signals emitted by the sensors, and sends orders to
open or close the gate.

receiver

1000 m 100 m

170

The following information is known:

• The speed of the approaching trains is between 48 and 52 m/s. Then, after reaching
the first sensor, their speed is reduced to a value between 40 and 52 m/s.

• After it receives a signal from a sensor, the receiver waits for at most 5 seconds before
sending an order to close or to open the gate. During this delay, the receiver ignores
incoming signals.

• The gate is closed (resp. open) when its angle is equal to 0 (resp. 90) deg. The gate is
able to move at the rate of 20 deg/s.

• Two successive trains are always separated by at least 1600 m.

Question: Is the gate always closed when a train passes the crossing?

171

Modeling a system

In order to analyze the properties of a system, the first step consists in building a model,
i.e., an abstract representation of the system that describes its relevant properties without
any ambiguity.

For embedded applications, the modeling formalism must be able to express

• operations on integer variables (used as counters, sequence numbers, identifiers, . . .),
as well as on real variables (for representing positions, speeds, delays, . . .).

• discrete state transitions (e.g., incrementing a counter) as well as continuous evolution
laws (e.g., constant-speed movement).

• composition of elementary systems into a more complex entity.

172

Hybrid systems

Hybrid systems are a modeling formalism that meets those requirements.

Syntax:

A hybrid system is composed of:

• a finite number p of processes P1, P2, . . . , Pp,

• a finite number n of variables x1, x2, . . . , xn, grouped together into a vector ~x ∈ Rn,

• a finite set L of synchronization labels.

Each process Pi is represented by a graph (Vi, Ei), where

• Vi est a finite set of control locations,

• Ei ⊆ Vi × Vi is a finite set of transitions.

173

Each control location v ∈ Vi is associated with:

• An activity dif (v), expressed as a conjunction of linear constraints over the variables
x1, x2, . . . , xn and their first temporal derivative ẋ1, ẋ2, . . . , ẋn.

• An invariant inv(v), expressed as a conjunction of linear constraints over the variables
x1, x2, . . . , xn.

Each transition e ∈ Ei is associated with:

• A guard guard(e), that represents a condition that must be satisfied in order to enable
this transition.

• An action act(e), composed of constraints that specify how the values of the variables
are modified when this transition is followed.

In practice, the guard and the action can be combined into a conjunction of constraints
over the values of the variables before (x1, x2, x3, . . .) and after (x′1, x′2, x′3, . . .)
following the transition.

174

• An optional label sync(e) ∈ L that makes it possible to synchronize this transition with
one or many transitions belonging to other processes.

Finally, one defines an initial control location for each process, and assigns a set of
possible initial values for each variable, specified as a conjunction of linear constraints.

175

Example: Process modeling the behavior of a train and the two sensors.

• The distance between the train and the crossing is represented by a variable x1.

• The signals emitted by the sensors are modeled by two synchronization labels app
and exit .

176

[1] [2]

[3]

exit

app

x1 ≥ 1500
1000 ≤ x1

x1 = 1000
0 ≤ x1 ≤ 1000

x1 = 100

x′1 ≥ 1500 x1 = 0

x1 ≤ 100

−52 ≤ ẋ1 ≤ −48

40 ≤ ẋ1 ≤ 52

−52 ≤ ẋ1 ≤ −40

177

Process modeling the receiver:

• The delay between receiving a sensor signal and sending an order to the gate is
represented by a variable x2.

• The labels raise and lower model the orders sent to the gate.

178

[2] [3]

[1]

ẋ2 = 1 ẋ2 = 1

ẋ2 = 0

0 ≤ x2 ≤ 5

x′2 = 0 x′2 = 0

0 ≤ x2 ≤ 5

x2 = 0

exit

raise

exitapp

lower

exit

app app

179

Process modeling the gate:

• The variable x3 represents the angular position of the gate.

• The labels raise and lower correspond to the orders received.

180

[1]

raise

ẋ3 = 20 ẋ3 = 0

[2]

raise

lowerraise

lower

raise

[3]

ẋ3 = −20

[4]

ẋ3 = 0

lower lower

0 ≤ x3 ≤ 90 x3 = 90
x3 = 90x3 = 90

0 ≤ x3 ≤ 90
x3 = 0

x3 = 0

181

Semantics:

At any given time, the current state of a hybrid system is characterized by

• a control location for each process, and

• a value for each variable.

The state of a system can evolve in two ways:

• By letting time elapse (time steps). The control locations of processes stay
unchanged, and the values of the variables evolve according to the invariants and
activities associated to these locations.

• By following transitions (transition steps). One can either

– follow a single unlabeled transition, or

– follow a pair of transitions (more generally, a maximal set of at least two transitions)
belonging to different processes and sharing the same synchronization label.

182

In both cases, a transition can only be followed provided that its guard is satisfied by
the current variable values.

When a transition is followed, the variable values are modified according to the action
associated to the transition. The invariant of the destination location must be satisfied
by the new variable values (otherwise, the transition cannot be followed).

A state s2 is reachable from a state s1 if there exists a finite sequence of time steps and
transition steps that lead from s1 to s2.

A state s is reachable if it is reachable from an initial state.

183

Example: The state ([2], [2], [2], 800, 4, 90) of the railroad crossing controller model
corresponds to

• the control location [2] for each process.

• the respective values 800, 4 and 90 for the variables x1, x2 and x3.

This state is reachable. Indeed, one has

([1], [1], [2], 1500, 0, 90)
10

=⇒ ([1], [1], [2], 1000, 0, 90)
app
−→ ([2], [2], [2], 1000, 0, 90)

4
=⇒ ([2], [2], [2], 800, 4, 90),

where

• “
λ

=⇒” denotes a time step with a delay equal to λ,

• “
`
−→” corresponds to following a pair of transitions sharing the synchronization label `.

184

Executions of a hybrid system

An execution of a hybrid system is an infinite sequence s1, s2, s3, . . . of states such that:

• s1 is an initial state of the system.

• For each i, the state si+1 is reachable from the state si in a time δi ≥ 0.

Note: A hybrid system generally admits several different executions (non-determinism).
Indeed,

• The time spent at a control location may not be precisely constrained by the invariant.

• A control location can have several outgoing transitions enabled at a given time.

An execution s1, s2, s3, . . . beginning at time t = 0 is said to be divergent if for every T > 0,
there exists i such that the state si is reached later than time t = T .

185

Zeno hybrid systems

A hybrid system is said to have the Zeno property if it admits an execution in which at least
one finite prefix is not a prefix of a divergent execution.

In other words, in a Zeno hybrid system, there exists a reachable state from which no
execution is able to get past some time bound.

Example: Hybrid system modeling a bouncing ball.

x2 = 0

x1 = 10
x1 ≥ 0

x1 = 0

x′2 = −0.8x2

ẋ1 = x2

ẋ2 = −g

186

x1

t

Remarks:

• Such models are inconsistent with physical reality and must be avoided!

• For some restricted classes of hybrid systems, automatic methods have been
developed for transforming any given model into another one that does not have the
Zeno property, and admits the same divergent executions.

187

State-space exploration

A large number of interesting properties of a hybrid system can be checked by computing
its reachable states.

This computation can be carried out by building, from every initial state, a tree in which
each node q represents a reachable state s(q), and the children of q correspond to the
states that are reachable from s(q) by

• a time step, or

• a transition step.

Problems:

• The system may have infinitely many initial states.

• The time spent at a control location may take an infinite number of possible values,
which leads to trees of infinite degree.

• Since executions are infinite, the trees also have an infinite depth.

188

Solutions:

• Sets of states sharing the same control locations and differing only in the elapsed time
in those locations can be grouped into regions. A tree can be built in which the nodes
are associated with regions instead of individual states.

• At each exploration step, a first operation saturates the current region by letting time
elapse during all possible delays. Then, the enabled transitions are individually
followed, creating new branches.

• The branches of the exploration tree that only contain already visited states can be
pruned.

...

189

Notes:

• Several exploration strategies are possible: depth-first search (DFS), breadth-first
search (BFS), . . .

• For general hybrid systems, the region tree can still be infinite. It is however possible
to define restricted classes of models, for which a finite region tree can always be
computed.

Example: Timed automata are hybrid systems in which
– the activities are of the form ẋi = 1,

– all invariants, guards and actions are conjunctions of constraints of the form xi#c or
xi − x j#c, where c is an integer number, and # ∈ {<,≤,=,≥, >}.

• Some tools are available for exploring automatically the state space of hybrid systems
(e.g., HyTech, SpaceEx, Hylaa) or timed automata (e.g., Uppaal).

Notes: These tools
– represent and handle regions with the help of dedicated data structures, based on

logic formulas, convex polyhedra, difference matrices, . . .

– are able to check properties that go beyond simple reachability.

190

Example: Railroad crossing

([1], [1], [2]) : x1 ≥ 1500, x2 = 0, x3 = 90.

=⇒ ([1], [1], [2]) : x1 ≥ 1000,
x2 = 0, x3 = 90.

app
−→ ([2], [2], [2]) : x1 = 1000,

x2 = 0, x3 = 90.
≤5
=⇒ ([2], [2], [2]) : x1 ≥ 1000 − 52λ,

x1 ≤ 1000 − 40λ,
x2 = λ, x3 = 90,
0 ≤ λ ≤ 5.

x1

1000

50 λ

1000 − 40λ

1000 − 52λ

191

lower
−→ ([2], [1], [3]) : x1 ≥ 1000 − 52λ,

x1 ≤ 1000 − 40λ,
x2 = λ, x3 = 90,
0 ≤ λ ≤ 5.

≤9/2
=⇒ ([2], [1], [3]) : x1 ≥ 1000 − 52(λ + µ),

x1 ≤ 1000 − 40(λ + µ),
x2 = λ, x3 = 90 − 20µ,
0 ≤ λ ≤ 5, 0 ≤ µ ≤ 9/2.

x3=0
−→ ([2], [1], [4]) : x1 ≥ 766 − 52λ,

x1 ≤ 820 − 40λ,
x2 = λ, x3 = 0,
0 ≤ λ ≤ 5.

=⇒ ([2], [1], [4]) : 0 ≤ x1 ≤ 820 − 40λ,
x2 = λ, x3 = 0,
0 ≤ λ ≤ 5.

x1=0
−→ ([3], [1], [4]) : x1 = 0, x2 = λ,

x3 = 0, 0 ≤ λ ≤ 5.

192

≤5/2
=⇒ ([3], [1], [4]) : 0 ≤ x1 ≤ 100,

x2 = λ, x3 = 0,
0 ≤ λ ≤ 5.

exit
−→ ([1], [3], [4]) : x1 ≥ 1500, x2 = 0,

x3 = 0.
≤5
=⇒ ([1], [3], [4]) : x1 ≥ 1500 − 52λ,

x2 = λ, x3 = 0,
0 ≤ λ ≤ 5.

raise
−→ ([1], [1], [1]) : x1 ≥ 1500 − 52λ,

x2 = λ, x3 = 0,
0 ≤ λ ≤ 5.

≤9/2
=⇒ ([1], [1], [1]) : x1 ≥ 1500 − 52(λ + µ),

x2 = λ, x3 = 20µ,
0 ≤ λ ≤ 5, 0 ≤ µ ≤ 9/2.

x3=90
−→ ([1], [1], [2]) : x1 ≥ 1266 − 52λ,

x2 = λ, x3 = 90,
0 ≤ λ ≤ 5.

193

=⇒ ([1], [1], [2]) : x1 ≥ 1000,
x2 = λ, x3 = 90,
0 ≤ λ ≤ 5.

app
−→ ([2], [2], [2]) : x1 = 1000,

x2 = 0, x3 = 90
(already obtained).

Notes:

• In this example, the regions correspond to the sets of states obtained after each
time-step operation (denoted by “=⇒”).

• Checking whether the gate is always closed when a train reaches the crossing
amounts to verifying that in each reachable region, x1 = 0 implies x3 = 0.

• This particular system shows a very deterministic behavior: In each reachable state,
there is at most one transition (or a pair of synchronized transitions) that is enabled.

(This is generally not the case!)

194

