
Object-Oriented Programming
June 2021

Notes or documents of any kind forbidden. Duration: 2h30. Please answer the
questions on separate sheets labeled with your name, section, and student ID.

1. The problem consists in programming in Java a class DateNotBiss suited for
representing a date in a non-bissextile year. In other words, an instance of
this class is characterized by a month m such that 1 ≤ m ≤ 12, and a day d
such that 1 ≤ d ≤ `m, where `m is the length of month m. The lengths of the
twelve months are respectively equal to 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30 and 31.

The class DateNotBiss should satisfy the following requirements:

• It must be possible to instantiate a date given a month m and a day d.

• It must be possible to print a date on standard output (in the format of
your choice).

• It must be possible to modify a date by adding a given positive or negative
number of days. For exemple, adding −10 days to June 7th should yield
May 28th. This operation fails if the resulting date does not belong to
the same year, for example, if one adds 5 days to December 28th.

• Instances of this class must be clonable, comparable to each other, and
serializable. It must be possible to manipulate them simultaneously from
separate threads.

• In case of any error, a dedicated exception should be thrown.

Note: You are free to implement any additional classes required by your
solution.

2. (a) How would you define a subclass DateBiss of DateNotBiss suited for
representing dates in bissextile years (i.e., years with 29 days in Febru-
ary)? (You do not need to fully program DateBiss; it is sufficient to
explain what you would do.)

(b) Which application of inheritance did you use in your answer to (a)? Is
the substitution principle satisfied? (Justify your answer.)

1



3. The following interface is defined in the source code of a program:

public interface Action

{

void operation();

}

You are asked to program a class ExecutionMachine containing a single pub-
lic class method void execute(Action a, int n). This method should ac-
quire the lock of the object referenced by a, then run successively n times
a.operation() in a newly created thread (or not at all if n ≤ 0), and then
release the lock of the object.

2


