Embedded systems Exercise session, 13/12 Hybrid systems

Guidelines

- Read carefully the problem statement.
- 2 For unspecified details, make reasonable choices.
- Observe the problem into some number of processes.
- Choose your variables and document them.
- For each process, determine the number of control locations needed to represent the possible behaviors.
- Organize the communication between processes.
- Write the invariants, activities, guards and actions.

Problem 1

A microcontroller controls two security doors at the entrance of a bank, located 4 meters apart. Both doors are equipped with a sensor that is able to detect people. The range of the sensors is depicted here:

It is assumed that people always move from left to right, i.e., that they first go through door 1 and then through door 2. The microcontroller controls the doors as follows:

- Door 1 opens as soon as its sensor detects someone, at a rate of 67% per second (in other words, it takes about 1.5 s for it to become fully open). It closes, at a rate of 50% per second, when the sensor of door 2 picks up someone.
- Door 2 starts to open, at a rate of 50% per second, exactly 2 seconds after the sensor of door 1 has detected someone. It closes, at the same rate, when the sensor of door 2 stops sensing.

A person can pass through a door only if it is at least 50% open. Otherwise, he/she waits for the door to open enough. It is assumed that at most one person can use the doors at any time, in other words, a new person may approach door 1 only after the previous one has left the sensing area of door 2.

- Describe a hybrid system modelling this situation.
- Q Give the first 3 steps of the space-state exploration of this system, in the case of a person moving at a speed of 1.75 m/s.

Problem digest:

- At least 7 meters between two successive persons.
- No assumption on the speed of the person (other than v > 0).

Processes and variables:

- P_1 : movement of the person, x_1 = current position.
- P_2 : door 1, x_2 = percentage open (0–100).
- P_3 : door 2, x_3 = percentage open (0–100).
- P_4 : 2-second timer, x_4 = elapsed time.

Initial conditions:

- The person is out $(x_1 \leq 0)$.
- The doors are closed.

Modes of operation:

- [1]: $x_1 \le 0$ or $x_1 \ge 7$
- **[2]**: 0 ≤ *x*₁ ≤ 1.5
- **[3]**: 1.5 ≤ *x*₁ ≤ 5.5
- **[4]**: 5.5 ≤ *x*₁ ≤ 7

- Values of *x*₂ and *x*₃ are read to pass doors.
- Synchronization labels open1, close1 with P₂, close2 with P₃, timer_start with P₄.

Modes of operation:

- [1]: opening door
- [2]: closing door
- [3]: door open
- [4]: door closed

- Provides the value of x₂.
- Reacts to the labels open1 and close1.

Similar to Process 2, with x_2 replaced by x_3 and *open1/close1* by *open2/close2*.

Modes of operation:

- [1]: idle
- [2]: timer is active

- Reacts to timer_start
- Triggers open2.

State-space exploration:

 $([1], [4], [4], [1]): x_1 \leq 0, x_2 = 0, x_3 = 0, x_4 = 0.$ $([1], [4], [4], [1]) : x_1 \leq 0, x_2 = 0$ \implies $x_3 = 0, x_4 = 0.$ open1 timer_start $([2], [1], [4], [2]) : x_1 = 0, x_2 = 0,$ $x_3 = 0, x_4 = 0.$ $\leq \frac{1.5}{1.75}$ ([2], [1], [4], [2]) : $x_1 = 1.75 t, x_2 = 67 t$ \implies $x_3 = 0, x_4 = t$ $0 \le t \le \frac{1.5}{1.75}$

Problem 2

When the sluice gates of a dam are closed, the water level in the reservoir rises at the rate of 0.4 m/h if it is between 10 m and 20 m, and of 0.2 m/h between 20 m and 30 m. Above 30 m, a spillway drains the extra water. When the sluice gates are open, the water level decreases at the rate of 0.5 m/h, independently from the water level.

A sensor constantly measures the water level in the reservoir, and sends a signal each time that this level changes by 1 *m*. The sluice gates must be opened when the level exceeds 25 *m*, and closed when it drops below 15 *m*. Each opening or closing operation of the gates needs 120 seconds to complete.

- Construct an hybrid system modelling this problem. Initially, the water level is at 17 *m*, and the sluice gates are open.
- Q Give the first 3 steps of the state-space exploration of this system.

Processes and variables:

- P_1 : level of the water, x_1 = current level.
- P_2 : sensor, x_2 = value of the level at the last signal.
- P_3 : gates, x_3 = percentage of closure (0–100).
- P₄: controller.

Notes:

- We assume that the water level increases only when the gates are **fully** closed.
- If the water level goes outside the interval [10, 30], the model may deadlock.

Modes of operation:

- [1]: $10 \le x_1 \le 20$, gates fully closed, level increasing
- [2]: $20 \le x_1 \le 30$, gates fully closed, level increasing
- [3]: $x_1 = 30$, gates fully closed, level stable
- [4]: gates (at least partially) open, level decreasing

Communication:

• Synchronize with Process 3 on labels *decreasing* and *increasing*.

Modes of operation: A single mode from which we check the relative values of x_1 and x_2 , and update x_2 whenever necessary.

- Reads the current value of x₁.
- Synchronizes with *P*₄ on the labels *signal_up* and *signal_down*.

Modes of operation:

- [1]: closing gates
- [2]: opening gates
- [3]: gates closed
- [4]: gates open

- Reacts to the labels open_gate and close_gate.
- Synchronizes with P₁ on *increasing* and *decreasing*.

Modes of operation: A single mode from which we check the value of x_1 when *signal_up* and *signal_down* are received, and emit *open_gate* and *close_gate* orders.

Note: We check x_1 and not x_2 , since the value of x_2 is modified by the transitions of Process 2 that synchronize on *signal_up* and *signal_down*.

State-space exploration:

 $([4], [1], [4], [1]) : x_{1} = 17, x_{2} = 17, x_{3} = 0.$ $([4], [1], [4], [1]) : 16 \le x_{1} \le 17, x_{2} = 17, x_{3} = 0.$ $([4], [1], [4], [1]) : x_{1} = 16, x_{2} = 16, x_{3} = 0.$ $([4], [1], [4], [1]) : 15 \le x_{1} \le 16, x_{2} = 16, x_{3} = 0.$ $([4], [1], [4], [1]) : 15 \le x_{1} \le 16, x_{2} = 16, x_{3} = 0.$ $([4], [1], [4], [1]) : 15 \le x_{1} \le 16, x_{2} = 16, x_{3} = 0.$

Problem 3

A smart traffic light system is installed at the intersection of two roads. There are three stop lights $\{1, 2, 3\}$ that can either be red, green, or orange. The state of 2 and 3 is identical at all times.

Traffic lights 2 and 3 are red and traffic light 1 is green as long as there are less than six cars waiting in front of 2 or 3. When this threshold is reached, stop light 1 becomes orange for 5 seconds before switching to red. At this time, stop lights 2 and 3 become green for 15 seconds. After that delay, they change to orange for 5 seconds and then switch to red as traffic light 1 becomes green again.

The incoming flows of cars at the three traffic lights are respectively $f_1 = 30$, $f_2 = 6$ and $f_3 = 3$ cars/minute. We also define the saturation flow of a traffic light as the rate of cars that are able to cross this light when it is green. The saturation flows of the three lights are respectively $s_1 = 1.5$, $s_2 = 0.5$ and $s_3 = 0.5$ cars/second.

- Construct a hybrid system that models this traffic management system.
- Q Give the first 3 steps of the space-state exploration of this system, when initially no cars are queueing in front of the traffic lights, and stop lights 2 and 3 are red while 1 is green.