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Chapitre 1

Le traitement de lI'information



Les ordinateurs

(Source: http://en.wikipedia.org/wiki/Z3_(computer))

Définition: Un ordinateur est une machine capable de traiter des données,
en suivant un programme préétabli.

Objectif du cours: Etudier leurs principes de fonctionnement.



Linformation

La notion d’information correspond a la connaissance que I'on a de I'état d’'un systeme.

Exemple:




Linformation se transmet par I'intermédiaire de signaux, qui peuvent prendre des formes
variées.

Exemple: Lecteur de DVD.




Les signaux continus

Définition: Un signal continu est un signal qui prend ses valeurs dans un domaine dense.

Exemple:

O

P N \/ ]

O

Alice Bob

% m = C) %

@)

Inconvénient: Linformation n’est pas transmise fiablement, car la valeur de chaque signal
est entachée d'imprécisions.



Les signaux discrets

Définition: Un signal discret est un signal possédant un nombre fini de valeurs nominales.

Avantage: La transmission fiable de données est possible malgré la présence
d’'imprécisions.

En effet, si 'amplitude des perturbations est suffisamment petite, alors les valeurs
transmises peuvent toujours étre correctement identifiées a leur réception.



Les signaux binaires

Dans les ordinateurs, I'information est transmise, traitée et mémorisée au moyen de
signaux discrets binaires.

Avantages:
e |Is sont faciles a générer et a décoder.
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e |Is présentent une bonne robustesse face aux perturbations.

e Leur analyse est simple grace a 'algebre booléenne.



La quantité d’information

Comment peut-on quantifier 'information transmise par un signal discret?

Propriétés souhaitées:

e Plus la probabilité de recevoir une valeur est faible, plus la quantité d’information est
élevée.

e Lorsqu’on combine des signaux indépendants, I'information doit s’additionner.
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Définition: La quantité d’information transmise par une valeur discréte décodable de fagon
fiable est égale a

logzé ,

ou p dénote la probabilité que cette valeur soit recue.
Cette quantité d’'information s’exprime en bits (binary digits, b).

Par conséquent, la quantité d’'information contenue dans un signal pouvant prendre N
valeurs équiprobables (décodables de fagon fiable) vaut

logr N |.

Un bit représente donc la quantité d’'information permettant de distinguer fiablement deux
valeurs équiprobables.
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Exemples

On transmet une letire de I'alphabet au moyen d’un signal de tension: A=0V, B = 0,04V,
C=0,08V,...,Y=096V,Z=1V.

Situation 1: Les 26 valeurs peuvent étre fiablement reconnues.

e Siles probabilités de recevoir un E et un Z sont (resp.) égales a 0,17 et 0,0012, alors la
quantité d’'information transmise par les signaux correspondants vaut (resp.)

log, ~ 2.56 bits

0,17
et

1
0,0012

log, ~ 9,70 bits.

11



e Siles 26 lettres ont la méme probabilité d’étre recues, alors la quantité d’'information
contenue dans un signal vaut

log, 26 = 4,70 bits.

Situation 2: On ne peut distinguer que les tensions supérieures ou inférieures a 0,5 V.

Si les 2 valeurs sont équiprobables, alors la quantité d’information transmise par un signal
vaut

log, 2 =1 bit.
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Les unités de quantité d'information

e Un octet (byte, B) représente 8 bits d’'information.
e Un nibble est un demi-octet.

o Les préfixes K (kilo), M (mega), G (giga), T (tera), P (peta), ... signifient suivant le
contexte
— soit 210, 220 230 240 550

— soit 103, 10°, 10°, 1012, 1015, ...

(En effet 210 = 1024 ~ 1000.)

Exemple: La capacité d’'un disque dur vendu comme contenant 4 TB n’est en réalité
que de

4 1012
240

~ 3,64 TB.

13



Chapitre 2

La représentation des données
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Introduction

Les ordinateurs représentent I'information a I'aide de signaux discrets binaires.

Par convention, les deux valeurs nominales de ces signaux sont notées 0 et 1.

D’autres notations sont possibles: False / True, L / H, ...

Question: A l'aide des seuls symboles 0 et 1, comment peut-on représenter des données
plus complexes?
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Les nombres entiers non signés

Dans la vie quotidienne, on représente les nombres naturels a I'aide de la notation
positionnelle.

Principes:

e 'ensemble des chiffres est {0, 1,2,3,4,5,6,7,8,9}.

e Le poids de chaque chiffre est une puissance de 10 qui dépend de sa position.

Exemple:
poids: 102 10' 100
position: 2 1 0
1 213

1 x10%+2x 10 +3 x 10°
=1x100+2x10+3x1
= 123.



La représentation binaire

La notation positionnelle se généralise a n'importe quelle base r > 1:

e L'ensemble des chiffres est {0,1,...,r—1}.

e Le poids du chiffre & la position k est r~.

Exemple: base r = 2 (binaire).

poids: 20 25 24 23 22 ol 20
positon: 6 5 4 3 2 1 0

L1 1170} 1]1

Ix20 4+ Ix 2+ 1 x2%+1x23+0x22+1x2+1x20
=64+324+16+8+2+1
= 123.



Le nombre encodé par la suite de bits b,,_1b,,_» ... by est donc égal a

n—1
Z 2 b;.
i=0

Note: Les bits b,,_; et by sont respectivement appelés bit de poids fort et bit de poids faible.
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Calcul de la représentation d’'un nombre

La représentation d’'un nombre v peut se calculer grace aux deux propriétés suivantes:

e Le bit de poids faible est égal a 0 si v est pair, et a 1 si v est impair.

e En retirant le bit de poids faible d’'une représentation de v, on obtient une
représentation de EJ

On a donc l'algorithme suivant:

1. Siv est pair, afficher 0. Sinon, afficher 1.
2. Remplacer v par EJ

3. Siv # 0, recommencer a I'étape 1.
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Remarques:

e Cet algorithme génére les bits de la représentation de v en commencant par le bit de
poids faible (c’est-a-dire de la droite vers la gauche).

e La suite de bits obtenue constitue la représentation la plus courte du nombre v. Des
représentations plus longues s’obtiennent en préfixant le résultat d’'un nombre

quelconque de zéros de téte.

Exemple: Représentation du nombre 123:

v=123 impar — 1
v=61 impair — 1
v=30 par — O
v=15 1impairr — 1
v=T7T impair — 1
v=3 impair — 1
v=1 impair — 1
v=20.
La représentation obtenue est donc | 1111011 |, a laquelle il est permis d’ajouter un nombre

arbitraire de zéros de téte.
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Les valeurs représentables
Lalgorithme de calcul de la représentation d’'un nombre v s’arréte aprés avoir produit » bits
ou moins si et seulement si v < 2",

Les nombres possédant une représentation binaire non signée sur n bits forment donc
I'intervalle

[0,...,2" = 1]].

Pour n = 8, 16, 32, on a donc les bornes supérieures 255, 65535 et 4294967295.
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La représentation hexadécimale

La notation positionnelle n’est pas limitée aux bases r = 2 et r = 10. En choisissant r = 16,
on obtient la représentation hexadécimale, tres utilisée en informatique.

Avantages: Cette représentation est lisible, et trés facile a convertir vers et depuis la
notation binaire.

Un chiffre hexadécimal peut prendre 16 valeurs: 0, 1,2, 3,4,5,6,7,8,9,A,B,C,D, E, F.

Exemple:

poids: 16% 16! 16°
position: 2 1 0

4 | D | 2

4%x16%+13x 16! +2 x 16Y
=4x256+13x16+2x%x1
= 1234,
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La conversion hexadécimal < binaire

Un chiffre hexadécimal représente exactement 4 bits d’information.

Pour convertir un nombre hexadécimal en binaire, il suffit donc de remplacer chaque chiffre
par la séquence de 4 bits qui lui correspond. La conversion réciproque est similaire.

Table de conversion:

Hexadécimal Binaire | Hexadécimal Binaire
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Exemple: |[4D2| < [010011010010].
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Note: Si la base utilisée pour représenter les nombres n’est pas évidente a déduire du
contexte, il faut la préciser explicitement. Cela peut se faire:

e A l'aide d’un indice:

12349 = 4D2,¢ = 10011010010,.

e Avec un suffixe:

1234d = 4D2h = 10011010010b.

e Avec un prefixe:

1234 = 0x4D2 = 0b10011010010.

24



Larithmétique binaire non signée

Le calcul de la somme de deux nombres entiers signés peut s’effectuer selon les regles du
calcul écrit.

Les tables d’addition binaire sont les suivantes (les reports sont entourés):

0 0 1 1
+ 0 + 1 + 0 + 1
0 1 1 11 0
1 1 1 1
0 0 1 1
+ 0 + 1 + 0 + 1
1 11 O | 1| 1

Lopération d’addition s’effectue bit par bit, du bit de poids faible vers celui de poids fort.

25



Exemple: Calcul de la somme 123 + 456 = 579 sur 10 bits:

+
_— O O
O ==
O = OO
i e
S O ==
S| O ==
O | =
o | O O
_ OO =
—_— | OO
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La multiplication de nombres binaires non signés

Le calcul d’'un produit s’effectue selon des regles analogues a celle du calcul décimal:

1. Des produits partiels sont successivement calculés pour chaque bit du multiplicateur,
et convenablement alignes.

2. Ces produits partiels sont ensuite additionnés.

La table de multiplication binaire est triviale:

o O
_O
X
O =
X
—

-
-]
-
—

27



Exemple: Calcul du produit 34 .12 = 408:

I 00010

1 100
00 0O0O00O0
00 0O0O0®O0
1 00010
+ 1 00010

I 10011000
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La représentation des nombres entiers signés

Il existe plusieurs procédés permettant de représenter des nombres entiers positifs et
négatifs:

e La représentation par valeur signée.
e La représentation par complément a un.

e La représentation par complément a deux.

Ces trois méthodes possedent des points communs:

e Le signe d’'un nombre est représenté par le bit de poids fort (ici appelé bit de signe).
Celui-ci est égal a

— 0 pour les nombres positifs.
— 1 pour les nombres négatifs.

e La représentation d’'un nombre positif est toujours identique a sa représentation
binaire non signée de méme taille.

29



La représentation par valeur signée

Principe: A la suite du bit de signe, on place la représentation binaire non signée de la
valeur absolue du nombre représenté.

Exemple: La représentation sur 8 bits du nombre —42 est égale a| 10101010 |. En effet

e Ce nombre est négatif, donc le bit de signe est égal a|1|.

e La représentation binaire non signée sur 7 bits de 42 = | — 42| est |0101010 .

Selon ce procédé, le nombre v représenté par le groupe de bits b,,_1b,_» ... by est égal a

n—2
v=(1-2b, 1) ) 2'b;
=0
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Les valeurs représentables

A l'aide de n bits, la représentation par valeur signée permet d’encoder

e tous les éléments de lintervalle [0, ..., 2" 1 — 1] (bit de signe égal a 0), et

e tous les éléments de lintervalle [-2"~! + 1,..., 0] (bit de signe égal a 1).

Lensemble des valeurs représentables est donc l'intervalle

(—2n=Lyq,.... 21— 1q].

Remarques:

e Le nombre 0 possede deux représentations distinctes.

e Ce procédé rend difficile le calcul des opérations arithmétiques.
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La représentation par complément a un

Principe: La représentation d’'un nombre est similaire a sa représentation par valeur
signée, mais les bits qui suivent le bit de signe sont complémentés (0 est remplacé par 1,
et vice-versa).

Exemple: La représentation sur 8 bits du nombre —42 est égale a| 11010101 |. En effet

e Ce nombre est négatif, donc le bit de signe est égala|1|.

e La représentation binaire non signée sur 7 bits de 42 = | — 42| est 0101010, dont le
complément est | 1010101 |.

Lensemble des nombres représentables a 'aide de n bits est identique a celui de la
représentation par valeur signée, c’est-a-dire l'intervalle

(2L 1,21 1]
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Selon ce procédé, le nombre v représenté par la suite de bits b,,_1b,,_» . . . bg vaut

n—1
(1= 2"y + ) 2'b.
=0

En effet,
n—1 ‘
oSiv>0,onabn_1:Oetv:ZZ’bi.
i=0
n—2 .
e Siv<O,0nab,j=1let b = » 2'(1-b)
i=0
n—2 n—2
= Zzi— 21 p;
i=0 i=0
n—1 n—1
= 20— N 2tp
i=0 i=0
n—1
= 2"—1- > 2'p;
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Remarques:

e Le nombre 0 posseéde les deux représentations
(zéro négatif).

000...

(zéro positif) et

e Pour calculer 'opposé d’'un nombre, il suffit d’'inverser tous les bits de sa

représentation.

I11...
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Larithmétique par complément a un

Notations: Soit w = b,,_1b,,_» . .. bg une suite de bits (n > 1).
e Le nombre non signé représenté par w est noté [w]ps.

e Le nombre représenté par w par complément a un est noté [wlg;.

Exemples:

[11010101]ps = 213
[11010101]¢, —42.

Propriété:
e Sib,_1=0,alors [wlps = [Wl¢,.

e Sib,_1 =1, alors [w]ps = [W]¢c, +2" — 1.

(En d’autres termes, les représentations non signée et par complément a un sont égales a
un certain décalage prés, qui dépend du bit de signe.)

35



Laddition par complément a un

Lorsqu’on calcule la somme non signée de deux suites de bits w = b,,_1b,,_> ..

W’ — b/ b/
n—1"n-—

/ : A 7 _ 1.7 /7 /7 .
w_n--- by, on obtient un resultat w” = b _,b." , ... by tel que:

e Siaucun report nest apparu a la position n, alors

(W 1ns = [Wlns + [W'1ns-

e Siun report est apparu a la position n (et a été ignoré), alors

(W' 1ns = [Wlns + [W1ns — 2".

Question: Quelle est la relation qui lie [wlc,, [Wl¢, et [w]¢c,?

.bg et
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Il y a plusieurs cas a considérer:

Cas1:Sib,_1=0,b" ,=0etd!  =0:
n n—1

1

o [w]ps = [W]Cl-
o [Wlns = [W,]cl-
o [W'lns = [W,/]Cl-

e |'addition n’a produit aucun report a la position .

On a donc:

[W”]cl = [W,/]ns

= [wlns + [W'lns

= [wl¢, + [W’]cl-

37



Cas2:Sib,1=0,b ,=0eth =1

1

o [wlns = [wl¢, 2 0.
o [Wlns = [W']C1 > 0.

o [Wlns +[w'lns > 2" ' car by | = 1.

1

La somme [w]¢, + [w’]¢, n'est donc pas représentable par complément & un sur # bits.

—> dépassement arithmétique!
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Cas3:Sib,1=0,b ,=1eth’ =0

1

o [w]ns = [W]Cl-

[Wlns = [W'le, +2" - 1.

o [W'lhs = [W”]Cl-

Caddition a obligatoirement produit un report a la position n.

On a donc:

[W”]Cl = [W”]ns
= [wlns + [W']ns — 2"

= [W]Cl + [W,]Cl - 1.
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Cas4:Sib,_1 =0, b;_ =1 et b;l’_l =1:

1

o [w]ns = [W]Cl-
o [Wlns=[wle, +2"-1.
o [Wlns = [W”]Cl +2" - 1.

e L'addition ne peut pas avoir produit un report a la position n.

On a donc:
[W”]Cl =[w'lhs - 2"+ 1
= [w]ns + [W’]ns -2"+1

= [w]¢, + [W/]cl-
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Cas5:Sib,—1=1,b _,=0eth  =0:
Equivalent au cas 3, en permutant les deux opérandes w et w’.

Cas6:Sib, 1 =1,b ,=0eth =1

|

ldem vis a vis du cas 4.
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Cas7:Sib,1=1,b ,=1eth =0

1

o [Wlhs = [wl¢, +2" -1 et [w]e, <0.
o Wlns =[wlg, +2"-1et[w]¢ <0.
* [W];;Is — [W//]Cl et [W,/]Cl > 0.

e L’addition a produit un report a la position n.

Ona [wlps + [Wlns < 2"+ 21 1.
Or [wlns + [Wlns = [Wlg, + [W']¢, + 2"+ - 2.

Donc,

[Wle, + [We, < 2"+ 201 —1-2m1 42
A

La somme [w]¢, + [w’]c1 n’est donc pas représentable sur n bits, sauf dans le cas
particulier ou elle vaut =21 + 1.

—> dépassement arithmétique!
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Cas8:Sib,1=1,b ,=1eth =1

1

o [wlns = [w]¢, +2" - 1.
o [W]ns=[w]c, +2" - 1.
o [wlhs = [wW"'l¢, +2" - 1.

e L'addition a produit un report a la position .

On a donc:

[W”]Cl =[w'lhs - 2"+ 1
= [Wlns + [W1ns — 2" + 1

= [wle, + [W’]Cl - 1.
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Résumé

e Sib,.1 =0b_, #0b ,:Dépassement arithmétique.

1

e Sinon:

— Si l'addition a produit un report a la position n:

We, = [Wley, + Wle, — 1.

— Sinon:

[W”]Cl = [W]01 + [W,]Cl-

44



Algorithme d’addition par complément a un

Pour calculer la somme de deux nombres représentés par complément a un sur n bits:

1. Additionner les deux suites de bits comme si elles représentaient des nombres non
signés.

2. Sil'opération précédente produit un report a la position n (ignoré), effectuer une
deuxieme addition pour ajouter 1 au résultat.

3. Sile signe des deux opérandes est identique et ne correspond pas a celui du résultat,
signaler un depassement arithmétique.
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Exemples:

e Calcul de 12 + (-34):

10111 n. sign. compl. un diff.

O 00 0 1 1 0 O 12 12 0

+ 1 1 0 1 1 1 0 1 221 -34 255
1 1 1 0 1 O O 1 233 22 255

e Calcul de 34 + (-12):

10111 1 n. sign. compl. un diff.
O 01 0 0 O 1 O 34 34 0

+ 1 1 1 1 0 0 1 1 243 -12 255
O 0 01 0 1 0 1 21 21 0

+ 0 0 0 0 0 O 0 1 1 1 0
O 0 01 0 1 1 O 22 22 0
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Note: Les étapes 2 et 3 de 'algorithme sont effectuées dans cet ordre pour gérer
correctement le cas d’un résultat égal a -2 ! + 1;

Exemple: Calcul de (—-120) + (-7):

1 n. sign. compl. un diff.
1 0 0 0 O 1 1 1 135 —-120 255
+ 1 1 1 1 1 0 0 O 248 -7 255
o 1 1 1 1 1 1 1 127 127 0
+ 0 0 0 0 0 O 0 1 1 1 0
1 0 0 0 0 O 0 O 128 127 255



La représentation par complément a deux

ldée: Par rapport au complément a un, décaler d’'une unité la représentation des nombres
négatifs permet d’éviter I'étape de correction dans 'algorithme d’addition.

Principes: La représentation d’'un nombre v sur n bits est égale

e a la représentation entiére non signée de v sur n bits si v > 0.

e a la représentation (négative) par complément a un de v + 1 sur n bits si v < 0.

Exemples:

e La représentation sur 8 bits du nombre —42 est égale a|11010110.

e La représentation sur n bits du nombre —1 est égalea|111...1.
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En complément a deux, le nombre v représenté par la suite de bits b,,_1b,,_> . .. bg vaut

n—1
“2"h, |+ Z 2 b;.
=0

En effet,
n—1 ‘
e Sib,_1=0:Alors, v = Z 2! b;.
i=0

e Sib, | =1:Alors, b,_1b,,_>...bg est la représentation de v + 1 par complément a un.
On a donc
n—1
vl = 2"+ 1+ ) 20,
i=0

49



Larithmétique par complément a deux
Notation: On note [w]¢, le nombre dontw = b,,_1b,_>...by (avecn > 1) est la
représentation par complément a deux.
Propriété:
e Sib,_1=0,alors [wlps = [Wlc,.

o Sib,_1 =1,alors [wlps = [W]c, + 2",

Par conséquent, on a

[Wlns =on [W]02 )

ou “=;” désigne I'égalité modulo k.
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Notes:

e L'ensemble des nombres représentables par complément a deux sur n bits forme

I'intervalle

[—2n=1 . on=l_ 1],

e Le nombre zéro possede une seule représentation

000. ..
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Quelques propriétés utiles

e On peut étendre la représentation d’un nombre vers davantage de bits en répétant son
bit de signe.

Considérons la représentation w = b,,_1b,_» ... by.

— Si b,_1 =0, la propriété est évidente.

— Sib,_1 =1, alors le nombre représenté par 11b,,_»b,,_3 ... by vaut

n n—1
2l Y ol =m0t 4 )y 2l
i=0 i=0

n—1
S} Z 21 b,
i=0

qui est bien la valeur encodée par w.

52



e La représentation d’un nombre v se termine par k bits nuls si et seulement si v est
divisible par 2.

En effet,

— Cette propriété est vraie pour les représentations non signées.

— Les représentations non signée et par complément a deux sur n bits sont égales
modulo 2".

— On ak < n, donc deux nombres égaux modulo 2" sont aussi égaux modulo 2%.
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e L'opposé d’un nombre représenté par complément a deux s’obtient en inversant
chaque bit de sa représentation, et en ajoutant 1 au resultat.

Soitw =b,,_1b,,_» ... bg. Silon inverse chaque bit, le nombre représenté v satisfait
n—1 .
V =g Z 2L(1 = by).
i=0

On a donc

n—1

v+1:2n1+22i(1—b,~)
=0

n—1 n—1
:2n1+22"—22"b,-
i=0 =0
n—1
— o 2”-22%,-
i=0

n—1 '
= = > 2'b;
i=0

qui est bien 'opposé du nombre représenté par w.
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Laddition par complément a deux

Lorsqu’on calcule la somme non signée de deux suites de bits w = b,,_1b,,_» ... bg €t
w =b' b ,...bl,onobtientunrésultat w’’ =b"" b ,...b// tel que
n—1"n-2 0 n—1"n-2 0

W' 1ns =on [W]lns + W 1ns.

Par ailleurs, on a
[w] Cp =21 [Wlns,
[W’]CQ = [w']ns et

[W”]cz =n (W' ]ns.

On en déduit

[W,’]Cz L [W]02 + [W,]Cza

qui montre que le méme algorithme peut étre employé pour additionner des nombres non
signés et représentés par complément a deux.
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Exemples:

e Calculde 12 + (-34):

e Calcul de 34 + (—12):

11111 n. sign. compl. deux diff.

O 0 0 01 1 0 O 12 12 0

+ 1 1 0 1 1 1 1 O 222 -34 256
1 1.1 0 1 O 1 O 234 —-22 256

10 (1] |1 n. sign. compl. deux diff.
0O 0 1 0 I O 34 34 0

+ 1 1 1 1 O 1 O O 244 -12 256
O 0 01 O 1 1 O 22 22 0
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La multiplication par complément a deux

Principes:

e On procede de la méme fagcon qu’avec les hombres non signés.

e Les opérandes et les produits partiels doivent étre étendus sur le méme nombre de
bits (en en répétant le bit de signe).
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Exemples

e Calcul de (—12).34 sur 12 bits:

0
0

0 0 0 1

|

x 0 0 0 0 0 O

O 0 0 000 0 O0O0OO0OO0O0

0

0O 0 000 0 0 0 0 0
O 0 0 00 0 0 0 O
0O 0 0 00 0 0 O

0

O 0 0 0 0 O

o o

o O O

oo OO

OO OO

I 0 0 O

0

|

0 0 1

|
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e Calcul de (-12).(=34) sur 12 bits:

0

O 0o 000 0 0 0 0 0 00

0

0

0

0O 0 0 00 0 O

0

o o

— o O

o - O O

I 0 0 O

1 0 0 1

|

0 0 O
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Récapitulatif

Le tableau suivant reprend les différentes représentations des nombres entiers sur 4 bits:

Bits | Non signée Valeur signée Compl. aun Compl. a deux
0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 8 0 —7 -8
1001 9 -1 -6 -7
1010 10 -2 -5 -6
1011 11 -3 —4 -5
1100 12 —4 -3 —4
1101 13 -5 -2 -3
1110 14 -6 -1 -2
1111 15 -7 0 -1
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La représentation des nombres réels

Probleme: Pour représenter un réel arbitraire (méme borné), une quantité infinie
d’'information est nécessaire.

Solution: Les représentations informatiques des réels seront approximées.

Conséquences:

e Les opérations manipulant les réels sont inévitablement imprécises.
e Les opérations arithmétiques augmentent en général le degré d’impreécision.

e |l faut tenir compte de cette imprécision lorsqu’on teste, par exemple, I'égalité de
nombres réels.
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La représentation en virgule fixe
Principe: On introduit un séparateur entre une partie entiere et une partie fractionnaire, a
une position fixée.

Exemple (base 10):

poids: 10% 10! 10° 107! 1072 1073
position: 2 1 -2 -3

0 -1
123;456

1x10%2+2x10' +3x10°+4x 107 +5x 1072 +6x 1073

1 1 1
— 1 +4x — — _
I xX100+2x10+3 X1+ X10+5X100+6X1000
=123,456.
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La virgule fixe en binaire

Exemple: poids: 2% 23 22 20 20 -1 2=2 -3
position: 4 3 2 1 -2 -3

0o -1
01010;110

Ox2 +1x2+0x22+1x2+0x29+1x27+1x22+0x273
1 1

=8+2+-+-
2 4

= 10,75.

Propriété: S’il y a k bits apres le séparateur, alors le nombre représenté vaut " fois le
nombre entier représenté par la méme suite de bits.

lllustration: Le nombre entier représenté par|01010110 | vaut 86, et I'on a bien

1
10,75 = = - 86.
8



Les nombres signés en virgule fixe

La représentation en virgule fixe est donc équivalente a une réprésentation entiere a un
facteur pres.

Le choix du procédé utilisé pour représenter les entiers reste libre. En pratique, on choisit

e |la représentation non signée pour les nombres non signés.

e |la représentation par complément a deux pour les nombres signés.

Exemple: Sur 8 bits avec 2 chiffres apres la virgule, —24,25 se représente | 10011111 |. En
effet,

1
~24.25 = —(=97)

1 8
= (—2 + 159), et
[10011111]ps = 1509.
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Laddition en virgule fixe

Procédure:

1. On décale les opérandes de facon a faire coincider leurs positions.

Ce décalage s’effectue toujours vers la droite, et peut conduire a perdre les bits les
moins significatifs des représentations.

2. On additionne les représentations alignées a I'aide du méme algorithme que pour les
entiers non signés.

Exemple: Calcul sur 8 bits de 5,5 (2 bits apres la virgule) + (-5,625) (4 bits aprés la
virgule):

5,5 : 000101;10

—5625: |1/0]1 O;O 11110
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1. Décalage: ololol1lo

1;1

0;0

Rappel: Pour étendre les représentations vers la gauche, il faut en répéter le bit de

signe.

2. Calcul de la somme: 111111111

Ce résultat représente donc le nombre —0,25.

1;1
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La virgule flottante

Probléme: La virgule fixe n’est pas adaptée aux applications ou la grandeur des nombres
représentés est tres variable.

Exemple: Masse d’un corps exprimée en kg:

e =~ 40 chiffres apres la virgule en physique des particules.

e ~ 40 chiffres avant la virgule en astronomie.

Solution: Dissocier la représentation des chiffres significatifs d'un nombre de celle de la
grandeur de celui-ci. Un nombre réel v sera exprimé sous la forme

v=m.re,
ou
e r estla base,

e m est la mantisse (en virgule fixe),

e ¢ estI'exposant (entier).
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Exemple: Masse d’un électron:

~9,109.1073! kg

Propriétés:
e La base est égale a 10 pour la notation scientifique usuelle, et a 2 pour les

représentations informatiques.

e Les valeurs possibles de I'exposant déterminent l'intervalle des valeurs
représentables.

e Le nombre de bits choisi pour représenter la mantisse caracterise la préecision avec
laquelle les nombres sont représentés.
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Le standard IEEE 754

Ce standard, tres utilisé, définit plusieurs procédés de représentation, dont

e |la simple précision:

1 8 23 bits

S exposant mantisse

e |la double précision:

1 11 52 bits

S exposant mantisse

Le champ s est un bit de signe. Comme dans le cas des entiers, il vaut 0 pour les nombres
positifs et 1 pour les nombres négatifs.
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Lencodage de I'exposant

Lexposant d’'un nombre est représenté de la fagon suivante:

e Simple précision: Un exposant e est encodé par la représentation entiere non signée
sur 8 bits du nombre e + 127.

Lintervalle des exposants représentables est donc

[-127,...,128].

e Double précision: Un exposant e est encodé par la représentation entiére non signée
sur 11 bits du nombre ¢ + 1023.

Lintervalle des exposants représentables est donc

[—1023,...,1024].
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Lencodage de la mantisse

Le procédé d’encodage de la mantisse différe suivant la valeur de I'exposant.

Premier cas: Lexposant n’est pas égal a une valeur extréme (—127 ou 128 pour la simple
précision, —1023 ou 1024 pour la double précision).

On dit alors que la mantisse est normalisée.

Dans ce cas, la mantisse m représentée par b1b, ... b, (avec n = 23 pour la simple
précision et n = 52 pour la double précision) vaut

n
m| =1+ Zz—ib,-.
=1

1;191 by | b3 bn

Corollaire: Pour une mantisse normalisée m,ona 1l < |m| < 2.
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Exemple

Calcul de la représentation en simple précision de —7,5:

e Ce nombre est négatif, donc le bit de signe est égal a|1|.

e Afin d’obtenir une mantisse normalisée, il faut choisir un exposant égal a 2. On obtient

alors

7,5
Im| = >3 = 1,875,

qui satisfait bien 1 < |m| < 2.

e La représentation de 'exposant est égale a la représentation entiere non signée sur 8
bits du nombre 2 + 127 = 129, soit | 10000001 |.

e Ona
1,.875=1+2"1 42724273

La mantisse est donc représentée par la suite de bits

11100000000000000000000 |.
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Les mantisses dénormalisées

Deuxiéme cas: Lexposant est égal a sa valeur minimale (—127 pour la simple précision et
—1023 pour la double précision).

On dit alors que la mantisse est dénormalisée.

Dans ce cas, la mantisse m représentée par b1b> ... b, vaut

n
m| = Z iy
=1

b ;bz by bn

Corollaire: Pour une mantisse dénormalisée m, on a 0 < |m| < 2.
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Exemple

Calcul de la représentation en simple précision de 27140;

e Le bit de signe est égal a|0].

e Aucun exposant représentable ne conduit a une mantisse normalisée. On choisit donc
un exposant égal a —127, dont la représentation est| 00000000 |.

e Ona
7—140

y—127

m| = =271,
qui satisfait bien 0 < |m| < 2.

e La mantisse est représentée par la suite de bits

00000000000001000000000 |.
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Lutilité des mantisses dénormalisées

Les mantisses dénormalisées permettent de représenter des nombres plus petits en valeur
absolue gu’avec les mantisses normalisées, au prix d’une diminution de précision.

Cas particulier: Représentation du nombre zéro:

e La mantisse est nécessairement dénormalisée. Lexposant prend donc sa plus petite
valeur possible, et se représente [000...0].

e La mantisse est égale a 0, et se représente |000...0].

e Le bit de signe est quelconque.

Il y a donc deux représentations de zéro:

e | 000...0|(zéro positif), et

e 100...0/|(zéro négatif).
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Les valeurs spéciales

Troisieme cas: Lexposant est égal a sa valeur maximale (128 pour la simple précision et
1024 pour la double précision).

Cette situation sert a encoder des valeurs spéciales, qui représentent des résultats qui ne
correspondent pas a un nombre réel:

e Sitous les bits de la mantisse sont égaux a 0: La représentation indique un
dépassement

— vers les valeurs positives si le bit de signe est 0 (infini positif).

— vers les valeurs négatives si le bit de signe est 1 (infini négatif).

e Si au moins un bit de la mantisse est égal a 1: La représentation correspond a une
valeur indéfinie: NaN (Not a Number). Celle ci posséde un signe.
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Les nombres représentables

Lensemble des réels représentables a I'aide d’'un nombre de bits donné ne forme pas un
intervalle: Comme les réels ne sont représentés qu’avec une précision limitée, 'ensemble
des réels représentables n’est pas un continuum.

Il est cependant utile de connaitre les bornes des intervalles contenant les réels
représentables. La situation est la suivante:

— valeurs trop petites valeurs trop grandes ——

intervalles contenant les valeurs représentables

- 1 O |

- : | | —

valeurs trop petites en valeur absolue
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Plus grande valeur absolue représentable max,:

e Simple précision: Lexposant est égal & 127 et la mantisse a 2 — 2723,

—  max, ~ 3,403.1038,

e Double précision: Lexposant est égal a 1023 et la mantisse & 2 — 2772,

—>  maxy, =~ 1,798 10308,

Plus petite valeur strictement positive représentable min,,:

e Simple précision: Lexposant est égal a —127 et la mantisse a 2~22.

—s  min, ~ 1,401.10~%.

e Double précision: Lexposant est égal & —1023 et la mantisse a 271,

—s  min, ~ 4,941 .1073%4,
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Laddition en virgule flottante

Laddition de deux nombres v{ = m .2°1 et vy = m, .2°2 S’effectue de la fagon suivante (on
suppose lej| < |ea]):

1. Onremplace e par e} = e, et my par mj = my .2°17¢2.

Note: Cela peut conduire a perdre un certain nombre de bits de la représentation de
mp, ou a dénormaliser cette mantisse.

2. On remplace chaque mantisse negative par son complément a deux.

3. On calcule la somme m des deux mantisses en virgule fixe.

4. Sile résultat est négatif, on le remplace par son complément a deux.

5. On normalise m.2°1 de maniére & obtenir une mantisse normalisée ou dénormalisée.

Note: Cette opération peut conduire a détecter un dépassement.
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La multiplication en virgule flottante

La multiplication de deux nombres v; = m .2°! et v, = my .2°2 S’effectue grace a
I'algorithme suivant:

1. On détermine le signe du produit.
2. On calcule la somme e + e, en arithmétique entiere.

Note: Cela peut conduire a détecter un dépassement, ou a effectuer un arrondi vers
Zéro.

3. On calcule le produit m = m; . my en virgule fixe.

4. On normalise si nécessaire le résultat m .2¢, de la méme facon que pour I'addition.

80



La représentation de textes

Il existe plusieurs standards d’encodage des caracteres alphanumériques.

Le code ASCII

Ce standard est a la base d’'une grande majorité des encodages actuellement utilisés.

Principes:

e Un caractere est encodé a l'aide de 7 bits d’information. On attribue donc a chaque
symbole un code dans l'intervalle [0, ..., 127].

e Les codes de 0x00 a Ox1F représentent des caractéres de contréle. Leur
interprétation peut dépendre du systeme utilisé.
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e Les codes de 0x20 a Ox3F correspondent aux symboles mathématiques, a la
ponctuation et aux chiffres. Le code du chiffre n est égal a 0x3n.

Remarque: La valeur d’un chiffre est donc égale aux quatre bits de poids faible de son
code.

e Les codes de 0x40 a Ox5F contiennent les lettres majuscules et quelques symboles
spéciaux. Les lettres sont classées par ordre alphabétique et possedent des codes
consécutifs, ce qui facilite les opérations de comparaison entre chaines de caracteres.

e Les codes de 0x60 a Ox7F contiennent les lettres minuscules, un caractére de contrble
(0x7F) et quelques symboles spéciaux.

Note: Les codes d’une méme lettre majuscule et minuscule partagent les mémes cing
bits de poids faible.
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Table des caracteres imprimables ASCII:
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Le standard ISO 8859-1

Les ordinateurs modernes manipulent les données par groupes de 8 bits. Par rapport a
'’ASCII, un bit supplémentaire permet de représenter 128 caracteres de plus.

Le standard ISO 8859 regroupe une quinzaine d’encodages couvrant les symboles les
plus utilisés par les langues occidentales:

e Les 128 premiers caracteres (bit de poids fort égal a 0) coincident avec le code ASCII.
e Les 128 caractéres supplémentaires different pour chaque variante du standard.

e La variante la plus utilisée, ISO 8859-1 ou ISO latin1, est un bon compromis pour les
applications encodant chaque caractére sur un octet.
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Unicode

Lécriture de certaines langues nécessite plus de 256 symboles (p.ex.: chinois, japonais,
coréen, ...).

Le standard Unicode a été introduit afin d’unifier la représentation de tous les systémes
d’écriture actuels et historiques.
Propriétés:

e La version actuelle d’Unicode (17.0.0, septembre 2025) définit 159801 symboles.

e Les 256 premiers codes sont ceux du standard ISO 8859-1.

e Les codes appartiennent a l'intervalle [0, Ox10FFFF]. La représentation d’'un caractere
nécessite donc 21 bits.

e Le symbole de code k est noté U+k, ou k est écrit en hexadécimal.

Exemple: le symbole “€” correspond a U+20AC.
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La compression UTF-8

Linconvénient d’Unicode est que cet encodage est inefficace lorsque la majorité des
caracteres d’un texte sont représentables en ASCII ou en ISO 8859-1.

La compression UTF-8 vise a pallier cet inconvénient, en encodant chaque symbole a
I'aide d’'un nombre variable d’octets. Lhypothese est que les codes de petite valeur sont

les plus fréquents.

Principe: La représentation du symbole U+k dépend de l'intervalle auquel appartient k:

e Sik € [0, Ox7F]: Le caractéere est représenté par I'octet

Obgbs ... by |,

ou bgbs . .. by est 'encodage binaire non signé de k.

e Sik € [0x80, Ox7FF]: Le caractere est représenté par les deux octets

110b10bg . . . bg || 10bsby . . . by |,

ou bypbg . .. bg est 'encodage binaire non signé de k.
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e Sik € [0x800, OXFFFF]: Le caractere est représenté par les trois octets

1110b15b14b13b12 || 10611610 . .. bg || 10b5by .. . by |,

ou bysby4 ... bg est 'encodage binaire non signé de k.

e Sik € [0x10000, OxIOFFFF]: Le caractere est représenté par les quatre octets

11110by0b19b1g || 10b17D1¢ - .. b12 || 10b11b10 . . - bg || 10bs5by . . . by |,

ou bypbq9 ... bg est 'encodage binaire non signeé de k.

Exemple: Pour U+20AC (“€”), on a k = 0x20AC € [0x800, 0xFFFF]. En binaire, 0x20AC
s’écrit 00100000 1010 1100. Ce symbole est donc représenté par les trois octets

11100010 (| 10000010{ 10101100/,

c’'est-a-dire |E2 |82 || AC | en hexadécimal.
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Chapitre 3

La structure d’'un ordinateur
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Les composants d’'un ordinateur

Un ordinateur contient:

e un ou plusieurs processeur(s) (Central Processing Unit, CPU), exécutant les
programmes.

e de la mémoire pour retenir les programmes et les données.
e un générateur d’horloge imposant le rythme d’exécution des instructions.

e un ensemble de périphériques: carte graphique (Graphics Processing Unit, GPU),
carte(s) réseau, carte son, ...

e des contrbleurs gérant les flux de données.

e des bus de communication.
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Exemple d’'organisation

N
Générateur Processeur
d’horloge (CPU)
J
Carte graphique Controleur Mémoire
(GPU) mémoire externe
Carte(s) Contrdleur Mémoire
réseau d’entrées/sorties de masse

Contrdleur Carte
USB son
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La mémoire vive

Le terme mémoire est tres général, et désigne tous les composants capables de retenir de
I'information.

La mémoire vive (Random-Access Memory, RAM) est un type de mémaoire pour lequel

la consultation et la modification de n'importe quelle partie de son contenu sont
possibles de facon illimitée.

e Son contenu est préservé tant que I'ordinateur reste sous tension.

le taux de transfert (nombre d’octets lus ou écrits par seconde) est élevé.

e la latence (délai avant la fin d’'une opération) est faible.
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Les utilisations de la mémoire vive

Dans un ordinateur, la mémoire vive est présente a plusieurs endroits:

e en tant que mémoire externe, pour retenir des données et des programmes.
e dans le processeur lui-méme, en tant que registres.
e comme mémoire cache pour accélérer les acces du processeur a la mémoire externe.

e dans les périphériques.

Deux technologies sont principalement employées:

e Mémoire statigue (SRAM): Linformation est retenue par des boucles de feedback.

e Mémoire dynamique (DRAM): Linformation est représentée par la charge de
condensateurs.
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La mémoire morte
La mémoire morte (Read-Only Memory, ROM) est un type de mémoire dont le contenu ne
peut pas étre modifié pendant son fonctionnement normal.

Elle est employée pour mémoriser les données et les programmes qui ne doivent pas
changer au cours de la vie du systeme, par exemple:

e le programme de démarrage d'un ordinateur personnel.
e les polices de caractéres d’'une console.

e le logiciel d’'un systeme embarqué.
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Les technologies de mémoire morte

e Certains composants ont un contenu fixé a la fabrication.
e Les composants OTP (One-Time Programmable) sont programmables une seule fois.

e Les EPROM (Erasable Programmable ROM) et EEPROM (Electrically Erasable
PROM) peuvent étre reprogrammes, grace a un mécanisme capable d’effacer leur
contenu.

e La mémoire Flash est similaire a 'TEEPROM, mais implémente un mécanisme
d’effacage plus flexible.

Dans les deux derniers cas, 'opération de reprogrammation est relativement lente, et ne
peut étre effectuée qu’'un nombre limité de fois.
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La mémoire de masse

La mémoire de masse sert a retenir les données et les programmes qui doivent étre
préserves lorsque l'ordinateur est éteint, et qui peuvent potentiellement étre modifiés.

Les deux principales technologies actuellement utilisées sont:

e les disques durs (Hard-Disk Drives, HDDs).

e la mémoire flash (Solid-State Drives, SSDs).
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L adressage

La mémoire vive et la mémoire morte sont organisées de la fagon suivante:

e Les données sont mémorisées dans des cellules de taille fixe.
e Chaque cellule est identifiée par son adresse.

e L'ensemble des adresses possibles forme I'espace d’adressage.

Exemple: Architecture x86-64 (PC):

e Chaque cellule contient 8 bits.
e L'adressage s’effectue sur 64 bits. Lespace d’adressage correspond donc a l'intervalle

[0, 264 — 11.
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La notion d’adresse est liée au concept de pointeur rencontré en programmation.

Exemple:

0x103: 0x78
0x102: 0x56
0x101: 0x34
0x100: 0x12

La cellule d’adresse 0x100 contient 'octet Ox12. On dit alors que 0x100 pointe vers 0x12.
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Le stockage de données sur plus d’'une cellule

Si une donnée doit étre mémorisée sur plus d’'une cellule, on la découpe en blocs placés
dans des cellules consécutives de la mémaoire.

ll'y a deux facon de le faire. Les cellules d’adresse croissante énumerent les blocs

e depuis le poids faible vers le poids fort: représentation petit-boutiste (little-endian).

e depuis le poids fort vers le poids faible: représentation gros-boutiste (big-endian).

Exemple: Représentation de 0x12345678 sur des cellules de 8 bits, a partir de 'adresse
0x100:

0x103: 0x12 0x103: 0x78

0x102: 0x34 0x102: 0x56

0x101: 0x56 0x101: 0x34

0x100: 0x78 0x100: 0x12
Représentation petit-boutiste Représentation gros-boutiste
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Lalignement
Méme si la mémoire est organisée en octets, les échanges entre le processeur et la
mémoire externe s’effectuent par blocs de plus grande taille (p.ex., 32, 64 ou 128 bits).

Il faut parfois en tenir compte lors de la programmation: Une donnée représentée sur n
octets, ou n est une puissance de 2, est dite alignée si son adresse est un multiple de n.

Certaines architectures (p.ex., MIPS), interdisent les transferts de données non alignées.
Pour d’autres (p.ex., x86-64), de tels transferts sont possibles, mais sont inefficaces.
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Le processeur est le composant de I'ordinateur responsable de I'exécution des

programmes.

Le processeur

Les programmes que le processeur peut traiter doivent étre exprimés en code machine.

Deux modeles d’architecture existent:

e Modele Von Neumann: Les programmes et les données partagent le méme espace

d’adressage:

Processeur
(CPU)

—

Mémoire
commune
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e Modele Harvard: Les programmes et les données sont placés dans des mémoires

séparées:

—_—

Mémoire de
programme

Processeur
(CPU)

—

Mémoire de
données
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La structure d’'un processeur

Organisation typique d’'un processeur (a un niveau d’abstraction élevé):

|

Unité de
controle

I

¢

|

Banque de
registres

: | Bus

I
I

»[

Gestionnaire de

communications

|

I

interne
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e La banque de registres est une petite quantité de mémoire vive, utilisée comme
espace de travail.

Lensemble des registres disponibles dépend de I'architecture du processeur.

e Lunité arithmétique et logique (Arithmetic Logic Unit, ALU) est le composant chargé
de traiter I'information.

Selon l'architecture, les opérations qu’il peut effectuer peuvent inclure

— les opérations arithmétiques sur les nombres entiers: addition, soustraction,
multiplication, division, ....

— le traitement de nombres réels (Floating-Point Unit, FPU): addition, soustraction,
multiplication, division, racine carrée, logarithmes, fonctions trigonométriques, ...

— les opérations logiques (opérateurs booléens, décalages, manipulation de bits).
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e Le bus interne est un canal de communication entre les composants du processeur.

Sa taille (habituellement 8, 16, 32 ou 64 bits) est une caractéristiue importante de
I'architecture.

e Le gestionnaire de communications relie le bus interne a I'interface extérieure du
processeur.

Il est notamment responsable de gérer les échanges de données avec la mémoire et
les périphériques.

e L'unité de conirdle est responsable de I'exécution des instructions, en commandant les

autres composants.

Le jeu d’'instructions disponibles est défini par I'architecture.
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Le code machine

Les programmes rédigés dans un langage de programmation tel que C, C++, Java ou
Python ne peuvent pas étre directement exécutés par le processeur; ils doivent étre
préalablement traduits en code machine.

Deux mécanismes sont possibles:

e Un interpréteur traduit chaque instruction au moment ou elle doit étre exécutée.

e Un compilateur traduit le programme en code machine une fois pour toutes.

compilation assemblage édition de liens

Code Code Code
source assembleur objet

Code
machine

Bibliotheques
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La production de code machine

1. Compilation: Le code source est traduit en code assembleur par un compilateur.

Le code assembleur est composé d’instructions que le processeur peut effectuer, mais
il est exprimé dans un format lisible.

2. Assemblage: Le code assembleur est traduit en code objet.

Celui-ci est similaire au code machine, mais peut contenir des références incomplétes
vers du code extérieur (p.ex., des sous-routines), ainsi qu’étre fragmenté en plusieurs
modules.

3. Edition de liens: Le code objet est combiné avec du code issu de bibliothéques
(librairies) pour obtenir le code machine exécutable.
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Les registres de contrdle

Pour exécuter les instructions, l'unité de contréle du processeur gere deux registres:

e Le reqistre d'instruction (Instruction Register, IR) contient le code de l'instruction
(opcode) en cours d’exécution.

e Le compteur de programme (Program Counter, PC, ou Instruction Pointer, RIP pour
x86-64) contient I'adresse en mémoire de la prochaine instruction a exécuter.
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’exécution des instructions

Lunité de contrlle effectue les opérations suivantes, au rythme du signal d’horloge:

1. Charger dans IR 'opcode pointé par PC.
2. Décoder la valeur de IR.

3. Exécuter l'instruction correspondant en contrélant les autres composants du
processeur (banque de registres, ALU, ...).

Si I'instruction posséde des opérandes, leur lecture et leur décodage font partie de
cette étape.

Mettre PC a jour de facon a le faire pointer vers l'instruction suivante.

4. Recommencer a I'étape 1.
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lllustration

Exécution du programme suivant par un processeur x86-64, a partir de RIP = 0x1000:

0x1003:
0x1002: 0xC3
0x1001: 0xD8
0x1000: 0x01
OxFFF:

1. Lopcode 0x01 pointé par RIP est chargé dans IR.

2. Cet opcode est décodé. Il s’agit ici d’'une opération d’addition.
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3. Cette opération d’addition définit un octet d’opérandes. Celui-ci (égal a 0xD8) est
chargé et décodeé.

Dans le cas présent, les opérandes signifient que I'addition porte sur deux registres
appelés EAX et EBX, et que le résultat doit étre écrit dans EAX.

4. RIP est incrémenté de deux unités, pour le faire pointer vers l'instruction suivante (en
0x1002).

5. Lopération d’addition est exécutée:

(a) Lunité de controle demande a la banque de registres de transférer le contenu de
EAX et EBX vers 'ALU via le bus.

(b) LALU est pilotée de facon a effectuer une addition, et a placer le résultat sur le bus.

(c) La banque de registres charge le résultat dans EAX.

6. La procédure se répete a partir du point 1 pour l'instruction suivante.
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Remarques:

e Certaines instructions peuvent modifier explicitement le pointeur de programme, afin
de le faire pointer ailleurs que vers l'instruction suivante (saut).

e Les processeurs modernes implémentent des mécanismes supplémentaires:

— Réalisation simultanée de plusieurs étapes de chargement, décodage et exécution
des instructions (pipelining).

— Gestionnaire de mémoire (Memory Management Unit, MMU): Mise en ceuvre de
techniques de protection, de traduction d’adresses, de gestion de la mémoire
cache, ...

— Processeurs multicoeurs: Plusieurs processeurs individuels (coeurs, cores)
intégrés dans un méme composant.

— Interruptions: Mécanisme permettant de suspendre I'exécution du programme
courant pour effectuer des opérations urgentes, et de le reprendre par la suite.
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Larchitecture x86-64

Extension de I'architecture x86 introduite en 1978 (IBM PC).

Plusieurs modes de fonctionnement, notamment dans un but de compatibilité avec
x86. Dans ce cours, nous nous limitons au mode 64 bits.

Modele mémoire Von Neumann. En mode 64 bits, 'espace d’adressage est

[0,26% — 17.

16 registres généraux de 64 bits: RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8, R9,
R10, R11, R12, R13, R14, R15.

Certains de ces registres possedent des modalités d’utilisation particulieres.
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Les parties de registres

Il est possible de faire référence a une partie seulement du contenu des registres

généraux:

RAX:

RBX:

RCX:

RDX:

63

EAX

32 31

16 15

8 7

AH

63

EBX

32 31

16 15

8 7

BH

63

ECX

32 31

16 15

8 7

CH

63

EDX

32 31

16 15

8 7

DH

DX

RBP:

RSI:

RDI:

RSP:

63

EBP

32 31

16 15

8 7 0

BPL

63

32 31

63

32 31

63

32 31
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R8D

[ 1
63 32 31 1615 8 7 0

R8: R8B

R8W

ROD

[ 1
63 32 31 1615 87 0

R9: R9B

ROwW

Notes:

e Certaines restrictions existent sur les utilisations possibles de ces registres par les
instructions.

e D’autres registres sont définis pour la manipulation des nombres en virgule flottante,
pour exploiter certaines instructions particulieres, et pour configurer le processeur.
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Les drapeaux

Le registre RFLAGS contient des drapeaux (flags), qui sont des bits d’information mis a
jour par certaines instructions:

e CF (Carry Flag, bit 0): Indique qu’une opération arithmétique sur des nombres de n
bits a produit un report a la position n.

e ZF (Zero Flag, bit 6): Indique qu’une opération a fourni un résultat nul.

e SF (Sign Flag, bit 7): Correspond au bit de poids fort du résultat d’'une opération (bit
de signe dans le cas d’'une donnée signee).

e OF (Overflow Flag, bit 11): Indique un dépassement arithmétique pour des données
signées.
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Les modes d'adressage

En langage d’assemblage, une instruction est composée

e d'une mnémonique, qui est le nom conventionnel de l'instruction (p.ex., ADD).

e d'opérandes. Chaque opérande peut représenter une source, une destination, ou les
deux.

Larchitecture x86-64 définit plusieurs fagons d’exprimer les opérandes (modes
d'adressage).

Pour chaque instruction que nous allons étudier, les modes d’adressage permis seront
spécifiés.
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adressage reqistre

Cet adressage indique qu’un opérande est lu depuis un registre (source), ou qu’'un résultat
doit étre placé dans un registre (destination).

Notation et exemple:

ADD RAX, RBX

Cette instruction additionne le contenu de RAX et de RBX, et place le résultat dans RAX.
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Ladressage immeédiat

Cet adressage, aussi appelé adressage littéral, définit un opérande constant.

Notation et exemple:

ADD RDI, 0x10

Cette instruction ajoute 16 a la valeur de RDI.

Note: Ladressage immédiat ne peut pas étre employé pour des destinations!
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Ladressage direct

Celui-ci indique qu’un opérande doit étre lu depuis la mémoire (source), ou qu’un résultat
doit étre écrit en mémoire (destination), a une adresse fixée.

Syntaxe:
<taille> ptr [ <adresse> ],
ou

e <adresse> est un pointeur vers 'emplacement de mémoire concerné.

e <faille> est un des mots-clés qword (64 bits), dword (32 bits), word (16 bits) ou byte
(8 bits).

Exemple:

ADD dword ptr [0x1234], R8D

Cette instruction ajoute a I'entier de 32 bits situé a 'adresse 0x1234 le contenu de R8D.
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Notes:

e Larchitecture x86-64 est petit-boutiste.

¢ |l ne faut pas oublier d’aligner si nécessaire les données mémorisées sur plus d’'une
cellule.
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Ladressage indirect

Comme l'adressage direct, il indique un acces a la mémoire. La différence est que
I'adresse n’est plus constante, mais donnée par le contenu d’un registre.

Notation et exemple:

ADD AH, byte ptr [RBX]

Cette instruction ajoute a AH 'octet pointé par RBX.

Note: Larchitecture x86-64 définit un modele d’adressage sur 64 bits. Ladressage indirect
ne peut donc faire intervenir que des registres de 64 bits.
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Ladressage indirect indexé
Il s’agit d’'une variante de I'adressage indirect, dans laquelle I'expression du pointeur peut
faire intervenir un index, un facteur et un déplacement.
Syntaxe:
<taille> ptr [ <base> + <facteur> * <index> + <déplacement> ],
ou

<taille> est qword, dword, word ou byte

e <base> et <index> sont des registres de 64 bits.

<facteur> vaut 1, 2, 4 ou 8.

e <déplacement> est une constante signée représentable sur 32 bits.

Note: Certains de ces éléments sont optionnels.
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Exemple:

ADD DX, word ptr [RAX + 8*RBX + 2]

RBX:

RAX:

RAX + 8*RBX + 2: ——=
RAX + 8" RBX: ——

_<

bloc 2

bloc 1

bloc 0
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Les instructions x86-64

Larchitecture x86-64 définit plusieurs centaines d’instructions. Dans ce cours, nous
n’étudierons qu’un petit sous-ensemble d’entre elles.

Pour chaque instruction, nous précisérons

e les modes d’adressage qu’elle supporte, a I'aide des codes suivants:
— imm pour immédiat.
— reg pour registre.

— mem pour direct, indirect, ou indirect indexé.

e |les drapeaux affectés par son exécution.
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Les instructions de manipulation des données

L'instruction MOV

Cette instruction copie des données, du second opérande vers le premier.

Exemples:

e Linstruction

MOV EBX, dword ptr [0x100]

lit quatre octets en mémoire depuis I'adresse 0x100, et les écrit dans le registre EBX.

e Linstruction

MOV byte ptr [RAX + RSI - 4], OxFF

écrit 'octet OXFF en mémoire, a I'endroit pointé par RAX + RSI — 4.
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Modes d’adressage:

Op.1 | Op.2
reg | imm
mem | imm
reg | reg
reg | mem
mem | reg

Note: Il n’est pas permis de combiner des accés a la mémoire pour les deux opérandes.

Drapeaux affectés: Aucun.
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Linstruction XCHG

Cette instruction échange le contenu de ses deux opérandes.

Exemples:

e Linstruction

XCHG AL, AH

permute les 8 bits de poids faible et de poids fort du registre AX.

e Linstruction

XCHG EAX, EAX

n’a aucun effet. Linstruction NOP (No OPeration) en est une abréviation.
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Modes d'adressage:

Drapeaux affectés: Aucun.

Op.1 | Op.2
reg | reg
reg | mem
mem | reg
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Les instructions arithmétiques

L'instruction ADD

Nous avons déja utilisé cette instruction dans des exemples. Son effet est d’ajouter son
second opérande au premier.

Exemple:

Linstruction

ADD R10, -1

décrémente le contenu de R10 d’'une unité.

Note: La méme instruction peut étre employée pour des nombres non signés ou bien
représentés par complément a deux.

Modes d’adressage: Identiques a ceux de MOV.

Drapeaux affectés: CF, ZF, SF et OF.
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Linstruction SUB

Cette instruction est similaire a ADD, mais soustrait son second opérande du premier.

Exemple:

Linstruction

SUB R10, 1

a le méme effet que la précédente.

Modes d’adressages et drapeaux affectés: ldentiques a ceux de ADD.

130



Linstruction CMP

Cette instruction implémente la méme opération que SUB, mais ne modifie pas son premier
opérande.

En d’autres termes, le seul effet de cette instruction est de mettre a jour les drapeaux.

Cela permet d’effectuer des comparaisons de valeurs, pouvant servir de base a des
décisions dans les instructions suivantes.

Exemple:

Linstruction

CMP EAX, EBX

calcule la différence A = EAX — EBX. On a alors:
e /F =1 ssi A =0, c’est-a-dire EAX = EBX.

e CF =1ssiA<0,cest-a-dire EAX < EBX (si les nombres sont non signés).

Modes d’adressages et drapeaux affectés: ldentiques a ceux de ADD.
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Les instructions INC et DEC

Ces instructions incrémentent (INC) ou décrémentent (DEC) leur opérande, qui sert donc a
la fois de source et de destination.

Exemple:

Linstruction

INC byte ptr [RBX]

ajoute 1 a l'octet pointé par RBX.

Modes d’adressage:

Op.1
reg
mem

Drapeaux: CF est préserve, et ZF, SF et OF sont mis a jour.
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Linstruction MUL

Cette instruction multiplie deux nombres non-signés de rn bits, avec n € {8, 16,32, 64}. Le
résultat est représenté sur 2n bits.

Modes d’adressage: Linstruction admet un seul opérande:

Op.1
reg
mem

Lopération effectuée depend de la taille de cet opérande:

8 bits: Lopérande est multiplié par AL; le résultat est placé dans AX.

16 bits: Lopérande est multiplié par AX; le résultat est placé dans DX:AX.

32 bits: Lopérande est multiplié par EAX; le résultat est placé dans EDX:EAX.

64 bits: Lopérande est multiplié par RAX; le résultat est placé dans RDX:RAX.
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Exemple:

Linstruction

MUL dword ptr [0x1234]

multiplie I'entier non-signé de 32 bits pointé par 0x1234 par le contenu de EAX. Les 32 bits
de poids fort du résultat sont écrits dans EDX, et les 32 bits de faible dans EAX.

Note: Contrairement a I'addition, le fait que les nombres sont représentés de fagon signée
ou non signeée influence la multiplication.

Drapeaux affectés: CF et OF sont mis a 0 si le résultat de 'opération est représentable sur
n bits, ou n est la taille des opérandes, et a 1 sinon.

Les autres drapeaux sont modifiés de fagon arbitraire.
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Linstruction IMUL

Cette instruction est similaire a MUL, mais calcule le produit de deux nombres signes.

Lopération effectuée, les modes d’adressage et les drapeaux affectés sont identiques a
ceux de MUL.

Note: Il existe d’autres formes de cette instruction (a deux et trois opérandes), que nous
n’étudierons pas.
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Les instructions logiques

Les instructions AND, OR et XOR

Ces instructions appliquent une opération booléenne bit par bit a leurs deux opérandes, et
écrivent le résultat dans la premiere.

e AND: Le résultat est égal a 1 ssi les deux bits sont égaux a 1 (et logique).
e OR: Le résultat est égal a 1 ssi au moins un des deux bits est égal a 1 (ou inclusif).

e XOR: Le résultat est égal a 1 ssi exactement un des deux bits est égal a 1 (ou exclusif).

Ces instructions permettent de forcer a 0 (AND), forcer a 1 (OR) ou de complémenter (XOR)
des bits a des positions données dans une valeur.
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Exemples:

e Linstruction

AND byte ptr [0x100], OxFC

force a 0 les deux bits de poids faible de I'octet situé a I'adresse 0x100.

e Linstruction

OR AL, OxF®

force a 1 les quatre bits de poids fort du registre AL.

e Linstruction

XOR RBX, OxFFQ0

complémente les bits 8 a 15 du registre RBX.
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Modes d’adressage: ldentiques a ceux de ADD.

Registres affectés:

e CF et OF sont mis a 0.

e /F et SF sont mis a jour en fonction du résultat de I'opération.
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Linstruction NOT

Cette instruction admet un seul opérande:

Op.1
reg
mem

Son effet est de complémenter tous les bits de cet opérande (c’est-a-dire, de la remplacer
par son complément a un).

Exemple: Si le registre DX contient initialement Ox5A, alors I'instruction

NOT DX

lui attribuera la valeur OxFFAS.

Note: Cette instruction est équivalente a

XOR DX, OxFFFF

Drapeaux affectés: Aucun.
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Les instructions de manipulation de la pile

Comme la plupart des autres architectures, les processeurs x86-64 gerent une pile.

Une pile est une structure de données LIFO (Last-In First-Out), définissant deux
opérations:

e Empiler une valeur (push) a son sommet.

e Depiler une valeur (pop) depuis son sommet.

La pile sert notamment a

e mémoriser des données temporaires, comme les arguments, les variables locales et
les points de retour des fonctions invoquées par un programme.

e sauvegarder le contenu de registres modifiés par une sous-routine.

140



La pile dans l'architecture x86-64

e Le contenu de la pile correspond a des cellules consécutives de la mémoire.
e La pile croit vers les adresses décroissantes.

e Le registre RSP pointe en permanence vers le dernier octet empilé.

contenu de
la pile

RSP: o >
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Linstruction PUSH

Cette instruction empile une valeur de 64 bits, donnée par son opérande.

Modes d'adressage:

Note: Ladressage registre doit utiliser un registre de 64 bits. Les adressages direct,
indirect et indirect indexé doivent employer le mot-clé qword.

Opération réalisée:

1. Décrémenter RSP de 8 unités.

2. Recopier 'opérande a I'endroit pointé par RSP.

Drapeaux affectés: Aucun.

Op.1
imm
reg
mem

142



Linstruction POP

Cette instruction dépile une valeur de 64 bits, et I'écrit a 'endroit spécifié par son opérande.

Modes d’adressage:

Op.1
reg
mem

Opération réalisée:

1. Lire 8 octets depuis 'emplacement pointé par RSP, et les recopier a I'endroit
représenté par I'opérande.

2. Incrémenter RSP de 8 unités.

Drapeaux affectés: Aucun.
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Exemple:

Les instructions

permutent le contenu de R8 et de R9 (a condition que RSP pointe vers une zone de la

mémoire pouvant accueillir la pile).

PUSH RS
PUSH R9
POP RS
POP R9
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Les instructions de controle

Ces instructions servent a modifier I'exécution séquentielle du programme, en transférant
le contréle (c’est-a-dire, en continuant 'exécution) a un endroit arbitraire de celui-ci.

Linstruction JMP

Cette instruction effectue un saut inconditonnel vers un emplacement de la mémoire de
programme, donné par son opérande.

En d’autres termes, l'instruction charge cet opérande dans le compteur de programme.

Modes d'adressage:

Op.1
imm
reg
mem
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Drapeaux affectés: Aucun.
Exemple:

Linstruction

JMP 0x1000

continue I'exécution du programme a I'adresse 0x1000.

Remarques:

e En pratique, la destination d’'un saut est exprimée symboliquement, a I'aide d’une
étiquette:

boucle: NOP
NOP
NOP
JMP boucle
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Dans cet exemple, 'adressage est immédiat, la valeur de boucle étant calculée et
substituée par le programme d’assemblage.

e Linstruction JMP peut employer un adressage indirect ou indirect indexé.

Exemple: Linstruction

JMP gword ptr [8*RBX + 0x1000]

1. lit une adresse de 64 bits depuis un tableau situé a I'adresse 0x1000, a la position
spécifiée par RBX;

2. effectue un saut vers cette adresse.

Ce mécanisme permet notamment d'implémenter une décision multiple.
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Les instructions de saut conditionnel

Ces instructions sont similaires a JMP, et possedent les mémes modalités d’utilisation et
les mémes modes d’adressage.

La différence est qu’elles n’effectuent un saut que si une condition particuliere est
satisfaite.

La condition peut porter sur I'état d’'un drapeau:

Instruction | Condition
]C CF=1
INC CF=0
JZ ZF =1
INZ ZF=0
]S SF=1
JNS SF=0
JO OF =1
JNO OF =0
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Exemple:

Les instructions

ADD R8, R9
JC report

calculent la somme de R8 et de R9, et continuent I'exécution du programme a |'étiquette
report seulement si un report a été produit a la position 64.

La condition peut également porter sur le résultat d’'une comparaison réalisée par CMP:

Instruction | Condition

JE opl = op2

JNE opl #+ op2

]G opl > op2 (valeurs signées)

JGE opl > op2 (valeurs signées)

JL opl < op2 (valeurs signées)

JLE opl < op2 (valeurs signées)

JA opl > op2 (valeurs non signées)
JAE opl > op2 (valeurs non signées)
JB opl < op2 (valeurs non signées)
JBE opl < op2 (valeurs non signées)
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Exemple:

Les instructions

CMP EAX, OxFFFF
JA dépassement

effectuent un saut vers dépassement seulement si EAX contient une valeur (non signée)

supérieure a OxFFFF.

Remarque: Certaines instructions sont équivalentes (par exemple, JE et 1Z).

Drapeaux affectés: Aucun.
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Linstruction LOOP

Cette instruction permet d’'implémenter une boucle. Son opérande est défini comme celui
de JMP, et peut employer les mémes modes d’adressage.

Opérations réalisées:

1. Décrémenter RCX d’une unité.

2. Sila nouvelle valeur de RCX est non nulle, effectuer un saut a I'endroit spécifié par
'opérande.

Exemple:

Les instructions suivantes effectuent 256 itérations:

MOV RCX, 0x100
boucle: NOP

NOP

NOP

LOOP boucle
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Notes:

e Le registre employé comme compteur de boucle est nécessairement RCX.

e La valeur initiale de RCX ne correspond pas toujours au nombre d’itérations. En effet,
pour RCX = 0, ce nombre est égal a 294 et non 0!

Drapeaux affectés: Aucun.
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Les instructions CALL et RET

Ces instructions permettent de programmer des sous-routines.

Linstruction CALL possede les mémes modalités d’utilisation et les mémes modes
d'adressage que JMP.

Opérations realisées:

1. Empiler la valeur courante de RIP, c’est-a-dire I'adresse ou I'exécution du programme
doit reprendre apres la sous-routine.

2. Effectuer un saut vers I'endroit donné par I'opérande.

Linstruction RET ne prend pas d’argument.
Opérations réalisées:
1. Dépiler une valeur de 64 bits.

2. Effectuer un saut vers cette adresse.

Drapeaux affectés: Aucun.
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Exemple: Définition d’une fonction minswap, invoquée depuis le reste du programme:

minswap:

sortie:

CMP ECX, EDX
JLE sortie
XCHG ECX, EDX
RET

MOV ECX, dword ptr
MOV EDX, dword ptr
CALL minswap

MOV ECX, dword ptr
MOV EDX, dword ptr
CALL minswap

[0x100]
[0x104]

[0x108]
[0x10C]
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Chapitre 4

La programmation en assembleur
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Introduction

Le langage d’assemblage n’est pas universel:

e Le modele mémoire, les registres et le jeu d’instructions d’un processeur sont propres
a son architecture.

e La syntaxe du langage peut dépendre des outils utilisés.

e La convention d’appel des fonctions differe d’un systeme d’exploitation a un autre.

Environnement utilisé pour les exemples:

e Architecture x86-64.
e Systeme d’exploitation Linux 64 bits.

e Compilateur GCC.
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Un premier programme

.intel _syntax noprefix

.text

.global deep_thought

.type deep_thought, @function
deep_thought: MOV EAX, 42

RET

e Ladirective|.intel syntax noprefix|indique la variante syntaxique du langage.

e La directive | .text|signale le début du segment de code (c’est-a-dire la partie du
programme qui contient les instructions).
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e Les directives

.global deep_thought
.type deep_thought, @function

indiquent que I'étiquette deep_thought est globale, et représente une fonction.

e Linstruction MOV EAX, 42 |place la constante 42 dans le registre chargé de retenir la
valeur de retour de la fonction.

e Linstruction |RET |termine la fonction.
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Exemple de programme C de test:

#include <stdio.h>
extern int deep_thought(void);
int main()

{
printf("%d\n", deep_thought());

)

Commande de compilation:

gcc -Wall -03 -o test test.c dt.s

ou dt. s est le fichier source assembleur, et test.c le programme C de test.

159



Mécanisme de compilation:

Code source Code assembleur Code objet
o M A
compilation assemblage
test.c test.s test.o
) ) Code/: machine
exécutable
R A
dt.s dt.o test
J y,
~
Bibliotheque
standard

Note: Les fichiers test.s, test.o et dt.o peuvent respectivement étre générés par les
commandes:

e [gcc -S -masm=intel test.c

® gCcC -C test.cC

e (gcc -c dt.s
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Les étiquettes

En assembleur, une étiquette est une valeur représentée symboliguement. Deux formes
d’étiquettes sont possibles:

e Une étiquette d’'adresse se définit de la facon suivante:

<eétiquette>: <instruction> <opérandes>

Une telle étiquette

— prend pour valeur I'adresse de l'instruction suivante. (Un mécanisme similaire
existe pour la mémoire de données.)

— sera substituée en une valeur numérique par le programme d’assemblage.
— peut étre utilisée avant sa définition.

— est soumise a certaines restrictions d’utilisation.

161



e Une étiquette peut également étre définie par la directive

.equ <eétiquette>, <valeur>

qui lui attribue la valeur <valeur>. Une telle étiquette ne peut étre utilisée qu’apres sa
définition.

Exemple:

.intel _syntax noprefix
.text
.global deep_thought?2
.type deep_thought2, @function
.equ answer, 42
end: RET
deep_thought2: MOV EAX, answer
JMP end
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Le segment de données

Un programme assembleur peut également spécifier 'organisation et le contenu initial de
la mémoire de données. Les directives suivantes sont disponibles:

e | .data

indique le début d’'un segment de données.

e | .byte

J

.word

]

.int

et

.quad

, Suivies par une constante entiére, définissent un

entier codé sur respectivement 1, 2, 4 ou 8 octets.

o .fill <répétition>, <taille>, <valeur> |remplitla mémoire avec

<répétition> copies de <valeur>, encodées sur <taille> octets, avec <taille>e {1, 2, 4}.

e | .ascii

® | .asciz

suivie d’'une chaine de caracteres place cette chaine en mémoire.

fait de méme, mais en ajoutant un octet nul a la fin de la chaine.

e |.balign <taille>

aligne I'adresse courante a un multiple de <taille>.
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Exemple: Emission de tickets pour une file d’attente:

nb_tickets:

ticket: I

.intel _syntax noprefix
.data

.int 0

.text

.global ticket

type ticket, @function
NC dword ptr[nb_tickets]

MOV  EAX, dword ptr[nb_tickets]
RET

Programme de test:

#include <stdio.h>

int main()
{
for (;;)
printf("%d\n",

extern int ticket(void);

ticket());
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Les étiquettes et 'adressage immédiat

Pour une raison technique, les étiquettes d’adresse ne peuvent pas toujours directement
figurer dans un adressage immediat.

Par exemple, si x est une telle étiquette, I'instruction

MOV RAX, x

est invalide!

La raison de cette restriction est que la valeur d’'une étiquette d’adresse n’est généralement
connue qu’au moment de I'édition de liens, c’est-a-dire apres la compilation du programme.

Cette situation n’est pas problématique pour les instructions de saut, ni pour 'adressage
direct.
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Par exemple, dans le programme

boucle:

NOP
NOP
JMP boucle

'opérande immédiat de l'instruction | JMP | sera encodé de facon relative au pointeur de
programme dans le code machine, afin de rendre celui-ci relocalisable.

Il est cependant possible d’obtenir 'adresse absolue d’'une étiquette d’adresse en

mentionnant le préfixe offset

flat: On écrira donc

MOV RAX, offset flat:x

au lieu de

MOV RAX, x # Invalide!
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Exemple: Fonction générant un tableau contenant le carré de tous les nombres entiers non
signés encodables sur 16 bits:

.intel _syntax noprefix
.data

tableau: .fill 0x10000, 4, 0
Ltext
.global squares
.type squares, @function

squares: MOV RDI, ©
boucle: MOV  AX, DI
MUL AX

MOV  word ptr[4*RDI + tableau], AX
MOV  word ptr[4*RDI + (tableau + 2)], DX

INC DI

JNZ boucle

MOV RAX, offset flat:tableau
RET

167



Programme de test:

#include <stdio.h>
extern unsigned *squares(void);
int main()
{
unsigned 1, *s;

s = squares();

for (i = 0; 1 < 0x10000; i++)
printf("%u: %u\n", i, s[i]);
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La convention d’appel d’'une fonction

En addition au mécanisme de sauvegarde de I'adresse de retour par CALL, et de
récupération de cette adresse par RET, il est nécessaire de spécifier un protocole pour

e transmettre des arguments a une fonction appelée,
e récupérer la valeur de retour de cette fonction, et

e permettre a cette fonction d’allouer des données temporaires (par exemple, pour ses
variables locales).

Un tel protocole porte le nom de convention d’appel. Dans ce cours, nous allons étudier la
convention employée par les systemes UNIX (Linux, macOS, ...).

Note: Nous nous limiterons a des arguments et a une valeur de retour de type entier ou
pointeur.
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Principes:

e |Les six premiers arguments de 'appel (s’ils existent) sont fournis dans les registres
RDI, RSI, RDX, RCX, R8 et R9, dans cet ordre.

e Les arguments suivants sont empilés (avant I'adresse de retour), dans l'ordre inverse
de leur position.

e La valeur de retour est placée dans le registre RAX.
e La fonction appelée doit préserver les registres RBX, RBP, R12, R13, R14 et R15.

e La fonction appelée doit maintenir le pointeur de pile RSP a une valeur multiple de 16
(juste avant CALL).
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La structure de pile

La structure de pile (stack frame) est une structure de données créée sur la pile a chaque
appel de fonction, et supprimée lorsque cet appel se termine.

Cette structure est indexée a partir du registre RBP, qui pointe vers sa base.

Elle est composée des éléments suivants, dans I'ordre ou ils sont empilés:

e les arguments de la fonction appelée, a partir du septieme, en ordre inverse de leur
position. Chaque argument occupe 8 octets.

e 'adresse de retour de la fonction.

un pointeur vers la base de la structure précédente. Lendroit ou est placé ce pointeur
constitue la base courante.

e |les données temporaires allouées par la fonction.
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RBP:

RSP:

<

arguments

adresse
de retour

ancienne base

données
temporaires

arguments

adresse
de retour

ancienne base

données

temporaires

——

structure
de I'appel
précédent

structure
de I'appel
courant
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Note: Les éléments de cette structure sont facilement accessibles par un adressage
indirect indexé basé sur RBP. Par exemple, les arguments de la fonction correspondent a

gword ptr [RBP + 16], gword ptr [RBP + 24], ...

et les données temporaires a

gword ptr [RBP - 8], qword ptr [RBP - 16],...

(en supposant des données de 64 bits).
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Exemple 1: Calcul récursif d’'une factorielle

Probléme: traduire en assembleur le programme C suivant, calculant la factorielle d’un
nombre entier:

unsigned long factorielle(unsigned n)

{

if (n <= 1)
return 1;
else

return n * factorielle(n - 1);
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Solution:

factorielle:

retour _un:
retour:

.intel_syntax noprefix

. text

.global factorielle

.type factorielle, @function
PUSH RBP

MOV  RBP, RSP

CMP EDI, 1
JBE retour_un
PUSH RDI

DEC RDI

SUB RSP, 8
CALL factorielle
ADD RSP, 8
POP RDI

MUL RDI

JMP retour
MOV RAX, 1
POP RBP

RET
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Explications:

Les instructions

PUSH RBP
MOV  RBP, RSP

créent la structure de pile, en positionnant correctement RBP et RSP:

RBP:

RSP:

adresse
de retour

ancienne base
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Ensuite, les instructions

retour _un:

CMP
JBE
MOV
POP
RET

EDI, 1
retour_un

RAX, 1
RBP

traitent le cas de base de la récursion: Si 'argument n est tel que n < 1, alors la fonction

retourne 1.

Remarque: Linstruction

POP RBP

supprime la structure de pile courante.
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Sin > 1, il faut alors appeler factorielle avec 'argumentn — 1.

Il est cependant important de préserver la valeur de n, car elle intervient dans la suite du
calcul. Linstruction |PUSH RDI | sauvegarde cette valeur dans un emplacement temporaire
alloué sur la pile:

adresse
de retour

ancienne base
®

RBP: | ® -

valeur courante
den

RSP: | @ -
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Linstruction | DEC RDI | calcule 'argument n — 1 de I'appel a factorielle.

Cet appel n'est pas autorisé dans la situation courante, car la structure de pile posséde
une taille qui n’est pas un multiple de 16.

Pour remédier a ce probléme l'instruction | SUB RSP, 8| alloue 8 octets supplémentaires
sur la pile:

T | \
adresse
de retour

ancienne base

®

RBP: o - 32 octets

valeur courante
den

8 octets
temporaires

RSP g »_ /
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Les instructions suivantes

CALL factorielle
ADD RSP, 8
POP RDI

appellent factorielle, liberent les données temporaires, et récuperent la valeur de n

dans RDI.

La valeur de retour de factorielle(n - 1) est quant a elle disponible dans RAX.

Linstruction

MUL RDI

calcule le produit de RAX et de RDI. Les 64 bits de poids faible du

résultat sont placés dans RAX, qui contiendra la valeur de retour de la fonction. Cette
derniere peut donc se terminer.
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Programme de test:

#include <stdio.h>

extern unsigned long factorielle(unsigned);

int main()

{

unsigned 1i;

for (1 = 0; i < 20; i++)
printf("%u: %lu\n", i, factorielle(i));
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Exemple 2: Hello, world

Pour obtenir un programme autonome, il suffit d'implémenter la fonction main, qui en sera
le point d’entrée.

lllustration:

.intel _syntax noprefix
.data
msg: .asciz "Hello, world!\n"
.text
.global main
.type main, @function
main: PUSH RBP
MOV RBP, RSP
MOV RDI, offset flat:msg
CALL printf

MOV EAX, ©
POP RBP
RET
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Notes:

e L'étiquette msg représente un pointeur vers la chaine de caracteres utilisée comme
argument de la fonction printf.

Il est donc nécessaire d'utiliser le préfixe offset flat: pour obtenir une
représentation absolue de ce pointeur.

e Linstruction MOV EAX, O |attribue une valeur de retour nulle a la fonction main, ce qui
signale une exécution sans erreur.

e Sice code source est placé dans un fichier hw. s, il peut étre compilé grace a la
commande

gcc -0 hw hw.s
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Exemple 3: Conversion en minuscules

Ce programme convertit, dans les arguments qui lui sont fournis en ligne de commande,
les lettres majuscules en minuscules, et affiche ces arguments sur des lignes séparées:

main:

boucle:

.intel_syntax noprefix

. text

.global main
type main, @function

PUSH
MOV
DEC
JZ
ADD
PUSH
PUSH
MOV
CALL
MOV
MOV
CALL
POP
POP
JMP

RBP

RBP, RSP

RDI

fin

RSI, 8

RDI

RST

RDI, gword ptr[RSI]
conversion

RAX, qword ptr[RBP - 16]
RDI, gword ptr[RAX]
puts

RST

RDI

boucle
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fin:

conversion:

boucle?2:

MOV
POP
RET
PUSH
MOV
MOV
CMP
JE
INC
CMP
JB
CMP
JA
ADD
MOV
JMP

EAX, 0
RBP

RBP

RBP, RSP

AL, byte ptr[RDI]
AL, ©

fin

RDI

AL, A’

boucle?2

AL, 'Z’°

boucle?2

AL, 0x20

byte ptr[RDI - 1], AL
boucle?2
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Explications:

La fonction main recoit deux valeurs:

e le nombre d’arguments argc fournis au programme lors de son exécution, incluant
son nom (comme premier argument).

e un pointeur argv vers un tableau dont chaque élément est un pointeur vers une
chaine de caractéres représentant un argument.

Selon la convention d’appel, argc est recu dans RDI, et argv dans RSI.
La fonction entre dans une boucle visant a traiter séparément chaque argument. A chaque

itération, RDI contient le nombre d’arguments encore a traiter, et RSl pointe vers I'entrée
du tableau argv associée a 'argument courant.
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La fonction conversion (définie dans la suite du programme) accepte comme argument
un pointeur vers une chaine de caracteres, dans laquelle elle convertit les majuscules en
minuscules.

Avant d’appeler cette fonction, les valeurs de RDI et de RSI sont sauvegardées sur la pile,
car elles interviennent dans la suite du programme.

Ensuite, les instructions

MOV  RAX, qword ptr[RBP - 16]
MOV  RDI, gword ptr[RAX]

recuperent dans RAX la valeur sauvegardée de RSI, et placent dans RDI la valeur extraite
de la case correspondante du tableau. Cette valeur pointe vers la chaine de caracteres qui
vient d’étre convertie. Un appel a la fonction puts de la bibliotheque standard C affiche
alors cette chaine.

Limplémentation de la fonction conversion est directe. Les constantes A’ et ’Z’
apparaissant dans le code assembleur seront remplacées par le code ASCII de ces
symboles par le programme d’assemblage.
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