
Embedded systems
Exercise session, 20/12

Exam preparation

Hybrid systems

Problem 1 (cf. previous exercise session)

A smart traffic light system is installed at the intersection of two roads. There are three
stop lights {1, 2, 3} that can either be red, green, or orange. The state of 2 and 3 is
identical at all times.

Traffic lights 2 and 3 are red and traffic light 1 is green as long as there are less than
six cars waiting in front of 2 or 3. When this threshold is reached, stop light 1 becomes
orange for 5 seconds before switching to red. At this time, stop lights 2 and 3 become
green for 15 seconds. After that delay, they change to orange for 5 seconds and then
switch to red as traffic light 1 becomes green again.

The incoming flows of cars at the three traffic lights are respectively f1 = 30, f2 = 6
and f3 = 3 cars/minute. We also define the saturation flow of a traffic light as the rate
of cars that are able to cross this light when it is green. The saturation flows of the
three lights are respectively s1 = 1.5, s2 = 0.5 and s3 = 0.5 car/second.

1 Construct a hybrid system that models this traffic management system. Initially,
no cars are queueing in front of the traffic lights, and stop lights 2 and 3 are red
while 1 is green.

2 Give the first 3 steps of the space-state exploration of this system.

Processes and variables:

P1: sequence of the lights, x1 = timer.

P2: cars incoming at 1, x2 = number of cars waiting.

P3: cars incoming at 2, x3 = number of cars waiting.

P4: cars incoming at 3, x4 = number of cars waiting.

Note: For the sake of simplicity, we assume the flows of cars to be
continuous. To obtain a more precise model, we would need two
variables for each traffic light:

one for the (integer) number of cars waiting, and

one for a (real) timer regulating the flow of cars.

Process 1

Modes of operation:

[1]: Light 1 is green, lights 2 and 3 are red.

[2]: Light 1 is orange, lights 2 and 3 are red.

[3]: Light 1 is red, lights 2 and 3 are green.

[4]: Light 1 is red, lights 2 and 3 are orange.

Communication:

x3 and x4 provide the number of cars waiting at lights 2 and 3.

Synchronization labels green1, orange1, green2/3, orange2/3
inform the other processes of the lights state changes.

[1] [2]

[4]

orange1

x3 + x4 ≤ 6 0 ≤ x1 ≤ 5

0 ≤ x1 ≤ 5

ẋ1 = 1

ẋ1 = 1

[3]

0 ≤ x1 ≤ 15

ẋ1 = 1

x1 = 0 x ′
1 = 0

ẋ1 = 0

x3 + x4 ≥ 6

x1 = 5

x3 + x4 ≥ 6

x ′
1 = 0

green2/3

x1 = 5

x3 + x4 < 6

x ′
1 = 0

green1 green2/3
x1 = 5

x ′
1 = 0

x1 = 15

x ′
1 = 0

orange2/3

Process 2

Modes of operation:

[1]: Light 1 is green.
The value of x2 changes at the rate of
30 cars/min − 1.5 cars/s = −1 car/s.

[2]: Light 1 is orange or red. The value of x2 increases at the rate
of 30 cars/min = 0.5 car/s.

[3]: Light 1 is green, and x2 = 0.

Communication:

Provides the value of x2.

Reacts to the labels green1 and orange1.

[3]

x2 = 0

ẋ2 = 0

[2]

x2 = 0

x2 ≥ 0

[1]

ẋ2 = −1
ẋ2 = 0.5

x2 = 0

orange1

green1

green1 orange1

orange1

green1

Process 3

(Similar to Process 2)

Modes of operation:

[1]: Light 2 is green. The value of x3 changes at the rate of
6 cars/min − 0.5 car/s = −0.4 car/s.

[2]: Light 2 is orange or red. The value of x3 increases at the rate
of 6 cars/min = 0.1 car/s.

[3]: Light 2 is green, and x3 = 0.

Communication:

Provides the value of x3.

Reacts to the labels green2/3 and orange2/3.

[3]

x3 = 0

ẋ3 = 0

[2]

x3 ≥ 0

[1]

ẋ3 = −0.4
ẋ3 = 0.1

x3 = 0

orange2/3

green2/3

green2/3 orange2/3

orange2/3

green2/3

x3 = 0

Process 4

(Similar to Processes 2 and 3)

Modes of operation:

[1]: Light 3 is green. The value of x4 changes at the rate of
3 cars/min − 0.5 car/s = −0.45 car/s.

[2]: Light 3 is orange or red. The value of x4 increases at the rate
of 3 cars/min = 0.05 car/s.

[3]: Light 3 is green, and x4 = 0.

Communication:

Provides the value of x4.

Reacts to the labels green2/3 and orange2/3.

[3]

x4 = 0

ẋ4 = 0

[2]

x4 ≥ 0

[1]

ẋ4 = −0.45
ẋ4 = 0.05

x4 = 0

orange2/3

green2/3

green2/3 orange2/3

orange2/3

green2/3

x4 = 0

Note: We have assumed that no car passes an orange light.

State-space exploration:

([1], [3], [2], [2]) : x1 = 0, x2 = 0, x3 = 0, x4 = 0.

≤40
=⇒ ([1], [3], [2], [2]) : x1 = 0, x2 = 0, x3 = 0.1 t

x4 = 0.05 t , 0 ≤ t ≤ 40.
orange1

−→ ([2], [2], [2], [2]) : x1 = 0, x2 = 0, x3 = 4, x4 = 2.
≤5
=⇒ ([2], [2], [2], [2]) : x1 = t , x2 = 0.5 t , x3 = 4 + 0.1 t ,

x4 = 2 + 0.05 t , 0 ≤ t ≤ 5.
−→ . . .

Problem 2

The principle of a telemeter is to measure the time elapsed between the emission of
an ultrasonic signal and the reception of an echo sent back by a target. If this time is
equal to t seconds, then the distance to this target is estimated to be 170 t meters.

The signals are emitted every 100 ms and last 100 µs each. The received signals are
considered valid if they meet the following conditions:

they last between 50 and 150 µs,

they are received between 500 µs and 50 ms after the emission of a signal (this
delay is computed between the first transition of the signals).

The other signals are discarded.

1 Considering a simple environment where a signal can be received at any
moment, describe a hybrid system modelling a telemeter.

2 Give the first 3 steps of the space-state exploration of this system.

Problem digest:

0 50 ms 100 ms100 µs

emission reception window emission

(not to scale)

500 µs

Processes and variables:

P1: Emission cycle, x1 = time since beginning of last emission,
x2 = emitted signal.

P2: Receiver, x3 = received signal, x4 = timer,
x5 = measured distance.

P3: Environment.

Process 1

Modes of operation:

[1]: Emitting.

[2]: Waiting.

Communication:

Provides x1 (that helps determine reception window).

Provides x2 (representing the emitted signal: 1 = on, 0 = off).

x2 = 1

x1 = 100

x ′
1 = 0

x1 = 0

0 ≤ x1 ≤ 0.1

ẋ2 = 0

[1] [2]

0.1 ≤ x1 ≤ 100

ẋ2 = 0

x ′
2 = 0

x1 = 0.1

x ′
2 = 1

ẋ1 = 1 ẋ1 = 1

Process 2

Modes of operation:

[1]: Waiting to receive.

[2]: Measuring the duration of the received signal (in the reception
window).

[3]: Receiving a signal outside of the reception window.

Communication:

Reads the received signal x3 (1 = on, 0 = off).

Synchonizes on labels new_measurement and signal.

Provides the length measurement x5.

x5 = 0
x4 = 0

[2]

ẋ4 = 0

[1]

x3 = 0
ẋ4 = 1
x3 = 1

[3]

x3 = 1

x4 < 0.05 or x4 > 0.15
x′

4 = 0

0.05 ≤ x4 ≤ 0.15
x′

4 = 0
x′

5 = 0.17 (x1 − x4)

x1 ≤ 0.5 or x1 ≥ 50
signal

signal

0.5 ≤ x1 ≤ 50
x′

4 = 0
signal

signal
new_measurement

signal signal

signal

signal

Process 3

Modes of operation: Only one: [1].

Communication:

Emits (non-deterministically) the received signal x3 as well as the
synchronization label signal.

Reacts to new_measurement.

[1]

x3 = 0

new_measurement

x3 = 1

signal

signal

x3 = 0

State-space exploration:

([1], [1], [1]) : 0 ≤ x1 ≤ 0.1

x2 = 1, x3 = 1

x4 = 0, x5 = 0

.

([1], [1], [1]) : 0 ≤ x1 ≤ 0.1

x2 = 1, x3 = 0

x4 = 0, x5 = 0

(already obtained)

([1], [1], [1]) : x1 = 0, x2 = 1, x3 = 0

x4 = 0, x5 = 0

([1], [1], [1]) : 0 ≤ x1 ≤ 0.1, x2 = 1, x3 = 0

x4 = 0, x5 = 0

≤ 0.1

x1 = 0.1, x2 = 0, x3 = 0

x4 = 0, x5 = 0

([2], [1], [1]) :

x1 ≤ 0.5 or x1 ≥ 50

x3 = 0

x1 = 0.1

Problem 3

A quadcopter is able to fly autonomously by automatically adjusting its altitude with
respect to the ground using a distance sensor. The nominal altitude a is a parameter
provided by the pilot, and remains constant during flight. When the quadcopter is
flying, it constantly measures the difference between its actual altitude (measured by
the sensor) and a. If the absolute value of this difference exceeds 20 cm, then the
aircraft adjusts its altitude at a speed between 0.9 and 1.1 m/s on the vertical axis, in
the appropriate direction. When the measured altitude is 20 cm or less from a, the
quadcopter keeps its vertical speed between −0.1 and 0.1 m/s.

The quadcopter is equipped with a 2400 mAh battery. During flight, its motors and
embedded electronics drain a current between 2 and 10 A. As soon as the charge
level of the battery drops below 600 mAh, the quadcopter immediately enters an
automatic landing procedure, during which it decreases its altitude at a constant rate
of 2 m/s until it touches the ground. It then automatically shuts off. The aircraft also
shuts off if its battery becomes totally depleted, which corresponds to an abnormal
situation that should be avoided.

Initially, we assume the quadcopter to be on the ground with its motors turned on and
a fully charged battery.

1 Model the behavior of this quadcopter with a hybrid system.

2 Explain how this hybrid system can be used for checking whether
an abnormal situation can be reached for a given value of the
parameter a. Illustrate your answer by carrying out in detail the
first three steps of the procedure.

Processes and variables:

P1: altitude control, x1 = altitude in m.

P2: battery, x2 = remaining capacity in Ah.

Process 1

Modes of operation:

[1]: x1 ≥ a + 0.2.

[2]: a − 0.2 ≤ x1 ≤ a + 0.2.

[3]: x1 ≤ a − 0.2.

[4]: Descending for landing.

[5]: Landed.

Communication:

Provides x1.

Reacts to label low_battery to know when to initiate landing.

Synchronizes with has_landed to signal when ground is reached.

has_landed
x1 = 0

[4]

x1 ≥ 0

ẋ1 = −2

[2][1]

[5]

x1 = 0
[3]

x1 = a + 0.2

x1 = a + 0.2 x1 = a − 0.2

x1 = a − 0.2

low_battery

low_battery

low_battery

low_batteryx1 = 0

ẋ1 = 0

low_battery

−1.1≤ ẋ1 ≤−0.9

x1 ≥ a + 0.2

−0.1 ≤ ẋ1 ≤ 0.1

|x1 − a| ≤ 0.2

0.9 ≤ ẋ1 ≤ 1.1

0 ≤ x1 ≤ a − 0.2

Notes:

We assume a > 0.2.

After reaching [2], it is impossible to stay in locations [1] and [3] for
a non-zero time.

Process 2

Modes of operation:

[1]: Normal mode, x2 ≥ 0.6.

[2]: Emergency mode, x2 ≤ 0.6.

[3]: Battery fully depleted, x2 = 0.

[4]: Turned off, ẋ2 = 0.

Communication:

Provides x2.

Emits the synchronization label low_battery to initiate automatic
landing procedure.

Reacts to the label has_landed to turn the quadcopter off.

[4]

[2][1] [3]

− 10
3600≤ ẋ2 ≤− 2

3600

has_landed

x2 = 2.4 x2 = 0.6 x2 = 0

has_landed
has_landed has_landed

low_battery

0 ≤ x2 ≤ 0.6x2 ≥ 0.6 x2 = 0

ẋ2 = 0− 10
3600≤ ẋ2 ≤− 2

3600

ẋ2 = 0

State-space exploration:

Checking whether an abnormal situation is possible amounts to
checking whether Location [3] is reachable in Process 2.

Note: We assume (realistically) that a is such that the first ascent and
altitude stabilization do not deplete the battery below 600 mAh.

([3], [1]) : x1 = 0, x2 = 2.4.

≤ a−0.2
0.9=⇒ ([3], [1]) : 0.9 t1 ≤ x1 ≤ 1.1 t1,

2.4 − t1
360

≤ x2 ≤ 2.4 − t1
1800

,

0 ≤ t1 ≤ a − 0.2
0.9

x1=a−0.2−→ ([2], [1]) : x1 = a − 0.2,

2.4 − t1
360

≤ x2 ≤ 2.4 − t1
1800

,

0 ≤ t1 ≤ a − 0.2
0.9

≤3240
=⇒ ([2], [1]) : a − 0.2 ≤ x1 ≤ min(a − 0.2 + 0.1 t2,a + 0.2),

max
(

2.4 − t1 + t2
360

,0.6
)

≤ x2 ≤ 2.4 − t1 + t2
1800

,

0 ≤ t1 ≤ a − 0.2
0.9

0 ≤ t2 ≤ 3240 − t1
−→ . . .

Software architectures

Problem 1

In a cooling system, a microcontroller controls the opening of a cold water
valve in order to keep the temperature of a certain element constant. It
performs the following tasks:

sending the value of an angle to the valve 10 times per second. This
operation lasts 1 ms.

communicating with a sensor array 1 time per second. This operation
requires 1 ms.

computing a new angle whenever a variation of more than 2% is
observed in the measurements. This computation lasts 2 seconds.

monitoring an alert button 25 times per second. This takes a negligible
amount of time.

If the alert button is pressed, a new angle has to be computed as soon as
possible using predetermined parameters and previous measurements. The
alert button must be pressed again to revert to the previous computation
method for the angle.

1 What is the best software architecture for this system? (Carefully
justify your answer.)

2 Using pseudocode, give the global structure of this embedded
software.

List of tasks:

τ1: Valve command: period = 100 ms, exec. time = 1 ms.
τ2: Sensor communication: period = 1000 ms, exec. time = 1 ms.
τ3: Angle computation: period = whenever possible, exec. time =
2 s.
τ4: Button monitoring: period = 40 ms, exec. time = ε.

Can some tasks be performed by interrupt routines?

Yes: τ4. (The other tasks take too long.)

Is preemption needed?

Yes! (τ1 and τ2 over τ3.)

→ RTOS.

Task priorities?

P(τ1) > P(τ2) > P(τ3). Task τ4 performed in an interrupt routine.

(Note: τ4 could also be implemented by a periodic task.)

Tasks communication:

Global variables for the valve angle, the sensor measurements,
and the alert mode.
Binary semaphores controlling concurrent access to those
variables.
Possibility for τ4 of terminating τ3 in the case of an alert.

#include <rtos.h>
#include <rtos-semaphores.h>
#include "datastruct.h"

static volatile double valve_angle;
static volatile sensors_data measurements;
static volatile int in_alert_mode = 0;
static semaphore angle_sem, measurements_sem;

static void task1(void) /* Valve command */
{
double a;

wait(angle_sem);
a = valve_angle;
signal(angle_sem);

!! send angle a to valve
}

static void task2(void) /* Sensor communication */
{
sensors_data d;

!! acquire sensors data in d

wait(measurements_sem);
measurements = d;
signal(measurements_sem);

}

static void task3(void) /* Angle computation */
{
double a;
sensors_data d;

for (;;)
{
wait(measurements_sem);
d = measurements;
signal(measurements_sem);

!! depending on d and the current value of in_alert_mode,
!! compute a new angle in a

wait(angle_sem);
valve_angle = a;
in_alert_mode = 0;
signal(angle_sem);

}
}

interrupt void task4(void) /* Button monitoring */
{
!! read button, and update in_alert_mode

if (in_alert_mode)
{

kill(task3);
create_one_shot_task(task3, 1);

}
}

void main(void)
{
!! initialize OS
!! initialize data structures

create_periodic_task(task1, 100, 3);
create_periodic_task(task2, 1000, 2);
create_one_shot_task(task3, 1);

!! configure timer for triggering an interrupt every 40 ms,
!! calling task4

angle_sem = create_binary_semaphore(1);
measurements_sem = create_binary_semaphore(1);

enable(); /* User-programmed interrupts */

!! start tasks sequencing
}

Problem 2

A quadcopter contains a microcontroller that controls its four motors. This
microcontroller is responsible for stabilizing the spatial position and
orientation of the aircraft during flight, and for processing the orders sent by
the pilot via a remote control. In order to do this, it performs the following
tasks:

Reading, processing and filtering data received from various sensors
such as accelerometers and gyroscopes. This task has to be performed
at a rate of 200 Hz, and takes 2 ms.

Implementing a control loop. This task has to be performed at a rate of
100 Hz, and takes 1 ms.

Communicating with the remote control. This task has to be performed
at a rate of 50 Hz, and takes 0.2 ms.

Writing a flight log in flash memory. This task has to be performed at a
rate of 10 Hz, and takes 15 ms. The operations carried out by the task
essentially amount to waiting for the flash memory component to trigger
an interrupt signalling the end of the write operation.

1 What is the best software architecture for this system? (Carefully
justify your answer.)

2 Using pseudocode, give the global structure of this embedded
software.

List of tasks:

τ1: Acquiring and processing data: period = 5 ms, exec. time =
2 ms.
τ2: Control loop: period = 10 ms, exec. time = 1 ms.
τ3: Remote control: period = 20 ms, exec. time = 0.2 ms.
τ4: Logging: period = 100 ms, duration = 15 ms, exec. time = ε.

Can some tasks be performed by interrupt routines?

Yes: τ4. (The time-consuming work of that task is performed by a
peripheral.)

Is preemption needed?

No. Invoking Tasks τ1, τ2 and τ3, and starting τ4, can follow a fixed
timing.

→ Round-robin with interrupts.

Task/task and task/interrupt routine communication:

Global variables:

Counter for a single timer with a 2.5 ms period.
Flag for signaling new value of counter.
Current sensors data (written by τ1 and read by τ2 and τ4).
Current mode of operation (modified by τ3 and read by τ2 and τ4).

#include "types.h"
#include "datastruct.h"

static volatile UINT4 counter = 0;
static volatile BOOL counter_flag = 0;
static sensors_data current_data;
static mode_of_operation current_mode;

static void task1(void) /* Data acquisition and processing */
{
!! acquire data, process it, and write
!! the result in current_data

}

static void task2(void) /* Control loop */
{
!! read current_data and current_mode, and
!! perform control computations

}

static void task3(void) /* Remote control */
{
!! check for incoming data from the remote
!! connection, and update current_mode

}

static void task4(void) /* First operations of logging */
{
!! read current_data and current_mode, and
!! start writing in flash memory

}

interrupt void timer1_isr(void) /* 2.5 ms timer */
{
counter++;
counter_flag = 1;

}

interrupt void flash_isr(void) /* End of flash write */
{
!! finish the log writing operations

}

void main(void)
{
UINT4 c;

!! initialize global data structures

!! configure timer1 interrupt (calling timer1_isr()),
with period 2.5 ms

!! enable flash memory interrupt, calling flash_isr()

enable(); /* Global interrupts */

for (;;)
{
if (!counter_flag)

continue;

counter_flag = 0;

disable();
c = counter;
enable();

if (!(c % 2))
task1();

if (c % 4 == 1)
task_2();

if (c % 8 == 3)
task_3();

if (c % 40 == 7)
task_4();

}
}

Problem 3

A nanosatellite in charge of taking pictures of the earth is controlled by an embedded
system. This system is equipped with a radio transceiver that receives telecommand
data packets from a ground station. Upon receiving a data packet, the radio
transceiver sends an interrupt request to the onboard microcontroller. Such requests
are always separated by a delay of at least one second.

The microcontroller has to perform the following tasks:

τ1 fetches and processes the data packets communicated by the radio
transceiver.

τ2 performs computations for estimating the position of the satellite, every 10 ms.

τ3 regulates a DC/DC power converter, every 2 ms.

τ4 acquires an image from a camera, after telecommand data requesting to
perform this operation has been received from the ground station. It then
performs image processing operations.

Tasks τ1 and τ3 execute in less than 0.1 ms; task τ2 needs 1 ms. The execution of task
τ4 may require up to 500 ms of CPU time, depending on the image processing
operations that must be carried out.

1 What is the best software architecture for this system? Justify.
2 Using pseudocode, give the global structure of this software.

List of tasks:

τ1: Receiving and processing packets: triggered by an interrupt,
period ≥ 1000 ms, exec. time < 0.1 ms.
τ2: Position computation: period = 10 ms, exec. time = 1 ms.
τ3: DC/DC control loop: period = 2 ms, exec. time < 0.1 ms.
τ4: Image acquisition and processing: period = ? (> 1000 ms,
triggered by data received by τ1), exec. time ≤ 500 ms.

Can some tasks be performed by interrupt routines?

Partially: τ1 is triggered by an interrupt, but some of its operations
(processing) are not urgent.

Is preemption needed?

Yes! (τ1, τ2 and τ3 over τ4.)

→ RTOS.

Task priorities?

P(τ3) > P(τ2) > P(τ1) > P(τ4).

Tasks communication:

Message queue between the urgent and non-urgent parts of τ1,
for the data to be processed.
Global variable for the current mode of operation (updated by τ1
and read by τ4).
Binary semaphore for controlling concurrent access to this
variable.
Binary semaphore for τ1 to wake up τ4 in order to take an image.

#include <rtos.h>
#include <rtos-semaphores.h>
#include <rtos-queues.h>
#include "datastruct.h"

static volatile mode_of_operation current_mode;
static semaphore mode_sem, take_image_sem;
static queue packet_queue;

static void task1(void) /* Processing packets */
{
data_packet p;

for (;;)
{
p = queue_receive(packet_queue, BLOCKING);

!! process data packet in p, and update
!! current_mode

if (!! image must be taken)
signal(take_image_sem);

}
}

interrupt void com_isr(void) /* Urgent part of task1 */
{
data_packet p;

!! receive packet into p

queue_send(packet_queue, p, NON_BLOCKING);
}

static void task2(void) /* Position computation */
{
!! compute position

}

static void task3(void) /* DC/DC control loop */
{
!! control DC/DC variables

}

static void task4(void) /* Image acquisition and processing */
{
for (;;)
{
wait(take_image_sem);

!! take image
!! process image

}
}

void main(void)
{
!! initialize OS
!! initialize data structures

create_one_shot_task(task1, 2);
create_periodic_task(task2, 10, 3);
create_periodic_task(task3, 2, 4);
create_one_shot_task(task4, 1);

!! configure communication interrupt, calling com_isr()

mode_sem = create_binary_semaphore(1);
take_image_sem = create_binary_semaphore(0);
packet_queue = create_message_queue(sizeof(data_packet));

enable(); /* User-programmed interrupts */

!! start tasks sequencing
}

Scheduling problems

Problem 1

Let τ1 and τ2 be two periodic tasks for which the execution times and
periods are respectively C1,C2 and T1,T2.

If T1 = 1 ms and T2 = 20 µs, under which conditions is this pair of
tasks schedulable ? Justify.

T1 : 1000 µs
T2 : 20 µs

P2 > P1

τ1 τ1 τ1C2C2C2
. . .

0 100020 40 (not to scale)

T1 is an integer multiple of T2

⇒ C2 ≤ 20 µs
C1 + 50C2 ≤ 1000 µs

Problem 2

Consider the following set of periodic tasks τi = (Ci ,Ti):

{τ1 = (3,7), τ2 = (α,6), τ3 = (1,10)},

where α is a parameter.

1 Compute the maximum value of α for this set of tasks to be
schedulable.

2 Verify your answer with a graphical simulation.

T1 : 7 C1 : 3
T2 : 6 C2 : α
T3 : 10 C3 : 1

P2 > P1 > P3

Case 1: τ2 finishes before t = 10 (α ≤ 4):

τ2 τ2

0 101 2 3 4 5 6 7 8 9

Case 1.1: τ2 finishes before t = 7 (α ≤ 1):

τ3 τ3τ1 τ1τ2 τ2

0 101 2 3 4 5 6 7 8 9

C3 = 1 = 7 − 2 × α− 1 × 3

⇒ α =
3
2

(Contradiction!)

Case 1.2: τ2 finishes at or after t = 7 (1 ≤ α ≤ 4):

τ3τ1 τ1τ2 τ2

0 101 2 3 4 5 6 7 8 9

C3 = 1 = 6 − α− 3

⇒ α = 2

(OK)

Case 2: τ2 finishes at or after t = 10 (α ≥ 4):

τ1τ2 τ2

0 101 2 3 4 5 6 7 8 9

Impossible! (Not enough time left for τ1 and τ3.)

Simulation with α = 2:

0 101 2 3 4 5 6 7 8 9

Simulation with α = 2:

τ2 τ2

0 101 2 3 4 5 6 7 8 9

Simulation with α = 2:

τ1 τ1τ2 τ2

0 101 2 3 4 5 6 7 8 9

Simulation with α = 2:

τ3τ1 τ1τ2 τ2

0 101 2 3 4 5 6 7 8 9

