Object-Oriented Programming
June 2016

Notes or documents of any kind forbidden. Duration: 3 1/2 h. Please answer all questions on
separate sheets labelled with your name, student id, and section.

1. During the development of a piece of mathematical software, a programmer needs to define
a class for representing closed bounded intervals. Such an interval is denoted [a, b], where a
and b are integers such that a < b, and corresponds to the set of all real numbers x such that
a < x < b. Note that, according to this definition, a closed bounded interval cannot be empty.
The defined class should make it possible to

create a new interval for given values of a and b.

compute the convex union of two intervals I; and I, which is the smallest closed bounded
interval that contains all the numbers belonging to I; or I5. (As an example, the convex
union of [5,7] and [2,4] is the interval [2,7].)

compute the intersection of two intervals I; and I, which is the closed bounded interval
that contains exactly all the numbers belonging to both I; and I5. (As an example, the
intersection of [1, 3] and [2, 7] is the interval [2, 3].)

compute the number of integer values contained in an interval. (As an example, the
interval [2, 7] contains 6 values.)

check whether two intervals are equal (which means that they correspond exactly to the
same set of numbers).

clone an existing closed bounded interval.

Write a suitable CRC card for the closed bounded interval class, as well as for any
auxiliary class that it may require. Note: The details that are not specified by the
problem statement can be freely chosen.

Implement the closed bounded interval class in Java, using appropriate language mecha-
nisms. In particular, equality checking and cloning must be implemented in the standard
way, and all errors must be reported using suitably defined custom exceptions.

Explain (with justifications) whether your solution to (b) is thread-safe, in other words,
whether multiple threads of a concurrent program could safely interact with a common
instance of your class. Note: If the answer is negative, you are not asked to modify your
implementation in order to make it thread-safe.



2. Consider the following Java program.

interface Time

{
void beat();
3
class Clock implements Time
{
private String t = "tick";
public void beat()
{
System.out.println(t);
b
b
class NewClock extends Clock
{
private String t = "tock";
public void beat()
{
System.out.println(t);
X
b
public class Test
{
public static void main(Stringl[] args)
{
Time ¢ = new NewClock();
c.beat();
X
b

(a) Does this program compile without reporting errors?

(b) If no, how can it be corrected? If yes, what does it display when it is run?

(Justify thoroughly your answers to both points.)



3. Consider the following partial Java implementation of a binary tree storing integers. (Only
some methods related to left-hand nodes are shown.)

public class BTNode
{

private int element;
private BTNode left = null, right = null;

protected BTNode(int element)

{
this.element = element;
}
protected BTNode getLeft()
{
return left;
+
protected void setLeft(BTNode node)
{
left = node;
}
}

public class BTTree

{
private BTNode root = null;
private int size = 0;

public BTNode getRoot()
{
return root;
}
public BTNode createRoot(int content)
{

root = new BTNode(content);
size = 1;
return root;
+
public static BTNode getLeft(BTNode node)
{
return node.getLeft();

3

// (continued on next page)




public BTNode insertLeft(BTNode node, int content)

{

BTNode left = new BTNode(content);
node.setLeft(left);

++size;

return left;

Using Java generics, transform this code (by writing a new version of the classes BTNode
and BTTree) in order to make this binary tree able to store objects of any type, instead
of only integers.

How would you modify your solution to (a) in order to obtain a tree that would only
be able to store numbers (possibly of different types)? What would be an advantage of
imposing such a restriction?



