
Organisation des Ordinateurs

Bernard Boigelot

E-mail : bernard.boigelot@uliege.be
WWW : https://people.montefiore.uliege.be/boigelot/

https://people.montefiore.uliege.be/boigelot/cours/org/

1

Chapitre 1

Le traitement de l’information

2

Les ordinateurs

(Source: http://en.wikipedia.org/wiki/Z3_(computer))

Définition: Un ordinateur est une machine capable de traiter des données,
en suivant un programme préétabli.

Objectif du cours: Etudier leurs principes de fonctionnement.

3

L’information

La notion d’information correspond à la connaissance que l’on a de l’état d’un système.

Exemple:

4

L’information se transmet par l’intermédiaire de signaux, qui peuvent prendre des formes
variées.

Exemple: Lecteur de DVD.

5

Les signaux continus

Définition: Un signal continu est un signal qui prend ses valeurs dans un domaine dense.

Exemple:

V

Alice Bob

0 12V

Inconvénient: L’information n’est pas transmise fiablement, car la valeur de chaque signal
est entachée d’imprécisions.

6

Les signaux discrets

Définition: Un signal discret est un signal possédant un nombre fini de valeurs nominales.

Avantage: La transmission fiable de données est possible malgré la présence
d’imprécisions.

En effet, si l’amplitude des perturbations est suffisamment petite, alors les valeurs
transmises peuvent toujours être correctement identifiées à leur réception.

7

Les signaux binaires

Dans les ordinateurs, l’information est transmise, traitée et mémorisée au moyen de
signaux discrets binaires.

Avantages:

• Ils sont faciles à générer et à décoder.

+

0V

V

• Ils présentent une bonne robustesse face aux perturbations.

• Leur analyse est simple grâce à l’algèbre booléenne.

8

La quantité d’information

Comment peut-on quantifier l’information transmise par un signal discret?

Propriétés souhaitées:

• Plus la probabilité de recevoir une valeur est faible, plus la quantité d’information est
élevée.

q > q

• Lorsqu’on combine des signaux indépendants, l’information doit s’additionner.

=q 3 × q

9

Définition: La quantité d’information transmise par une valeur discrète décodable de façon
fiable est égale à

log2
1
p ,

où p dénote la probabilité que cette valeur soit reçue.

Cette quantité d’information s’exprime en bits (binary digits, b).

Par conséquent, la quantité d’information contenue dans un signal pouvant prendre N
valeurs équiprobables (décodables de façon fiable) vaut

log2 N .

Un bit représente donc la quantité d’information permettant de distinguer fiablement deux
valeurs équiprobables.

10

Exemples

On transmet une lettre de l’alphabet au moyen d’un signal de tension: A = 0 V, B = 0,04 V,
C = 0,08 V, . . . , Y = 0,96 V, Z = 1 V.

Situation 1: Les 26 valeurs peuvent être fiablement reconnues.

• Si les probabilités de recevoir un E et un Z sont (resp.) égales à 0,17 et 0,0012, alors la
quantité d’information transmise par les signaux correspondants vaut (resp.)

log2
1

0,17
≈ 2,56 bits

et

log2
1

0,0012
≈ 9,70 bits.

11

• Si les 26 lettres ont la même probabilité d’être reçues, alors la quantité d’information
contenue dans un signal vaut

log2 26 ≈ 4,70 bits.

Situation 2: On ne peut distinguer que les tensions supérieures ou inférieures à 0,5 V.

Si les 2 valeurs sont équiprobables, alors la quantité d’information transmise par un signal
vaut

log2 2 = 1 bit.

12

Les unités de quantité d’information

• Un octet (byte, B) représente 8 bits d’information.

• Un nibble est un demi-octet.

• Les préfixes K (kilo), M (mega), G (giga), T (tera), P (peta), . . . signifient suivant le
contexte

– soit 210, 220, 230, 240, 250, . . .

– soit 103, 106, 109, 1012, 1015, . . .

(En effet 210 = 1024 ≈ 1000.)

Exemple: La capacité d’un disque dur vendu comme contenant 4 TB n’est en réalité
que de

4 .1012

240 ≈ 3,64 TB.

13

Chapitre 2

La représentation des données

14

Introduction

Les ordinateurs représentent l’information à l’aide de signaux discrets binaires.

Par convention, les deux valeurs nominales de ces signaux sont notées 0 et 1.

D’autres notations sont possibles: False / True, L / H, . . .

Question: A l’aide des seuls symboles 0 et 1, comment peut-on représenter des données
plus complexes?

15

Les nombres entiers non signés

Dans la vie quotidienne, on représente les nombres naturels à l’aide de la notation
positionnelle.

Principes:

• L’ensemble des chiffres est {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

• Le poids de chaque chiffre est une puissance de 10 qui dépend de sa position.

Exemple:

poids : 102 101 100

position : 2 1 0

1 2 3

1 × 102 + 2 × 101 + 3 × 100

= 1 × 100 + 2 × 10 + 3 × 1
= 123.

16

La représentation binaire

La notation positionnelle se généralise à n’importe quelle base r > 1:

• L’ensemble des chiffres est {0, 1, . . . , r − 1}.

• Le poids du chiffre à la position k est rk.

Exemple: base r = 2 (binaire).

poids : 26 25 24 23 22 21 20

position : 6 5 4 3 2 1 0

1 1 1 1 0 1 1

1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 64 + 32 + 16 + 8 + 2 + 1

= 123.

17

Le nombre encodé par la suite de bits bn−1bn−2 . . . b0 est donc égal à

n−1∑
i=0

2i bi.

Note: Les bits bn−1 et b0 sont respectivement appelés bit de poids fort et bit de poids faible.

18

Calcul de la représentation d’un nombre

La représentation d’un nombre v peut se calculer grâce aux deux propriétés suivantes:

• Le bit de poids faible est égal à 0 si v est pair, et à 1 si v est impair.

• En retirant le bit de poids faible d’une représentation de v, on obtient une

représentation de
⌊v
2

⌋
.

On a donc l’algorithme suivant:

1. Si v est pair, afficher 0. Sinon, afficher 1.

2. Remplacer v par
⌊v
2

⌋
.

3. Si v , 0, recommencer à l’étape 1.

19

Remarques:

• Cet algorithme génère les bits de la représentation de v en commençant par le bit de
poids faible (c’est-à-dire de la droite vers la gauche).

• La suite de bits obtenue constitue la représentation la plus courte du nombre v. Des
représentations plus longues s’obtiennent en préfixant le résultat d’un nombre
quelconque de zéros de tête.

Exemple: Représentation du nombre 123:

v = 123 impair −→ 1
v = 61 impair −→ 1
v = 30 pair −→ 0
v = 15 impair −→ 1
v = 7 impair −→ 1
v = 3 impair −→ 1
v = 1 impair −→ 1
v = 0.

La représentation obtenue est donc 1111011 , à laquelle il est permis d’ajouter un nombre
arbitraire de zéros de tête.

20

Les valeurs représentables

L’algorithme de calcul de la représentation d’un nombre v s’arrête après avoir produit n bits
ou moins si et seulement si v < 2n.

Les nombres possédant une représentation binaire non signée sur n bits forment donc
l’intervalle

[0, . . . , 2n − 1] .

Pour n = 8, 16, 32, on a donc les bornes supérieures 255, 65535 et 4294967295.

21

La représentation hexadécimale

La notation positionnelle n’est pas limitée aux bases r = 2 et r = 10. En choisissant r = 16,
on obtient la représentation hexadécimale, très utilisée en informatique.

Avantages: Cette représentation est lisible, et très facile à convertir vers et depuis la
notation binaire.

Un chiffre hexadécimal peut prendre 16 valeurs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Exemple:

poids : 162 161 160

position : 2 1 0

4 D 2

4 × 162 + 13 × 161 + 2 × 160

= 4 × 256 + 13 × 16 + 2 × 1
= 1234.

22

La conversion hexadécimal↔ binaire

Un chiffre hexadécimal représente exactement 4 bits d’information.

Pour convertir un nombre hexadécimal en binaire, il suffit donc de remplacer chaque chiffre
par la séquence de 4 bits qui lui correspond. La conversion réciproque est similaire.

Table de conversion:

Hexadécimal Binaire Hexadécimal Binaire

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Exemple: 4D2 ↔ 0100 1101 0010 .

23

Note: Si la base utilisée pour représenter les nombres n’est pas évidente à déduire du
contexte, il faut la préciser explicitement. Cela peut se faire:

• À l’aide d’un indice:

123410 = 4D216 = 100110100102.

• Avec un suffixe:

1234d = 4D2h = 10011010010b.

• Avec un préfixe:

1234 = 0x4D2 = 0b10011010010.

24

L’arithmétique binaire non signée

Le calcul de la somme de deux nombres entiers signés peut s’effectuer selon les règles du
calcul écrit.

Les tables d’addition binaire sont les suivantes (les reports sont entourés):

0
+ 0

0

0
+ 1

1

1
+ 0

1

1
+ 1

1 0

1
0

+ 0

1

1
0

+ 1

1 0

1
1

+ 0

1 0

1
1

+ 1

1 1

L’opération d’addition s’effectue bit par bit, du bit de poids faible vers celui de poids fort.

25

Exemple: Calcul de la somme 123 + 456 = 579 sur 10 bits:

1 1 1 1 1 1
0 0 0 1 1 1 1 0 1 1

+ 0 1 1 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 1

26

La multiplication de nombres binaires non signés

Le calcul d’un produit s’effectue selon des règles analogues à celle du calcul décimal:

1. Des produits partiels sont successivement calculés pour chaque bit du multiplicateur,
et convenablement alignés.

2. Ces produits partiels sont ensuite additionnés.

La table de multiplication binaire est triviale:

0
× 0

0

0
× 1

0

1
× 0

0

1
× 1

1

27

Exemple: Calcul du produit 34 .12 = 408:

1 0 0 0 1 0
× 1 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 0 1 0
+ 1 0 0 0 1 0

1 1 0 0 1 1 0 0 0

28

La représentation des nombres entiers signés

Il existe plusieurs procédés permettant de représenter des nombres entiers positifs et
négatifs:

• La représentation par valeur signée.

• La représentation par complément à un.

• La représentation par complément à deux.

Ces trois méthodes possèdent des points communs:

• Le signe d’un nombre est représenté par le bit de poids fort (ici appelé bit de signe).
Celui-ci est égal à

– 0 pour les nombres positifs.

– 1 pour les nombres négatifs.

• La représentation d’un nombre positif est toujours identique à sa représentation
binaire non signée de même taille.

29

La représentation par valeur signée

Principe: A la suite du bit de signe, on place la représentation binaire non signée de la
valeur absolue du nombre représenté.

Exemple: La représentation sur 8 bits du nombre −42 est égale à 10101010 . En effet

• Ce nombre est négatif, donc le bit de signe est égal à 1 .

• La représentation binaire non signée sur 7 bits de 42 = | − 42| est 0101010 .

Selon ce procédé, le nombre v représenté par le groupe de bits bn−1bn−2 . . . b0 est égal à

v = (1 − 2bn−1)
n−2∑
i=0

2i bi.

30

Les valeurs représentables

A l’aide de n bits, la représentation par valeur signée permet d’encoder

• tous les éléments de l’intervalle [0, . . . , 2n−1 − 1] (bit de signe égal à 0), et

• tous les éléments de l’intervalle [−2n−1 + 1, . . . , 0] (bit de signe égal à 1).

L’ensemble des valeurs représentables est donc l’intervalle

[−2n−1 + 1, . . . , 2n−1 − 1] .

Remarques:

• Le nombre 0 possède deux représentations distinctes.

• Ce procédé rend difficile le calcul des opérations arithmétiques.

31

La représentation par complément à un

Principe: La représentation d’un nombre est similaire à sa représentation par valeur
signée, mais les bits qui suivent le bit de signe sont complémentés (0 est remplacé par 1,
et vice-versa).

Exemple: La représentation sur 8 bits du nombre −42 est égale à 11010101 . En effet

• Ce nombre est négatif, donc le bit de signe est égal à 1 .

• La représentation binaire non signée sur 7 bits de 42 = | − 42| est 0101010, dont le
complément est 1010101 .

L’ensemble des nombres représentables à l’aide de n bits est identique à celui de la
représentation par valeur signée, c’est-à-dire l’intervalle

[−2n−1 + 1, . . . , 2n−1 − 1] .

32

Selon ce procédé, le nombre v représenté par la suite de bits bn−1bn−2 . . . b0 vaut

(1 − 2n)bn−1 +
n−1∑
i=0

2i bi.

En effet,

• Si v > 0, on a bn−1 = 0 et v =
n−1∑
i=0

2i bi.

• Si v < 0, on a bn−1 = 1 et |v| =
n−2∑
i=0

2i (1 − bi)

=

n−2∑
i=0

2i −
n−2∑
i=0

2i bi

=

n−1∑
i=0

2i −
n−1∑
i=0

2i bi

= 2n − 1 −
n−1∑
i=0

2i bi.

33

Remarques:

• Le nombre 0 possède les deux représentations 000 . . . 0 (zéro positif) et 111 . . . 1
(zéro négatif).

• Pour calculer l’opposé d’un nombre, il suffit d’inverser tous les bits de sa
représentation.

34

L’arithmétique par complément à un

Notations: Soit w = bn−1bn−2 . . . b0 une suite de bits (n ≥ 1).

• Le nombre non signé représenté par w est noté [w]ns.

• Le nombre représenté par w par complément à un est noté [w]c1.

Exemples:

[11010101]ns = 213
[11010101]c1 = −42.

Propriété:

• Si bn−1 = 0, alors [w]ns = [w]c1.

• Si bn−1 = 1, alors [w]ns = [w]c1 + 2n − 1.

(En d’autres termes, les représentations non signée et par complément à un sont égales à
un certain décalage près, qui dépend du bit de signe.)

35

L’addition par complément à un

Lorsqu’on calcule la somme non signée de deux suites de bits w = bn−1bn−2 . . . b0 et
w′ = b′n−1b′n−2 . . . b

′
0, on obtient un résultat w′′ = b′′n−1b′′n−2 . . . b

′′
0 tel que:

• Si aucun report n’est apparu à la position n, alors

[w′′]ns = [w]ns + [w′]ns.

• Si un report est apparu à la position n (et a été ignoré), alors

[w′′]ns = [w]ns + [w′]ns − 2n.

Question: Quelle est la relation qui lie [w]c1, [w′]c1 et [w′′]c1?

36

Il y a plusieurs cas à considérer:

Cas 1: Si bn−1 = 0, b′n−1 = 0 et b′′n−1 = 0:

• [w]ns = [w]c1.

• [w′]ns = [w′]c1.

• [w′′]ns = [w′′]c1.

• L’addition n’a produit aucun report à la position n.

On a donc:

[w′′]c1 = [w′′]ns

= [w]ns + [w′]ns

= [w]c1 + [w′]c1.

37

Cas 2: Si bn−1 = 0, b′n−1 = 0 et b′′n−1 = 1:

• [w]ns = [w]c1 ≥ 0.

• [w′]ns = [w′]c1 ≥ 0.

• [w]ns + [w′]ns ≥ 2n−1 car b′′n−1 = 1.

La somme [w]c1 + [w′]c1 n’est donc pas représentable par complément à un sur n bits.

−→ dépassement arithmétique!

38

Cas 3: Si bn−1 = 0, b′n−1 = 1 et b′′n−1 = 0:

• [w]ns = [w]c1.

• [w′]ns = [w′]c1 + 2n − 1.

• [w′′]ns = [w′′]c1.

• L’addition a obligatoirement produit un report à la position n.

On a donc:

[w′′]c1 = [w′′]ns

= [w]ns + [w′]ns − 2n

= [w]c1 + [w′]c1 − 1.

39

Cas 4: Si bn−1 = 0, b′n−1 = 1 et b′′n−1 = 1:

• [w]ns = [w]c1.

• [w′]ns = [w′]c1 + 2n − 1.

• [w′′]ns = [w′′]c1 + 2n − 1.

• L’addition ne peut pas avoir produit un report à la position n.

On a donc:

[w′′]c1 = [w′′]ns − 2n + 1

= [w]ns + [w′]ns − 2n + 1

= [w]c1 + [w′]c1.

40

Cas 5: Si bn−1 = 1, b′n−1 = 0 et b′′n−1 = 0:

Equivalent au cas 3, en permutant les deux opérandes w et w′.

Cas 6: Si bn−1 = 1, b′n−1 = 0 et b′′n−1 = 1:

Idem vis à vis du cas 4.

41

Cas 7: Si bn−1 = 1, b′n−1 = 1 et b′′n−1 = 0:

• [w]ns = [w]c1 + 2n − 1 et [w]c1 ≤ 0.

• [w′]ns = [w′]c1 + 2n − 1 et [w′]c1 ≤ 0.

• [w]′′ns = [w′′]c1 et [w′′]c1 ≥ 0.

• L’addition a produit un report à la position n.

On a [w]ns + [w′]ns ≤ 2n + 2n−1 − 1.

Or [w]ns + [w′]ns = [w]c1 + [w′]c1 + 2n+1 − 2.

Donc,

[w]c1 + [w′]c1 ≤ 2n + 2n−1 − 1 − 2n+1 + 2
= −2n−1 + 1.

La somme [w]c1 + [w′]c1 n’est donc pas représentable sur n bits, sauf dans le cas
particulier où elle vaut −2n−1 + 1.

−→ dépassement arithmétique!

42

Cas 8: Si bn−1 = 1, b′n−1 = 1 et b′′n−1 = 1:

• [w]ns = [w]c1 + 2n − 1.

• [w′]ns = [w′]c1 + 2n − 1.

• [w]′′ns = [w′′]c1 + 2n − 1.

• L’addition a produit un report à la position n.

On a donc:

[w′′]c1 = [w′′]ns − 2n + 1

= [w]ns + [w′]ns − 2n+1 + 1

= [w]c1 + [w′]c1 − 1.

43

Résumé

• Si bn−1 = b′n−1 , b′′n−1: Dépassement arithmétique.

• Sinon:

– Si l’addition a produit un report à la position n:

[w′′]c1 = [w]c1 + [w′]c1 − 1.

– Sinon:

[w′′]c1 = [w]c1 + [w′]c1.

44

Algorithme d’addition par complément à un

Pour calculer la somme de deux nombres représentés par complément à un sur n bits:

1. Additionner les deux suites de bits comme si elles représentaient des nombres non
signés.

2. Si l’opération précédente produit un report à la position n (ignoré), effectuer une
deuxième addition pour ajouter 1 au résultat.

3. Si le signe des deux opérandes est identique et ne correspond pas à celui du résultat,
signaler un dépassement arithmétique.

45

Exemples:

• Calcul de 12 + (−34):

1 1 1 n. sign. compl. un diff.
0 0 0 0 1 1 0 0 12 12 0

+ 1 1 0 1 1 1 0 1 221 −34 255
1 1 1 0 1 0 0 1 233 −22 255

• Calcul de 34 + (−12):

1 1 1 1 n. sign. compl. un diff.
0 0 1 0 0 0 1 0 34 34 0

+ 1 1 1 1 0 0 1 1 243 −12 255
0 0 0 1 0 1 0 1 21 21 0

+ 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 0 1 1 0 22 22 0

46

Note: Les étapes 2 et 3 de l’algorithme sont effectuées dans cet ordre pour gérer
correctement le cas d’un résultat égal à −2n−1 + 1:

Exemple: Calcul de (−120) + (−7):

1 n. sign. compl. un diff.
1 0 0 0 0 1 1 1 135 −120 255

+ 1 1 1 1 1 0 0 0 248 −7 255
0 1 1 1 1 1 1 1 127 127 0

+ 0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 128 −127 255

47

La représentation par complément à deux

Idée: Par rapport au complément à un, décaler d’une unité la représentation des nombres
négatifs permet d’éviter l’étape de correction dans l’algorithme d’addition.

Principes: La représentation d’un nombre v sur n bits est égale

• à la représentation entière non signée de v sur n bits si v ≥ 0.

• à la représentation (négative) par complément à un de v + 1 sur n bits si v < 0.

Exemples:

• La représentation sur 8 bits du nombre −42 est égale à 11010110 .

• La représentation sur n bits du nombre −1 est égale à 111 . . . 1 .

48

En complément à deux, le nombre v représenté par la suite de bits bn−1bn−2 . . . b0 vaut

−2n bn−1 +
n−1∑
i=0

2i bi.

En effet,

• Si bn−1 = 0: Alors, v =
n−1∑
i=0

2i bi.

• Si bn−1 = 1: Alors, bn−1bn−2 . . . b0 est la représentation de v + 1 par complément à un.
On a donc

v + 1 = −2n + 1 +
n−1∑
i=0

2i bi

v = −2n +
n−1∑
i=0

2i bi.

49

L’arithmétique par complément à deux

Notation: On note [w]c2 le nombre dont w = bn−1bn−2 . . . b0 (avec n ≥ 1) est la
représentation par complément à deux.

Propriété:

• Si bn−1 = 0, alors [w]ns = [w]c2.

• Si bn−1 = 1, alors [w]ns = [w]c2 + 2n.

Par conséquent, on a

[w]ns =2n [w]c2 ,

où “=k” désigne l’égalité modulo k.

50

Notes:

• L’ensemble des nombres représentables par complément à deux sur n bits forme
l’intervalle

[−2n−1, . . . , 2n−1 − 1] .

• Le nombre zéro possède une seule représentation 000 . . . 0 .

51

Quelques propriétés utiles

• On peut étendre la représentation d’un nombre vers davantage de bits en répétant son
bit de signe.

Considérons la représentation w = bn−1bn−2 . . . b0.

– Si bn−1 = 0, la propriété est évidente.

– Si bn−1 = 1, alors le nombre représenté par 11bn−2bn−3 . . . b0 vaut

−2n+1 +
n∑

i=0
2i bi = −2n+1 + 2n +

n−1∑
i=0

2i bi

= −2n +
n−1∑
i=0

2i bi

qui est bien la valeur encodée par w.

52

• La représentation d’un nombre v se termine par k bits nuls si et seulement si v est
divisible par 2k.

En effet,

– Cette propriété est vraie pour les représentations non signées.

– Les représentations non signée et par complément à deux sur n bits sont égales
modulo 2n.

– On a k ≤ n, donc deux nombres égaux modulo 2n sont aussi égaux modulo 2k.

53

• L’opposé d’un nombre représenté par complément à deux s’obtient en inversant
chaque bit de sa représentation, et en ajoutant 1 au résultat.

Soit w = bn−1bn−2 . . . b0. Si l’on inverse chaque bit, le nombre représenté v satisfait

v =2n

n−1∑
i=0

2i (1 − bi).

On a donc

v + 1 =2n 1 +
n−1∑
i=0

2i (1 − bi)

=2n 1 +
n−1∑
i=0

2i −
n−1∑
i=0

2i bi

=2n 2n −
n−1∑
i=0

2i bi

=2n −

n−1∑
i=0

2i bi

qui est bien l’opposé du nombre représenté par w.

54

L’addition par complément à deux

Lorsqu’on calcule la somme non signée de deux suites de bits w = bn−1bn−2 . . . b0 et
w′ = b′n−1b′n−2 . . . b

′
0, on obtient un résultat w′′ = b′′n−1b′′n−2 . . . b

′′
0 tel que

[w′′]ns =2n [w]ns + [w′]ns.

Par ailleurs, on a

[w]c2 =2n [w]ns,

[w′]c2 =2n [w′]ns et

[w′′]c2 =2n [w′′]ns.

On en déduit

[w′′]c2 =2n [w]c2 + [w′]c2,

qui montre que le même algorithme peut être employé pour additionner des nombres non
signés et représentés par complément à deux.

55

Exemples:

• Calcul de 12 + (−34):

1 1 1 n. sign. compl. deux diff.
0 0 0 0 1 1 0 0 12 12 0

+ 1 1 0 1 1 1 1 0 222 −34 256
1 1 1 0 1 0 1 0 234 −22 256

• Calcul de 34 + (−12):

1 1 1 n. sign. compl. deux diff.
0 0 1 0 0 0 1 0 34 34 0

+ 1 1 1 1 0 1 0 0 244 −12 256
0 0 0 1 0 1 1 0 22 22 0

56

La multiplication par complément à deux

Principes:

• On procède de la même façon qu’avec les nombres non signés.

• Les opérandes et les produits partiels doivent être étendus sur le même nombre de
bits (en en répétant le bit de signe).

57

Exemples

• Calcul de (−12) .34 sur 12 bits:

1 1 1 1 1 1 1 1 0 1 0 0
× 0 0 0 0 0 0 1 0 0 0 1 0
1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0

+ 0
1 1 1 0 0 1 1 0 1 0 0 0

58

• Calcul de (−12) .(−34) sur 12 bits:

1 1 1 1 1 1 1 1 0 1 0 0
× 1 1 1 1 1 1 0 1 1 1 1 0

1 1
1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0
0 0 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0
0 1 0 0
1 0 0
0 0

+ 0
0 0 0 1 1 0 0 1 1 0 0 0

59

Récapitulatif

Le tableau suivant reprend les différentes représentations des nombres entiers sur 4 bits:

Bits Non signée Valeur signée Compl. à un Compl. à deux

0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 8 0 −7 −8
1001 9 −1 −6 −7
1010 10 −2 −5 −6
1011 11 −3 −4 −5
1100 12 −4 −3 −4
1101 13 −5 −2 −3
1110 14 −6 −1 −2
1111 15 −7 0 −1

60

La représentation des nombres réels

Problème: Pour représenter un réel arbitraire (même borné), une quantité infinie
d’information est nécessaire.

Solution: Les représentations informatiques des réels seront approximées.

Conséquences:

• Les opérations manipulant les réels sont inévitablement imprécises.

• Les opérations arithmétiques augmentent en général le degré d’imprécision.

• Il faut tenir compte de cette imprécision lorsqu’on teste, par exemple, l’égalité de
nombres réels.

61

La représentation en virgule fixe

Principe: On introduit un séparateur entre une partie entière et une partie fractionnaire, à
une position fixée.

Exemple (base 10):

poids : 102 101 100 10−1 10−2 10−3

position : 2 1 0 −1 −2 −3

1 2 3 4 5 6,
1 × 102 + 2 × 101 + 3 × 100 + 4 × 10−1 + 5 × 10−2 + 6 × 10−3

= 1 × 100 + 2 × 10 + 3 × 1 + 4 ×
1
10
+ 5 ×

1
100
+ 6 ×

1
1000

= 123,456.

62

La virgule fixe en binaire

Exemple: poids : 24 23 22 21 20 2−1 2−2 2−3

position : 4 3 2 1 0 −1 −2 −3

0 1 0 1 0 1 1 0,
0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 1 × 2−1 + 1 × 2−2 + 0 × 2−3

= 8 + 2 +
1
2
+

1
4

= 10,75.

Propriété: S’il y a k bits après le séparateur, alors le nombre représenté vaut
1
2k

fois le

nombre entier représenté par la même suite de bits.

Illustration: Le nombre entier représenté par 01010110 vaut 86, et l’on a bien

10,75 =
1
8
· 86.

63

Les nombres signés en virgule fixe

La représentation en virgule fixe est donc équivalente à une réprésentation entière à un
facteur près.

Le choix du procédé utilisé pour représenter les entiers reste libre. En pratique, on choisit

• la représentation non signée pour les nombres non signés.

• la représentation par complément à deux pour les nombres signés.

Exemple: Sur 8 bits avec 2 chiffres après la virgule, −24,25 se représente 10011111 . En
effet,

−24,25 =
1
22(−97)

=
1
22

(
−28 + 159

)
, et

[10011111]ns = 159.

64

L’addition en virgule fixe

Procédure:

1. On décale les opérandes de façon à faire coı̈ncider leurs positions.

Ce décalage s’effectue toujours vers la droite, et peut conduire à perdre les bits les
moins significatifs des représentations.

2. On additionne les représentations alignées à l’aide du même algorithme que pour les
entiers non signés.

Exemple: Calcul sur 8 bits de 5,5 (2 bits après la virgule) + (−5,625) (4 bits après la
virgule):

5,5 : 0 0 0 1 0 1 1 0,
−5,625 : 1 0 1 0 0 1 1 0,

65

1. Décalage: 0 0 0 1 0 1 1 0,
1 1 1 0 1 0 0 1,

Rappel: Pour étendre les représentations vers la gauche, il faut en répéter le bit de
signe.

2. Calcul de la somme: 1 1 1 1 1 1 1 1,
Ce résultat représente donc le nombre −0,25.

66

La virgule flottante

Problème: La virgule fixe n’est pas adaptée aux applications où la grandeur des nombres
représentés est très variable.

Exemple: Masse d’un corps exprimée en kg:

• ≈ 40 chiffres après la virgule en physique des particules.

• ≈ 40 chiffres avant la virgule en astronomie.

Solution: Dissocier la représentation des chiffres significatifs d’un nombre de celle de la
grandeur de celui-ci. Un nombre réel v sera exprimé sous la forme

v = m . re,

où

• r est la base,

• m est la mantisse (en virgule fixe),

• e est l’exposant (entier).

67

Exemple: Masse d’un électron:

≈ 9,109 .10−31 kg

Propriétés:

• La base est égale à 10 pour la notation scientifique usuelle, et à 2 pour les
représentations informatiques.

• Les valeurs possibles de l’exposant déterminent l’intervalle des valeurs
représentables.

• Le nombre de bits choisi pour représenter la mantisse caractérise la précision avec
laquelle les nombres sont représentés.

68

Le standard IEEE 754

Ce standard, très utilisé, définit plusieurs procédés de représentation, dont

• la simple précision:

s mantisseexposant

1 8 23 bits

• la double précision:

s exposant mantisse

11 bits1 52

Le champ s est un bit de signe. Comme dans le cas des entiers, il vaut 0 pour les nombres
positifs et 1 pour les nombres négatifs.

69

L’encodage de l’exposant

L’exposant d’un nombre est représenté de la façon suivante:

• Simple précision: Un exposant e est encodé par la représentation entière non signée
sur 8 bits du nombre e + 127.

L’intervalle des exposants représentables est donc

[−127, . . . , 128].

• Double précision: Un exposant e est encodé par la représentation entière non signée
sur 11 bits du nombre e + 1023.

L’intervalle des exposants représentables est donc

[−1023, . . . , 1024].

70

L’encodage de la mantisse

Le procédé d’encodage de la mantisse diffère suivant la valeur de l’exposant.

Premier cas: L’exposant n’est pas égal à une valeur extrême (−127 ou 128 pour la simple
précision, −1023 ou 1024 pour la double précision).

On dit alors que la mantisse est normalisée.

Dans ce cas, la mantisse m représentée par b1b2 . . . bn (avec n = 23 pour la simple
précision et n = 52 pour la double précision) vaut

|m| = 1 +
n∑

i=1
2−i bi.

1 b1 b2 b3 · · · bn,
Corollaire: Pour une mantisse normalisée m, on a 1 ≤ |m| < 2.

71

Exemple

Calcul de la représentation en simple précision de −7,5:

• Ce nombre est négatif, donc le bit de signe est égal à 1 .

• Afin d’obtenir une mantisse normalisée, il faut choisir un exposant égal à 2. On obtient
alors

|m| =
7,5
22 = 1,875,

qui satisfait bien 1 ≤ |m| < 2.

• La représentation de l’exposant est égale à la représentation entière non signée sur 8
bits du nombre 2 + 127 = 129, soit 10000001 .

• On a

1,875 = 1 + 2−1 + 2−2 + 2−3.

La mantisse est donc représentée par la suite de bits

11100000000000000000000 .

72

Les mantisses dénormalisées

Deuxième cas: L’exposant est égal à sa valeur minimale (−127 pour la simple précision et
−1023 pour la double précision).

On dit alors que la mantisse est dénormalisée.

Dans ce cas, la mantisse m représentée par b1b2 . . . bn vaut

|m| =
n∑

i=1
2−i+1 bi.

b1 b2 b3 · · · bn,
Corollaire: Pour une mantisse dénormalisée m, on a 0 ≤ |m| < 2.

73

Exemple

Calcul de la représentation en simple précision de 2−140:

• Le bit de signe est égal à 0 .

• Aucun exposant représentable ne conduit à une mantisse normalisée. On choisit donc
un exposant égal à −127, dont la représentation est 00000000 .

• On a

|m| =
2−140

2−127 = 2−13,

qui satisfait bien 0 ≤ |m| < 2.

• La mantisse est représentée par la suite de bits

00000000000001000000000 .

74

L’utilité des mantisses dénormalisées

Les mantisses dénormalisées permettent de représenter des nombres plus petits en valeur
absolue qu’avec les mantisses normalisées, au prix d’une diminution de précision.

Cas particulier: Représentation du nombre zéro:

• La mantisse est nécessairement dénormalisée. L’exposant prend donc sa plus petite
valeur possible, et se représente 000 . . . 0 .

• La mantisse est égale à 0, et se représente 000 . . . 0 .

• Le bit de signe est quelconque.

Il y a donc deux représentations de zéro:

• 000 . . . 0 (zéro positif), et

• 100 . . . 0 (zéro négatif).

75

Les valeurs spéciales

Troisième cas: L’exposant est égal à sa valeur maximale (128 pour la simple précision et
1024 pour la double précision).

Cette situation sert à encoder des valeurs spéciales, qui représentent des résultats qui ne
correspondent pas à un nombre réel:

• Si tous les bits de la mantisse sont égaux à 0: La représentation indique un
dépassement

– vers les valeurs positives si le bit de signe est 0 (infini positif).

– vers les valeurs négatives si le bit de signe est 1 (infini négatif).

• Si au moins un bit de la mantisse est égal à 1: La représentation correspond à une
valeur indéfinie: NaN (Not a Number). Celle ci possède un signe.

76

Les nombres représentables

L’ensemble des réels représentables à l’aide d’un nombre de bits donné ne forme pas un
intervalle: Comme les réels ne sont représentés qu’avec une précision limitée, l’ensemble
des réels représentables n’est pas un continuum.

Il est cependant utile de connaı̂tre les bornes des intervalles contenant les réels
représentables. La situation est la suivante:

0

valeurs trop petites

intervalles contenant les valeurs représentables

valeurs trop grandes

valeurs trop petites en valeur absolue

77

Plus grande valeur absolue représentable maxv:

• Simple précision: L’exposant est égal à 127 et la mantisse à 2 − 2−23.

−→ maxv ≈ 3,403 .1038.

• Double précision: L’exposant est égal à 1023 et la mantisse à 2 − 2−52.

−→ maxv ≈ 1,798 .10308.

Plus petite valeur strictement positive représentable minv:

• Simple précision: L’exposant est égal à −127 et la mantisse à 2−22.

−→ minv ≈ 1,401 .10−45.

• Double précision: L’exposant est égal à −1023 et la mantisse à 2−51.

−→ minv ≈ 4,941 .10−324.

78

L’addition en virgule flottante

L’addition de deux nombres v1 = m1 .2e1 et v2 = m2 .2e2 s’effectue de la façon suivante (on
suppose |e1| ≤ |e2|):

1. On remplace e1 par e′1 = e2, et m1 par m′1 = m1 .2e1−e2.

Note: Cela peut conduire à perdre un certain nombre de bits de la représentation de
m1, ou à dénormaliser cette mantisse.

2. On remplace chaque mantisse négative par son complément à deux.

3. On calcule la somme m des deux mantisses en virgule fixe.

4. Si le résultat est négatif, on le remplace par son complément à deux.

5. On normalise m .2e′1 de manière à obtenir une mantisse normalisée ou dénormalisée.

Note: Cette opération peut conduire à détecter un dépassement.

79

La multiplication en virgule flottante

La multiplication de deux nombres v1 = m1 .2e1 et v2 = m2 .2e2 s’effectue grâce à
l’algorithme suivant:

1. On détermine le signe du produit.

2. On calcule la somme e1 + e2 en arithmétique entière.

Note: Cela peut conduire à détecter un dépassement, ou à effectuer un arrondi vers
zéro.

3. On calcule le produit m = m1 .m2 en virgule fixe.

4. On normalise si nécessaire le résultat m .2e, de la même façon que pour l’addition.

80

La représentation de textes

Il existe plusieurs standards d’encodage des caractères alphanumériques.

Le code ASCII

Ce standard est à la base d’une grande majorité des encodages actuellement utilisés.

Principes:

• Un caractère est encodé à l’aide de 7 bits d’information. On attribue donc à chaque
symbole un code dans l’intervalle [0, . . . , 127].

• Les codes de 0x00 à 0x1F représentent des caractères de contrôle. Leur
interprétation peut dépendre du système utilisé.

81

• Les codes de 0x20 à 0x3F correspondent aux symboles mathématiques, à la
ponctuation et aux chiffres. Le code du chiffre n est égal à 0x3n.

Remarque: La valeur d’un chiffre est donc égale aux quatre bits de poids faible de son
code.

• Les codes de 0x40 à 0x5F contiennent les lettres majuscules et quelques symboles
spéciaux. Les lettres sont classées par ordre alphabétique et possèdent des codes
consécutifs, ce qui facilite les opérations de comparaison entre chaı̂nes de caractères.

• Les codes de 0x60 à 0x7F contiennent les lettres minuscules, un caractère de contrôle
(0x7F) et quelques symboles spéciaux.

Note: Les codes d’une même lettre majuscule et minuscule partagent les mêmes cinq
bits de poids faible.

82

Table des caractères imprimables ASCII:

20 30 0 40 @ 50 P 60 ‘ 70 p
21 ! 31 1 41 A 51 Q 61 a 71 q
22 ” 32 2 42 B 52 R 62 b 72 r
23 # 33 3 43 C 53 S 63 c 73 s
24 $ 34 4 44 D 54 T 64 d 74 t
25 % 35 5 45 E 55 U 65 e 75 u
26 & 36 6 46 F 56 V 66 f 76 v
27 ’ 37 7 47 G 57 W 67 g 77 w
28 (38 8 48 H 58 X 68 h 78 x
29) 39 9 49 I 59 Y 69 i 79 y
2A * 3A : 4A J 5A Z 6A j 7A z
2B + 3B ; 4B K 5B [6B k 7B {

2C , 3C < 4C L 5C \ 6C l 7C |

2D - 3D = 4D M 5D] 6D m 7D }

2E . 3E > 4E N 5E ˆ 6E n 7E ˜
2F / 3F ? 4F O 5F 6F o

83

Le standard ISO 8859-1

Les ordinateurs modernes manipulent les données par groupes de 8 bits. Par rapport à
l’ASCII, un bit supplémentaire permet de représenter 128 caractères de plus.

Le standard ISO 8859 regroupe une quinzaine d’encodages couvrant les symboles les
plus utilisés par les langues occidentales:

• Les 128 premiers caractères (bit de poids fort égal à 0) coı̈ncident avec le code ASCII.

• Les 128 caractères supplémentaires diffèrent pour chaque variante du standard.

• La variante la plus utilisée, ISO 8859-1 ou ISO latin1, est un bon compromis pour les
applications encodant chaque caractère sur un octet.

84

Unicode

L’écriture de certaines langues nécessite plus de 256 symboles (p.ex.: chinois, japonais,
coréen, . . .).

Le standard Unicode a été introduit afin d’unifier la représentation de tous les systèmes
d’écriture actuels et historiques.

Propriétés:

• La version actuelle d’Unicode (17.0.0, septembre 2025) définit 159801 symboles.

• Les 256 premiers codes sont ceux du standard ISO 8859-1.

• Les codes appartiennent à l’intervalle [0, 0x10FFFF]. La représentation d’un caractère
nécessite donc 21 bits.

• Le symbole de code k est noté U+k, où k est écrit en hexadécimal.

Exemple: le symbole “e” correspond à U+20AC.

85

La compression UTF-8

L’inconvénient d’Unicode est que cet encodage est inefficace lorsque la majorité des
caractères d’un texte sont représentables en ASCII ou en ISO 8859-1.

La compression UTF-8 vise à pallier cet inconvénient, en encodant chaque symbole à
l’aide d’un nombre variable d’octets. L’hypothèse est que les codes de petite valeur sont
les plus fréquents.

Principe: La représentation du symbole U+k dépend de l’intervalle auquel appartient k:

• Si k ∈ [0, 0x7F]: Le caractère est représenté par l’octet

0b6b5 . . . b0 ,

où b6b5 . . . b0 est l’encodage binaire non signé de k.

• Si k ∈ [0x80, 0x7FF]: Le caractère est représenté par les deux octets

110b10b9 . . . b6 10b5b4 . . . b0 ,

où b10b9 . . . b0 est l’encodage binaire non signé de k.

86

• Si k ∈ [0x800, 0xFFFF]: Le caractère est représenté par les trois octets

1110b15b14b13b12 10b11b10 . . . b6 10b5b4 . . . b0 ,

où b15b14 . . . b0 est l’encodage binaire non signé de k.

• Si k ∈ [0x10000, 0x10FFFF]: Le caractère est représenté par les quatre octets

11110b20b19b18 10b17b16 . . . b12 10b11b10 . . . b6 10b5b4 . . . b0 ,

où b20b19 . . . b0 est l’encodage binaire non signé de k.

Exemple: Pour U+20AC (“e”), on a k = 0x20AC ∈ [0x800, 0xFFFF]. En binaire, 0x20AC
s’écrit 0010 0000 1010 1100. Ce symbole est donc représenté par les trois octets

1110 0010 1000 0010 1010 1100 ,

c’est-à-dire E2 82 AC en hexadécimal.

87

Chapitre 3

La structure d’un ordinateur

88

Les composants d’un ordinateur

Un ordinateur contient:

• un ou plusieurs processeur(s) (Central Processing Unit, CPU), exécutant les
programmes.

• de la mémoire pour retenir les programmes et les données.

• un générateur d’horloge imposant le rythme d’exécution des instructions.

• un ensemble de périphériques: carte graphique (Graphics Processing Unit, GPU),
carte(s) réseau, carte son, . . .

• des contrôleurs gérant les flux de données.

• des bus de communication.

89

Exemple d’organisation

réseau

Générateur
d’horloge (CPU)

Processeur

Carte graphique
(GPU)

Carte(s)
d’entrées/sorties

Contrôleur

mémoire
Contrôleur

externe
Mémoire

de masse
Mémoire

USB
Contrôleur Carte

son

90

La mémoire vive

Le terme mémoire est très général, et désigne tous les composants capables de retenir de
l’information.

La mémoire vive (Random-Access Memory, RAM) est un type de mémoire pour lequel

• la consultation et la modification de n’importe quelle partie de son contenu sont
possibles de façon illimitée.

• Son contenu est préservé tant que l’ordinateur reste sous tension.

• le taux de transfert (nombre d’octets lus ou écrits par seconde) est élevé.

• la latence (délai avant la fin d’une opération) est faible.

91

Les utilisations de la mémoire vive

Dans un ordinateur, la mémoire vive est présente à plusieurs endroits:

• en tant que mémoire externe, pour retenir des données et des programmes.

• dans le processeur lui-même, en tant que registres.

• comme mémoire cache pour accélérer les accès du processeur à la mémoire externe.

• dans les périphériques.

Deux technologies sont principalement employées:

• Mémoire statique (SRAM): L’information est retenue par des boucles de feedback.

• Mémoire dynamique (DRAM): L’information est représentée par la charge de
condensateurs.

92

La mémoire morte

La mémoire morte (Read-Only Memory, ROM) est un type de mémoire dont le contenu ne
peut pas être modifié pendant son fonctionnement normal.

Elle est employée pour mémoriser les données et les programmes qui ne doivent pas
changer au cours de la vie du système, par exemple:

• le programme de démarrage d’un ordinateur personnel.

• les polices de caractères d’une console.

• le logiciel d’un système embarqué.

93

Les technologies de mémoire morte

• Certains composants ont un contenu fixé à la fabrication.

• Les composants OTP (One-Time Programmable) sont programmables une seule fois.

• Les EPROM (Erasable Programmable ROM) et EEPROM (Electrically Erasable
PROM) peuvent être reprogrammés, grâce à un mécanisme capable d’effacer leur
contenu.

• La mémoire Flash est similaire à l’EEPROM, mais implémente un mécanisme
d’effaçage plus flexible.

Dans les deux derniers cas, l’opération de reprogrammation est relativement lente, et ne
peut être effectuée qu’un nombre limité de fois.

94

La mémoire de masse

La mémoire de masse sert à retenir les données et les programmes qui doivent être
préservés lorsque l’ordinateur est éteint, et qui peuvent potentiellement être modifiés.

Les deux principales technologies actuellement utilisées sont:

• les disques durs (Hard-Disk Drives, HDDs).

• la mémoire flash (Solid-State Drives, SSDs).

95

L’adressage

La mémoire vive et la mémoire morte sont organisées de la façon suivante:

• Les données sont mémorisées dans des cellules de taille fixe.

• Chaque cellule est identifiée par son adresse.

• L’ensemble des adresses possibles forme l’espace d’adressage.

Exemple: Architecture x86-64 (PC):

• Chaque cellule contient 8 bits.

• L’adressage s’effectue sur 64 bits. L’espace d’adressage correspond donc à l’intervalle

[0, 264 − 1].

96

La notion d’adresse est liée au concept de pointeur rencontré en programmation.

Exemple:

0x103:

0x102:

0x101:

0x100: 0x12

0x34

0x56

0x78

La cellule d’adresse 0x100 contient l’octet 0x12. On dit alors que 0x100 pointe vers 0x12.

97

Le stockage de données sur plus d’une cellule

Si une donnée doit être mémorisée sur plus d’une cellule, on la découpe en blocs placés
dans des cellules consécutives de la mémoire.

Il y a deux façon de le faire. Les cellules d’adresse croissante énumèrent les blocs

• depuis le poids faible vers le poids fort: représentation petit-boutiste (little-endian).

• depuis le poids fort vers le poids faible: représentation gros-boutiste (big-endian).

Exemple: Représentation de 0x12345678 sur des cellules de 8 bits, à partir de l’adresse
0x100:

0x103:

0x102:

0x101:

0x100: 0x78

0x56

0x34

0x12

Représentation petit-boutiste

0x103:

0x102:

0x101:

0x100: 0x12

0x34

0x56

0x78

Représentation gros-boutiste

98

L’alignement

Même si la mémoire est organisée en octets, les échanges entre le processeur et la
mémoire externe s’effectuent par blocs de plus grande taille (p.ex., 32, 64 ou 128 bits).

Il faut parfois en tenir compte lors de la programmation: Une donnée représentée sur n
octets, où n est une puissance de 2, est dite alignée si son adresse est un multiple de n.

Certaines architectures (p.ex., MIPS), interdisent les transferts de données non alignées.
Pour d’autres (p.ex., x86-64), de tels transferts sont possibles, mais sont inefficaces.

99

Le processeur

Le processeur est le composant de l’ordinateur responsable de l’exécution des
programmes.

Les programmes que le processeur peut traiter doivent être exprimés en code machine.

Deux modèles d’architecture existent:

• Modèle Von Neumann: Les programmes et les données partagent le même espace
d’adressage:

(CPU)
Processeur

Mémoire
commune

0:
1:
2:

...

...

100

• Modèle Harvard: Les programmes et les données sont placés dans des mémoires
séparées:

Mémoire de
programme

0:
1:
2:

...

...

(CPU)
Processeur

Mémoire de
données

0:
1:
2:

...

...

101

La structure d’un processeur

Organisation typique d’un processeur (à un niveau d’abstraction élevé):

communications

Gestionnaire de

contrôle
Unité de

registres
Banque deALU

interne

Bus

102

• La banque de registres est une petite quantité de mémoire vive, utilisée comme
espace de travail.

L’ensemble des registres disponibles dépend de l’architecture du processeur.

• L’unité arithmétique et logique (Arithmetic Logic Unit, ALU) est le composant chargé
de traiter l’information.

Selon l’architecture, les opérations qu’il peut effectuer peuvent inclure

– les opérations arithmétiques sur les nombres entiers: addition, soustraction,
multiplication, division,

– le traitement de nombres réels (Floating-Point Unit, FPU): addition, soustraction,
multiplication, division, racine carrée, logarithmes, fonctions trigonométriques, . . .

– les opérations logiques (opérateurs booléens, décalages, manipulation de bits).

103

• Le bus interne est un canal de communication entre les composants du processeur.

Sa taille (habituellement 8, 16, 32 ou 64 bits) est une caractéristique importante de
l’architecture.

• Le gestionnaire de communications relie le bus interne à l’interface extérieure du
processeur.

Il est notamment responsable de gérer les échanges de données avec la mémoire et
les périphériques.

• L’unité de contrôle est responsable de l’exécution des instructions, en commandant les
autres composants.

Le jeu d’instructions disponibles est défini par l’architecture.

104

Le code machine

Les programmes rédigés dans un langage de programmation tel que C, C++, Java ou
Python ne peuvent pas être directement exécutés par le processeur; ils doivent être
préalablement traduits en code machine.

Deux mécanismes sont possibles:

• Un interpréteur traduit chaque instruction au moment où elle doit être exécutée.

• Un compilateur traduit le programme en code machine une fois pour toutes.

compilation assemblage édition de liens

source
Code Code

assembleur
Code
objet

Bibliothèques

Code
machine

105

La production de code machine

1. Compilation: Le code source est traduit en code assembleur par un compilateur.

Le code assembleur est composé d’instructions que le processeur peut effectuer, mais
il est exprimé dans un format lisible.

2. Assemblage: Le code assembleur est traduit en code objet.

Celui-ci est similaire au code machine, mais peut contenir des références incomplètes
vers du code extérieur (p.ex., des sous-routines), ainsi qu’être fragmenté en plusieurs
modules.

3. Édition de liens: Le code objet est combiné avec du code issu de bibliothèques
(librairies) pour obtenir le code machine exécutable.

106

Les registres de contrôle

Pour exécuter les instructions, l’unité de contrôle du processeur gère deux registres:

• Le registre d’instruction (Instruction Register, IR) contient le code de l’instruction
(opcode) en cours d’exécution.

• Le compteur de programme (Program Counter, PC, ou Instruction Pointer, RIP pour
x86-64) contient l’adresse en mémoire de la prochaine instruction à exécuter.

107

L’exécution des instructions

L’unité de contrôle effectue les opérations suivantes, au rythme du signal d’horloge:

1. Charger dans IR l’opcode pointé par PC.

2. Décoder la valeur de IR.

3. Exécuter l’instruction correspondant en contrôlant les autres composants du
processeur (banque de registres, ALU, . . .).

Si l’instruction possède des opérandes, leur lecture et leur décodage font partie de
cette étape.

Mettre PC à jour de façon à le faire pointer vers l’instruction suivante.

4. Recommencer à l’étape 1.

108

Illustration

Exécution du programme suivant par un processeur x86-64, à partir de RIP = 0x1000:

0x1003:

0x1002:

0x1001:

0x1000:

0xD8

0xC3

...

0x01

...0xFFF:

1. L’opcode 0x01 pointé par RIP est chargé dans IR.

2. Cet opcode est décodé. Il s’agit ici d’une opération d’addition.

109

3. Cette opération d’addition définit un octet d’opérandes. Celui-ci (égal à 0xD8) est
chargé et décodé.

Dans le cas présent, les opérandes signifient que l’addition porte sur deux registres
appelés EAX et EBX, et que le résultat doit être écrit dans EAX.

4. RIP est incrémenté de deux unités, pour le faire pointer vers l’instruction suivante (en
0x1002).

5. L’opération d’addition est exécutée:

(a) L’unité de contrôle demande à la banque de registres de transférer le contenu de
EAX et EBX vers l’ALU via le bus.

(b) L’ALU est pilotée de façon à effectuer une addition, et à placer le résultat sur le bus.

(c) La banque de registres charge le résultat dans EAX.

6. La procédure se répète à partir du point 1 pour l’instruction suivante.

110

Remarques:

• Certaines instructions peuvent modifier explicitement le pointeur de programme, afin
de le faire pointer ailleurs que vers l’instruction suivante (saut).

• Les processeurs modernes implémentent des mécanismes supplémentaires:

– Réalisation simultanée de plusieurs étapes de chargement, décodage et exécution
des instructions (pipelining).

– Gestionnaire de mémoire (Memory Management Unit, MMU): Mise en œuvre de
techniques de protection, de traduction d’adresses, de gestion de la mémoire
cache, . . .

– Processeurs multicœurs: Plusieurs processeurs individuels (cœurs, cores)
intégrés dans un même composant.

– Interruptions: Mécanisme permettant de suspendre l’exécution du programme
courant pour effectuer des opérations urgentes, et de le reprendre par la suite.

– . . .

111

L’architecture x86-64

• Extension de l’architecture x86 introduite en 1978 (IBM PC).

• Plusieurs modes de fonctionnement, notamment dans un but de compatibilité avec
x86. Dans ce cours, nous nous limitons au mode 64 bits.

• Modèle mémoire Von Neumann. En mode 64 bits, l’espace d’adressage est

[0, 264 − 1].

• 16 registres généraux de 64 bits: RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8, R9,
R10, R11, R12, R13, R14, R15.

• Certains de ces registres possèdent des modalités d’utilisation particulières.

112

Les parties de registres

Il est possible de faire référence à une partie seulement du contenu des registres
généraux:

78 78

78

78

78

RBP:

0153163 32 16

EBP

0153163 32 16

ESI

0153163 32 16

EDI

RSP:

0153163 32 16

ESP

RDI:

RSI:

BP

SI

DI

SP

RAX: AH AL

0153163 32 16

EAX

AX

RBX:

078153163 32 16

078153163 32 16

RCX:

078153163 32 16

RDX:

EBX

BX
ECX

CX
EDX

DX

DH DL

CH CL

BH BL

BPL

SIL

DIL

SPL

113

078153163 32 16

R8: R8B

078153163 32 16

R8D

R8W

R9:

R9D

R9B

R9W
...

...

Notes:

• Certaines restrictions existent sur les utilisations possibles de ces registres par les
instructions.

• D’autres registres sont définis pour la manipulation des nombres en virgule flottante,
pour exploiter certaines instructions particulières, et pour configurer le processeur.

114

Les drapeaux

Le registre RFLAGS contient des drapeaux (flags), qui sont des bits d’information mis à
jour par certaines instructions:

• CF (Carry Flag, bit 0): Indique qu’une opération arithmétique sur des nombres de n
bits a produit un report à la position n.

• ZF (Zero Flag, bit 6): Indique qu’une opération a fourni un résultat nul.

• SF (Sign Flag, bit 7): Correspond au bit de poids fort du résultat d’une opération (bit
de signe dans le cas d’une donnée signée).

• OF (Overflow Flag, bit 11): Indique un dépassement arithmétique pour des données
signées.

115

Les modes d’adressage

En langage d’assemblage, une instruction est composée

• d’une mnémonique, qui est le nom conventionnel de l’instruction (p.ex., ADD).

• d’opérandes. Chaque opérande peut représenter une source, une destination, ou les
deux.

L’architecture x86-64 définit plusieurs façons d’exprimer les opérandes (modes
d’adressage).

Pour chaque instruction que nous allons étudier, les modes d’adressage permis seront
spécifiés.

116

L’adressage registre

Cet adressage indique qu’un opérande est lu depuis un registre (source), ou qu’un résultat
doit être placé dans un registre (destination).

Notation et exemple:

ADD RAX, RBX

Cette instruction additionne le contenu de RAX et de RBX, et place le résultat dans RAX.

117

L’adressage immédiat

Cet adressage, aussi appelé adressage littéral, définit un opérande constant.

Notation et exemple:

ADD RDI, 0x10

Cette instruction ajoute 16 à la valeur de RDI.

Note: L’adressage immédiat ne peut pas être employé pour des destinations!

118

L’adressage direct

Celui-ci indique qu’un opérande doit être lu depuis la mémoire (source), ou qu’un résultat
doit être écrit en mémoire (destination), à une adresse fixée.

Syntaxe:

<taille> ptr [<adresse>],

où

• <adresse> est un pointeur vers l’emplacement de mémoire concerné.

• <taille> est un des mots-clés qword (64 bits), dword (32 bits), word (16 bits) ou byte
(8 bits).

Exemple:

ADD dword ptr [0x1234], R8D

Cette instruction ajoute à l’entier de 32 bits situé à l’adresse 0x1234 le contenu de R8D.

119

Notes:

• L’architecture x86-64 est petit-boutiste.

• Il ne faut pas oublier d’aligner si nécessaire les données mémorisées sur plus d’une
cellule.

120

L’adressage indirect

Comme l’adressage direct, il indique un accès à la mémoire. La différence est que
l’adresse n’est plus constante, mais donnée par le contenu d’un registre.

Notation et exemple:

ADD AH, byte ptr [RBX]

Cette instruction ajoute à AH l’octet pointé par RBX.

Note: L’architecture x86-64 définit un modèle d’adressage sur 64 bits. L’adressage indirect
ne peut donc faire intervenir que des registres de 64 bits.

121

L’adressage indirect indexé

Il s’agit d’une variante de l’adressage indirect, dans laquelle l’expression du pointeur peut
faire intervenir un index, un facteur et un déplacement.

Syntaxe:

<taille> ptr [<base> + <facteur> * <index> + <déplacement>],

où

• <taille> est qword, dword, word ou byte

• <base> et <index> sont des registres de 64 bits.

• <facteur> vaut 1, 2, 4 ou 8.

• <déplacement> est une constante signée représentable sur 32 bits.

Note: Certains de ces éléments sont optionnels.

122

Exemple:

ADD DX, word ptr [RAX + 8*RBX + 2]

RAX + 8*RBX + 2:

RBX:

RAX:

2

RAX + 8*RBX:

bloc 0

bloc 1

bloc 2

123

Les instructions x86-64

L’architecture x86-64 définit plusieurs centaines d’instructions. Dans ce cours, nous
n’étudierons qu’un petit sous-ensemble d’entre elles.

Pour chaque instruction, nous précisérons

• les modes d’adressage qu’elle supporte, à l’aide des codes suivants:

– imm pour immédiat.

– reg pour registre.

– mem pour direct, indirect, ou indirect indexé.

• les drapeaux affectés par son exécution.

124

Les instructions de manipulation des données

L’instruction MOV

Cette instruction copie des données, du second opérande vers le premier.

Exemples:

• L’instruction

MOV EBX, dword ptr [0x100]

lit quatre octets en mémoire depuis l’adresse 0x100, et les écrit dans le registre EBX.

• L’instruction

MOV byte ptr [RAX + RSI - 4], 0xFF

écrit l’octet 0xFF en mémoire, à l’endroit pointé par RAX + RSI − 4.

125

Modes d’adressage:

Op.1 Op.2
reg imm
mem imm
reg reg
reg mem
mem reg

Note: Il n’est pas permis de combiner des accès à la mémoire pour les deux opérandes.

Drapeaux affectés: Aucun.

126

L’instruction XCHG

Cette instruction échange le contenu de ses deux opérandes.

Exemples:

• L’instruction

XCHG AL, AH

permute les 8 bits de poids faible et de poids fort du registre AX.

• L’instruction

XCHG EAX, EAX

n’a aucun effet. L’instruction NOP (No OPeration) en est une abréviation.

127

Modes d’adressage:

Op.1 Op.2
reg reg
reg mem
mem reg

Drapeaux affectés: Aucun.

128

Les instructions arithmétiques

L’instruction ADD

Nous avons déjà utilisé cette instruction dans des exemples. Son effet est d’ajouter son
second opérande au premier.

Exemple:

L’instruction

ADD R10, -1

décrémente le contenu de R10 d’une unité.

Note: La même instruction peut être employée pour des nombres non signés ou bien
représentés par complément à deux.

Modes d’adressage: Identiques à ceux de MOV.

Drapeaux affectés: CF, ZF, SF et OF.

129

L’instruction SUB

Cette instruction est similaire à ADD, mais soustrait son second opérande du premier.

Exemple:

L’instruction

SUB R10, 1

a le même effet que la précédente.

Modes d’adressages et drapeaux affectés: Identiques à ceux de ADD.

130

L’instruction CMP

Cette instruction implémente la même opération que SUB, mais ne modifie pas son premier
opérande.

En d’autres termes, le seul effet de cette instruction est de mettre à jour les drapeaux.

Cela permet d’effectuer des comparaisons de valeurs, pouvant servir de base à des
décisions dans les instructions suivantes.

Exemple:

L’instruction

CMP EAX, EBX

calcule la différence ∆ = EAX − EBX. On a alors:

• ZF = 1 ssi ∆ = 0, c’est-à-dire EAX = EBX.

• CF = 1 ssi ∆ < 0, c’est-à-dire EAX < EBX (si les nombres sont non signés).

Modes d’adressages et drapeaux affectés: Identiques à ceux de ADD.

131

Les instructions INC et DEC

Ces instructions incrémentent (INC) ou décrémentent (DEC) leur opérande, qui sert donc à
la fois de source et de destination.

Exemple:

L’instruction

INC byte ptr [RBX]

ajoute 1 à l’octet pointé par RBX.

Modes d’adressage:

Op.1
reg
mem

Drapeaux: CF est préservé, et ZF, SF et OF sont mis à jour.

132

L’instruction MUL

Cette instruction multiplie deux nombres non-signés de n bits, avec n ∈ {8, 16, 32, 64}. Le
résultat est représenté sur 2n bits.

Modes d’adressage: L’instruction admet un seul opérande:

Op.1
reg
mem

L’opération effectuée depend de la taille de cet opérande:

• 8 bits: L’opérande est multiplié par AL; le résultat est placé dans AX.

• 16 bits: L’opérande est multiplié par AX; le résultat est placé dans DX:AX.

• 32 bits: L’opérande est multiplié par EAX; le résultat est placé dans EDX:EAX.

• 64 bits: L’opérande est multiplié par RAX; le résultat est placé dans RDX:RAX.

133

Exemple:

L’instruction

MUL dword ptr [0x1234]

multiplie l’entier non-signé de 32 bits pointé par 0x1234 par le contenu de EAX. Les 32 bits
de poids fort du résultat sont écrits dans EDX, et les 32 bits de faible dans EAX.

Note: Contrairement à l’addition, le fait que les nombres sont représentés de façon signée
ou non signée influence la multiplication.

Drapeaux affectés: CF et OF sont mis à 0 si le résultat de l’opération est représentable sur
n bits, où n est la taille des opérandes, et à 1 sinon.

Les autres drapeaux sont modifiés de façon arbitraire.

134

L’instruction IMUL

Cette instruction est similaire à MUL, mais calcule le produit de deux nombres signés.

L’opération effectuée, les modes d’adressage et les drapeaux affectés sont identiques à
ceux de MUL.

Note: Il existe d’autres formes de cette instruction (à deux et trois opérandes), que nous
n’étudierons pas.

135

Les instructions logiques

Les instructions AND, OR et XOR

Ces instructions appliquent une opération booléenne bit par bit à leurs deux opérandes, et
écrivent le résultat dans la première.

• AND: Le résultat est égal à 1 ssi les deux bits sont égaux à 1 (et logique).

• OR: Le résultat est égal à 1 ssi au moins un des deux bits est égal à 1 (ou inclusif).

• XOR: Le résultat est égal à 1 ssi exactement un des deux bits est égal à 1 (ou exclusif).

Ces instructions permettent de forcer à 0 (AND), forcer à 1 (OR) ou de complémenter (XOR)
des bits à des positions données dans une valeur.

136

Exemples:

• L’instruction

AND byte ptr [0x100], 0xFC

force à 0 les deux bits de poids faible de l’octet situé à l’adresse 0x100.

• L’instruction

OR AL, 0xF0

force à 1 les quatre bits de poids fort du registre AL.

• L’instruction

XOR RBX, 0xFF00

complémente les bits 8 à 15 du registre RBX.

137

Modes d’adressage: Identiques à ceux de ADD.

Registres affectés:

• CF et OF sont mis à 0.

• ZF et SF sont mis à jour en fonction du résultat de l’opération.

138

L’instruction NOT

Cette instruction admet un seul opérande:

Op.1
reg
mem

Son effet est de complémenter tous les bits de cet opérande (c’est-à-dire, de la remplacer
par son complément à un).

Exemple: Si le registre DX contient initialement 0x5A, alors l’instruction

NOT DX

lui attribuera la valeur 0xFFA5.

Note: Cette instruction est équivalente à

XOR DX, 0xFFFF

Drapeaux affectés: Aucun.

139

Les instructions de manipulation de la pile

Comme la plupart des autres architectures, les processeurs x86-64 gèrent une pile.

Une pile est une structure de données LIFO (Last-In First-Out), définissant deux
opérations:

• Empiler une valeur (push) à son sommet.

• Dépiler une valeur (pop) depuis son sommet.

La pile sert notamment à

• mémoriser des données temporaires, comme les arguments, les variables locales et
les points de retour des fonctions invoquées par un programme.

• sauvegarder le contenu de registres modifiés par une sous-routine.

140

La pile dans l’architecture x86-64

• Le contenu de la pile correspond à des cellules consécutives de la mémoire.

• La pile croı̂t vers les adresses décroissantes.

• Le registre RSP pointe en permanence vers le dernier octet empilé.

RSP:

contenu de
la pile

141

L’instruction PUSH

Cette instruction empile une valeur de 64 bits, donnée par son opérande.

Modes d’adressage:

Op.1
imm
reg
mem

Note: L’adressage registre doit utiliser un registre de 64 bits. Les adressages direct,
indirect et indirect indexé doivent employer le mot-clé qword.

Opération réalisée:

1. Décrémenter RSP de 8 unités.

2. Recopier l’opérande à l’endroit pointé par RSP.

Drapeaux affectés: Aucun.

142

L’instruction POP

Cette instruction dépile une valeur de 64 bits, et l’écrit à l’endroit spécifié par son opérande.

Modes d’adressage:

Op.1
reg
mem

Opération réalisée:

1. Lire 8 octets depuis l’emplacement pointé par RSP, et les recopier à l’endroit
représenté par l’opérande.

2. Incrémenter RSP de 8 unités.

Drapeaux affectés: Aucun.

143

Exemple:

Les instructions

PUSH R8

PUSH R9

POP R8

POP R9

permutent le contenu de R8 et de R9 (à condition que RSP pointe vers une zone de la
mémoire pouvant accueillir la pile).

144

Les instructions de contrôle

Ces instructions servent à modifier l’exécution séquentielle du programme, en transférant
le contrôle (c’est-à-dire, en continuant l’exécution) à un endroit arbitraire de celui-ci.

L’instruction JMP

Cette instruction effectue un saut inconditonnel vers un emplacement de la mémoire de
programme, donné par son opérande.

En d’autres termes, l’instruction charge cet opérande dans le compteur de programme.

Modes d’adressage:

Op.1
imm
reg
mem

145

Drapeaux affectés: Aucun.

Exemple:

L’instruction

JMP 0x1000

continue l’exécution du programme à l’adresse 0x1000.

Remarques:

• En pratique, la destination d’un saut est exprimée symboliquement, à l’aide d’une
étiquette:

boucle: NOP

NOP

NOP

JMP boucle

146

Dans cet exemple, l’adressage est immédiat, la valeur de boucle étant calculée et
substituée par le programme d’assemblage.

• L’instruction JMP peut employer un adressage indirect ou indirect indexé.

Exemple: L’instruction

JMP qword ptr [8*RBX + 0x1000]

1. lit une adresse de 64 bits depuis un tableau situé à l’adresse 0x1000, à la position
spécifiée par RBX;

2. effectue un saut vers cette adresse.

Ce mécanisme permet notamment d’implémenter une décision multiple.

147

Les instructions de saut conditionnel

Ces instructions sont similaires à JMP, et possèdent les mêmes modalités d’utilisation et
les mêmes modes d’adressage.

La différence est qu’elles n’effectuent un saut que si une condition particulière est
satisfaite.

La condition peut porter sur l’état d’un drapeau:

Instruction Condition
JC CF = 1
JNC CF = 0
JZ ZF = 1
JNZ ZF = 0
JS SF = 1
JNS SF = 0
JO OF = 1
JNO OF = 0

148

Exemple:

Les instructions
ADD R8, R9

JC report

calculent la somme de R8 et de R9, et continuent l’exécution du programme à l’étiquette
report seulement si un report a été produit à la position 64.

La condition peut également porter sur le résultat d’une comparaison réalisée par CMP:

Instruction Condition
JE op1 = op2
JNE op1 , op2
JG op1 > op2 (valeurs signées)
JGE op1 ≥ op2 (valeurs signées)
JL op1 < op2 (valeurs signées)
JLE op1 ≤ op2 (valeurs signées)
JA op1 > op2 (valeurs non signées)
JAE op1 ≥ op2 (valeurs non signées)
JB op1 < op2 (valeurs non signées)
JBE op1 ≤ op2 (valeurs non signées)

149

Exemple:

Les instructions

CMP EAX, 0xFFFF

JA dépassement

effectuent un saut vers dépassement seulement si EAX contient une valeur (non signée)
supérieure à 0xFFFF.

Remarque: Certaines instructions sont équivalentes (par exemple, JE et JZ).

Drapeaux affectés: Aucun.

150

L’instruction LOOP

Cette instruction permet d’implémenter une boucle. Son opérande est défini comme celui
de JMP, et peut employer les mêmes modes d’adressage.

Opérations réalisées:

1. Décrémenter RCX d’une unité.

2. Si la nouvelle valeur de RCX est non nulle, effectuer un saut à l’endroit spécifié par
l’opérande.

Exemple:

Les instructions suivantes effectuent 256 itérations:

MOV RCX, 0x100

boucle: NOP

NOP

NOP

LOOP boucle

151

Notes:

• Le registre employé comme compteur de boucle est nécessairement RCX.

• La valeur initiale de RCX ne correspond pas toujours au nombre d’itérations. En effet,
pour RCX = 0, ce nombre est égal à 264 et non 0!

Drapeaux affectés: Aucun.

152

Les instructions CALL et RET

Ces instructions permettent de programmer des sous-routines.

L’instruction CALL possède les mêmes modalités d’utilisation et les mêmes modes
d’adressage que JMP.

Opérations réalisées:

1. Empiler la valeur courante de RIP, c’est-à-dire l’adresse où l’exécution du programme
doit reprendre après la sous-routine.

2. Effectuer un saut vers l’endroit donné par l’opérande.

L’instruction RET ne prend pas d’argument.

Opérations réalisées:

1. Dépiler une valeur de 64 bits.

2. Effectuer un saut vers cette adresse.

Drapeaux affectés: Aucun.

153

Exemple: Définition d’une fonction minswap, invoquée depuis le reste du programme:

minswap: CMP ECX, EDX
JLE sortie
XCHG ECX, EDX

sortie: RET
...

MOV ECX, dword ptr [0x100]
MOV EDX, dword ptr [0x104]
CALL minswap
...

MOV ECX, dword ptr [0x108]
MOV EDX, dword ptr [0x10C]
CALL minswap
...

154

Chapitre 4

La programmation en assembleur

155

Introduction

Le langage d’assemblage n’est pas universel:

• Le modèle mémoire, les registres et le jeu d’instructions d’un processeur sont propres
à son architecture.

• La syntaxe du langage peut dépendre des outils utilisés.

• La convention d’appel des fonctions diffère d’un système d’exploitation à un autre.

Environnement utilisé pour les exemples:

• Architecture x86-64.

• Système d’exploitation Linux 64 bits.

• Compilateur GCC.

156

Un premier programme

.intel syntax noprefix

.text

.global deep thought

.type deep thought, @function

deep thought: MOV EAX, 42

RET

• La directive .intel syntax noprefix indique la variante syntaxique du langage.

• La directive .text signale le début du segment de code (c’est-à-dire la partie du
programme qui contient les instructions).

157

• Les directives

.global deep thought

.type deep thought, @function

indiquent que l’étiquette deep thought est globale, et représente une fonction.

• L’instruction MOV EAX, 42 place la constante 42 dans le registre chargé de retenir la
valeur de retour de la fonction.

• L’instruction RET termine la fonction.

158

Exemple de programme C de test:

#include <stdio.h>

extern int deep thought(void);

int main()

{

printf("%d\n", deep thought());

}

Commande de compilation:

gcc -Wall -O3 -o test test.c dt.s

où dt.s est le fichier source assembleur, et test.c le programme C de test.

159

Mécanisme de compilation:

compilation assemblage

Code source Code assembleur Code objet

Code machine
exécutable

test.c test.s

dt.s

test.o

dt.o test

standard
Bibliothèque

Note: Les fichiers test.s, test.o et dt.o peuvent respectivement être générés par les
commandes:

• gcc -S -masm=intel test.c

• gcc -c test.c

• gcc -c dt.s

160

Les étiquettes

En assembleur, une étiquette est une valeur représentée symboliquement. Deux formes
d’étiquettes sont possibles:

• Une étiquette d’adresse se définit de la façon suivante:

<étiquette>: <instruction> <opérandes>

Une telle étiquette

– prend pour valeur l’adresse de l’instruction suivante. (Un mécanisme similaire
existe pour la mémoire de données.)

– sera substituée en une valeur numérique par le programme d’assemblage.

– peut être utilisée avant sa définition.

– est soumise à certaines restrictions d’utilisation.

161

• Une étiquette peut également être définie par la directive

.equ <étiquette>, <valeur>

qui lui attribue la valeur <valeur>. Une telle étiquette ne peut être utilisée qu’après sa
définition.

Exemple:

.intel syntax noprefix

.text

.global deep thought2

.type deep thought2, @function

.equ answer, 42

end: RET

deep thought2: MOV EAX, answer

JMP end

162

Le segment de données

Un programme assembleur peut également spécifier l’organisation et le contenu initial de
la mémoire de données. Les directives suivantes sont disponibles:

• .data indique le début d’un segment de données.

• .byte , .word , .int et .quad , suivies par une constante entière, définissent un
entier codé sur respectivement 1, 2, 4 ou 8 octets.

• .fill <répétition>, <taille>, <valeur> remplit la mémoire avec
<répétition> copies de <valeur>, encodées sur <taille> octets, avec <taille>∈ {1, 2, 4}.

• .ascii suivie d’une chaı̂ne de caractères place cette chaı̂ne en mémoire.

• .asciz fait de même, mais en ajoutant un octet nul à la fin de la chaı̂ne.

• .balign <taille> aligne l’adresse courante à un multiple de <taille>.

163

Exemple: Emission de tickets pour une file d’attente:

.intel syntax noprefix

.data
nb tickets: .int 0

.text

.global ticket

.type ticket, @function
ticket: INC dword ptr[nb tickets]

MOV EAX, dword ptr[nb tickets]
RET

Programme de test:

#include <stdio.h>

extern int ticket(void);

int main()
{

for (;;)
printf("%d\n", ticket());

}

164

Les étiquettes et l’adressage immédiat

Pour une raison technique, les étiquettes d’adresse ne peuvent pas toujours directement
figurer dans un adressage immédiat.

Par exemple, si x est une telle étiquette, l’instruction

MOV RAX, x

est invalide!

La raison de cette restriction est que la valeur d’une étiquette d’adresse n’est généralement
connue qu’au moment de l’édition de liens, c’est-à-dire après la compilation du programme.

Cette situation n’est pas problématique pour les instructions de saut, ni pour l’adressage
direct.

165

Par exemple, dans le programme

boucle: NOP

NOP

JMP boucle

l’opérande immédiat de l’instruction JMP sera encodé de façon relative au pointeur de
programme dans le code machine, afin de rendre celui-ci relocalisable.

Il est cependant possible d’obtenir l’adresse absolue d’une étiquette d’adresse en
mentionnant le préfixe offset flat: On écrira donc

MOV RAX, offset flat:x

au lieu de

MOV RAX, x # Invalide!

166

Exemple: Fonction générant un tableau contenant le carré de tous les nombres entiers non
signés encodables sur 16 bits:

.intel syntax noprefix

.data
tableau: .fill 0x10000, 4, 0

.text

.global squares

.type squares, @function
squares: MOV RDI, 0
boucle: MOV AX, DI

MUL AX
MOV word ptr[4*RDI + tableau], AX
MOV word ptr[4*RDI + (tableau + 2)], DX
INC DI
JNZ boucle
MOV RAX, offset flat:tableau
RET

167

Programme de test:

#include <stdio.h>

extern unsigned *squares(void);

int main()
{

unsigned i, *s;

s = squares();

for (i = 0; i < 0x10000; i++)
printf("%u: %u\n", i, s[i]);

}

168

La convention d’appel d’une fonction

En addition au mécanisme de sauvegarde de l’adresse de retour par CALL, et de
récupération de cette adresse par RET, il est nécessaire de spécifier un protocole pour

• transmettre des arguments à une fonction appelée,

• récupérer la valeur de retour de cette fonction, et

• permettre à cette fonction d’allouer des données temporaires (par exemple, pour ses
variables locales).

Un tel protocole porte le nom de convention d’appel. Dans ce cours, nous allons étudier la
convention employée par les systèmes UNIX (Linux, macOS, . . .).

Note: Nous nous limiterons à des arguments et à une valeur de retour de type entier ou
pointeur.

169

Principes:

• Les six premiers arguments de l’appel (s’ils existent) sont fournis dans les registres
RDI, RSI, RDX, RCX, R8 et R9, dans cet ordre.

• Les arguments suivants sont empilés (avant l’adresse de retour), dans l’ordre inverse
de leur position.

• La valeur de retour est placée dans le registre RAX.

• La fonction appelée doit préserver les registres RBX, RBP, R12, R13, R14 et R15.

• La fonction appelée doit maintenir le pointeur de pile RSP à une valeur multiple de 16
(juste avant CALL).

170

La structure de pile

La structure de pile (stack frame) est une structure de données créée sur la pile à chaque
appel de fonction, et supprimée lorsque cet appel se termine.

Cette structure est indexée à partir du registre RBP, qui pointe vers sa base.

Elle est composée des éléments suivants, dans l’ordre où ils sont empilés:

• les arguments de la fonction appelée, à partir du septième, en ordre inverse de leur
position. Chaque argument occupe 8 octets.

• l’adresse de retour de la fonction.

• un pointeur vers la base de la structure précédente. L’endroit où est placé ce pointeur
constitue la base courante.

• les données temporaires allouées par la fonction.

171

de retour
adresse

arguments

ancienne base

données
temporaires

RSP:

structure
de l’appel
courant

structure
de l’appel
précédent

de retour
adresse

arguments

ancienne base

données
temporaires

RBP:

172

Note: Les éléments de cette structure sont facilement accessibles par un adressage
indirect indexé basé sur RBP. Par exemple, les arguments de la fonction correspondent à

qword ptr [RBP + 16], qword ptr [RBP + 24], . . .

et les données temporaires à

qword ptr [RBP - 8], qword ptr [RBP - 16], . . .

(en supposant des données de 64 bits).

173

Exemple 1: Calcul récursif d’une factorielle

Problème: traduire en assembleur le programme C suivant, calculant la factorielle d’un
nombre entier:

unsigned long factorielle(unsigned n)

{

if (n <= 1)

return 1;

else

return n * factorielle(n - 1);

}

174

Solution:

.intel syntax noprefix

.text

.global factorielle

.type factorielle, @function
factorielle: PUSH RBP

MOV RBP, RSP
CMP EDI, 1
JBE retour un
PUSH RDI
DEC RDI
SUB RSP, 8
CALL factorielle
ADD RSP, 8
POP RDI
MUL RDI
JMP retour

retour un: MOV RAX, 1
retour: POP RBP

RET

175

Explications:

Les instructions

PUSH RBP
MOV RBP, RSP

créent la structure de pile, en positionnant correctement RBP et RSP:

RBP:

de retour
adresse

ancienne base

RSP:

176

Ensuite, les instructions

CMP EDI, 1
JBE retour un
...

retour un: MOV RAX, 1
POP RBP
RET

traitent le cas de base de la récursion: Si l’argument n est tel que n ≤ 1, alors la fonction
retourne 1.

Remarque: L’instruction POP RBP supprime la structure de pile courante.

177

Si n > 1, il faut alors appeler factorielle avec l’argument n − 1.

Il est cependant important de préserver la valeur de n, car elle intervient dans la suite du
calcul. L’instruction PUSH RDI sauvegarde cette valeur dans un emplacement temporaire
alloué sur la pile:

RBP:

de retour
adresse

ancienne base

RSP:

valeur courante
de n

178

L’instruction DEC RDI calcule l’argument n − 1 de l’appel à factorielle.

Cet appel n’est pas autorisé dans la situation courante, car la structure de pile possède
une taille qui n’est pas un multiple de 16.

Pour remédier à ce problème l’instruction SUB RSP, 8 alloue 8 octets supplémentaires
sur la pile:

RSP:

RBP:

de retour
adresse

ancienne base

valeur courante
de n

8 octets
temporaires

32 octets

179

Les instructions suivantes

CALL factorielle
ADD RSP, 8
POP RDI

appellent factorielle, libèrent les données temporaires, et récupèrent la valeur de n
dans RDI.

La valeur de retour de factorielle(n - 1) est quant à elle disponible dans RAX.

L’instruction MUL RDI calcule le produit de RAX et de RDI. Les 64 bits de poids faible du
résultat sont placés dans RAX, qui contiendra la valeur de retour de la fonction. Cette
dernière peut donc se terminer.

180

Programme de test:

#include <stdio.h>

extern unsigned long factorielle(unsigned);

int main()
{

unsigned i;

for (i = 0; i < 20; i++)
printf("%u: %lu\n", i, factorielle(i));

}

181

Exemple 2: Hello, world

Pour obtenir un programme autonome, il suffit d’implémenter la fonction main, qui en sera
le point d’entrée.

Illustration:

.intel syntax noprefix

.data
msg: .asciz "Hello, world!\n"

.text

.global main

.type main, @function
main: PUSH RBP

MOV RBP, RSP
MOV RDI, offset flat:msg
CALL printf
MOV EAX, 0
POP RBP
RET

182

Notes:

• L’étiquette msg représente un pointeur vers la chaı̂ne de caractères utilisée comme
argument de la fonction printf.

Il est donc nécessaire d’utiliser le préfixe offset flat: pour obtenir une
représentation absolue de ce pointeur.

• L’instruction MOV EAX, 0 attribue une valeur de retour nulle à la fonction main, ce qui
signale une exécution sans erreur.

• Si ce code source est placé dans un fichier hw.s, il peut être compilé grâce à la
commande

gcc -o hw hw.s

183

Exemple 3: Conversion en minuscules

Ce programme convertit, dans les arguments qui lui sont fournis en ligne de commande,
les lettres majuscules en minuscules, et affiche ces arguments sur des lignes séparées:

.intel syntax noprefix

.text

.global main

.type main, @function
main: PUSH RBP

MOV RBP, RSP
boucle: DEC RDI

JZ fin
ADD RSI, 8
PUSH RDI
PUSH RSI
MOV RDI, qword ptr[RSI]
CALL conversion
MOV RAX, qword ptr[RBP - 16]
MOV RDI, qword ptr[RAX]
CALL puts
POP RSI
POP RDI
JMP boucle

184

fin: MOV EAX, 0
POP RBP
RET

conversion: PUSH RBP
MOV RBP, RSP

boucle2: MOV AL, byte ptr[RDI]
CMP AL, 0
JE fin
INC RDI
CMP AL, ’A’
JB boucle2
CMP AL, ’Z’
JA boucle2
ADD AL, 0x20
MOV byte ptr[RDI - 1], AL
JMP boucle2

185

Explications:

La fonction main reçoit deux valeurs:

• le nombre d’arguments argc fournis au programme lors de son exécution, incluant
son nom (comme premier argument).

• un pointeur argv vers un tableau dont chaque élément est un pointeur vers une
chaı̂ne de caractères représentant un argument.

Selon la convention d’appel, argc est reçu dans RDI, et argv dans RSI.

La fonction entre dans une boucle visant à traiter séparément chaque argument. A chaque
itération, RDI contient le nombre d’arguments encore à traiter, et RSI pointe vers l’entrée
du tableau argv associée à l’argument courant.

186

La fonction conversion (définie dans la suite du programme) accepte comme argument
un pointeur vers une chaı̂ne de caractères, dans laquelle elle convertit les majuscules en
minuscules.

Avant d’appeler cette fonction, les valeurs de RDI et de RSI sont sauvegardées sur la pile,
car elles interviennent dans la suite du programme.

Ensuite, les instructions

MOV RAX, qword ptr[RBP - 16]
MOV RDI, qword ptr[RAX]

récupèrent dans RAX la valeur sauvegardée de RSI, et placent dans RDI la valeur extraite
de la case correspondante du tableau. Cette valeur pointe vers la chaı̂ne de caractères qui
vient d’être convertie. Un appel à la fonction puts de la bibliothèque standard C affiche
alors cette chaı̂ne.

L’implémentation de la fonction conversion est directe. Les constantes ’A’ et ’Z’
apparaissant dans le code assembleur seront remplacées par le code ASCII de ces
symboles par le programme d’assemblage.

187

