
Embedded systems

Bernard Boigelot

E-mail : Bernard.Boigelot@uliege.be
WWW : https://people.montefiore.uliege.be/boigelot/

https://people.montefiore.uliege.be/boigelot/courses/embedded/

References :

• An Embedded Software Primer , David E. Simon, Addison-Wesley, 1999.

• Mastering the FreeRTOS Real-Time Kernel - A Hands-on Tutorial Guide, version 1.1.0, Richard Barry,
2024.

• Real-Time Systems, Jane W. S. Liu, Prentice Hall, 2000.

1

Chapter 1

Introduction

2

Embedded systems

Definition: An embedded system is a computer system used as a component of a more
complex entity.

Typical applications:

• mobile phones, televisions, radios, multimedia systems, GPS receivers;

• cameras;

• wristwatches, calculators, smart cards, RFID tags, remote controls;

• home appliances;

• computer peripherals;

• measurement equipment, sensors;

• cash dispensers, self-service machines;

• medical devices, implants;

3

• elevators, intrusion-detection devices, domotic systems;

• telephone switches, network routers;

• automotive systems (ABS, ESP, injection controllers, adaptive cruise control, lane
keeping assist, autonomous drive, . . .);

• avionics (fly-by-wire controls, glass cockpits, navigation aids, TCAS, autoland, . . .);

• industrial process controllers, robots;

• artificial satellites, spatial probes;

• . . .

4

Advantages

• Moving some functionalities from hardware to software makes electronic circuits

– simpler,

– cheaper to build,

– more powerful.

• Complex features can be implemented.

• Software components can easily be updated during the lifetime of a product, as well as
reused in other projects.

5

Developing embedded systems: Main difficulties

• Low-performance hardware: Low computing power, small amount of memory . . .

• Specificity to a particular application.

• Concurrence: Several tasks operate in parallel.

• Reactivity: The system must constantly be able to answer solicitations.

• Real-time constraints.

• High level of quality expected: Reliability, robustness and efficiency are critical.

• Limited user interface.

• Adverse exploitation environment.

• Energy management is often necessary.

6

Chapter 2

Hardware

7

Main components of an embedded system

• One or several processor(s) (CPU):

– Microcontrollers (MCU): 8051 (Intel), PIC, AVR (Microchip), . . .

– Digital Signal Processors (DSP): TMS320 (Texas Instruments), SHARC (Analog
Devices), MSC81xx (NXP), . . .

– Microprocessors dedicated to embedded applications: ARM [v7, v8, v9], RISC-V,
ColdFire (NXP), ARMADA (Marvell), PowerPC (IBM, NXP, STMicroelectronics),
x86, x86-64 (Intel, AMD), . . .

– Generic microprocessors: Snapdragon (Qualcomm), Xeon, Core, Atom (Intel), . . .

– Special architectures: Java Card, multicore processors, reconfigurable processors,
. . .

8

• Memory:

– Static or dynamic RAM, ROM (EEPROM, FLASH, . . .).

– Either internal to the microcontroller, external, or integrated in a System on Chip
(SoC).

– Parallel or serial interface.

– Possibility of addressing peripherals in memory.

• Internal or external peripherals:

– Timers,

– Converters,

– Communication controllers,

– . . .

• Communication buses.

9

• Interfaces with the circuit environment:

– Point to point: RS-232, IR, NFC, . . .

– Buses: I2C, SPI, CAN, USB, JTAG, . . .

– Networks: Ethernet, Wi-Fi, ZigBee, Bluetooth,. . .

• Auxiliary components:

– Power supply,

– Clock generator,

– Bus controllers,

– . . .

10

Example of embedded microcontroller: Microchip PIC16F716

Main features:

• RISC architecture: Only 35 instructions.

• Harvard memory model: 2048 words of (FLASH) program memory, 128 bytes of
(RAM) data memory, both internal.

• Reprogrammable via a serial interface.

• 13 dynamically configurable general-purpose input/output pins.

• Integrated peripherals: 3 timers, PWM controller, analog to digital converter, . . .

• Computing power of 5.106 instructions per second.

• Low power consumption: About 120 µA (under 2V) at 1 MHz, 14 µA at 32 kHz, 100 nA
in standby.

11

Pinout:

MCLR
VSS VDD

OSC1
OSC2

RA2
RA3
RA4

RB0

RB2
RB3

RB1

RB4
RB5
RB6
RB7

RA0
RA1

Description:

• VSS, VDD : Power supply (2.0–5.5 V).

• OSC1, OSC2 : Oscillator crystal or external clock source.

• MCLR : Operating mode selection (0 V: reset, VDD: program execution, 13 V:
programming mode).

• RA0. . . RA4, RB0 . . . RB7 : General-purpose input/output pins (TTL/CMOS),
dynamically configurable and multiplexed with some peripherals. RB6 and RB7
alternatively provide a serial interface in programming mode.

12

Example of application: Temperature alarm

100nF

33pF 33pF
Piezo

7805

+

+

1N4001

10µF

220R

LED
NTC

PIC 16F7169V

10K22K

22K

10K

4MHz
OSC2

OSC1

RA1

RA0

RB1

RB2

VSS

VDD

RB0MCLR

Reset Test

13

Example of embedded bus

Problem: Managing data transfers between several devices (CPU, memory, sensors,
peripherals, . . .) using communication hardware that is as simple as possible.

Requirements:

• Bus topology.

• Small number of communication lines.

• Flexible configuration.

• Mechanisms for addressing devices, managing transactions, for performing arbitration
and flow control.

14

Solution: I2C bus

Principles:

• The bus consists of a pair of two-way lines: SDA (Serial DAta) and SCL (Serial Clock).

• The value of each line stays high whenever it is unused.

• Each device connected to the bus can read the value of SDA and SCL, but is only able
to force them down, i.e., to write a low value.

Device 1 Device 2

SDA

SCL

VCC

15

I2C: Transactions

The master of a transaction is responsible for

• generating a clock signal on SCL during the transaction.

• signaling the beginning (Start, S) and the end (Stop, P) of the transaction. The signals
S and P correspond to the two possible transitions of SDA when SCL is high.

When a transaction is in progress (i.e., between S and P), transitions of SDA are only
allowed when SCL is low.

Illustration:

S P

SDA

SCL

16

I2C: Data transfers

• During a transaction, the sender of data can either be the master or the slave.

• The value of each bit of data sent on the bus corresponds to the value of SDA during a
low-to-high transition of SCL.

• Data is exchanged in 8-bit groups, the most significant bit (MSB) being sent first.

• Each group of 8 bits must be followed by an acknowledgment, represented by a low
value placed on SDA by the receiver.

If a group of bits is not acknowledged, then the master immediately aborts the
transaction, and the slave stops sending or receiving data.

17

I2C: Addressing

When a transaction is initiated, the master has to specify which device is the other
participant.

Principles:

• The first 8 bits exchanged in a transaction are always sent by the master.

• The first 7 bits of this group correspond to the address of the intended slave.

• The 8th bit then specifies the direction of the following data transfer:

– 0 : The master is the sender;

– 1 : The master is the receiver.

Remark: The first group of 8 bits must thus be acknowledged by the addressed slave,
regardless of the data transfer direction.

18

I2C: Arbitration

It is possible to have several devices attempting to initiate transactions at the same time, by
generating simultaneous Start signals.

For detecting potential conflicts, each master constantly monitors the value of SDA when it
sends data. If the observed value differs from the sent one, then the master performing this
observation immediately and silently withdraws from the transaction.

Remarks:

• A conflict can only be detected by the device that sends a high value.

• Transmitting simultaneously two exactly identical frames does not lead to a conflict!

19

I2C: Flow control

In some cases, the frequency of the clock signal generated is too high to be followed by the
slave.

In such situations, the slave can request the master to permanently or temporarily slow
down the clock. This can be done by stretching the low value of SCL until the slave is ready
again to send or receive data.

When the master releases SCL while the clock is stretched, it detects that the value of SCL
stays low, and pauses its operations until this line is released by the slave.

Illustration:

SCL

released by the master

released by the slave

20

Multiplexed input/output pins

Most microcontrollers allow to dynamically configure input/output pins in software.

Examples of typical configurations:

VCC

A/D

Digital input

Digital input with pull-up

Schmitt trigger

Analog input
D/A

GND

Three-state output

Open-drain output

Analog output

This feature makes is possible to build simple circuits in which the processor can interact
with a large number of peripherals.

21

Example: Digital multimeter

The problem is to interface a microcontroller offering only 12 dynamically configurable
input/output pins with:

• a screen composed of four 7-segment displays,

• a keyboard organized as a 4 × 4 matrix,

• 4 analog input channels.

(Source: Microchip application note AN557)

22

Solution:

• The screen and the keyboard are scanned: At a given time, one can only display a
single digit, or read a single column of keys.

• An additional phase is inserted for reading input channels.

• 4 pins are associated to both an input channel and a screen digit. They are
alternatively configured as analog inputs (when reading channels) and digital outputs
(when displaying a digit or reading the keyboard).

• The 8 remaining pins drive the screen segments during display and channel reading
phases (8 digital outputs), and are also able to the scan the keyboard (4 digital outputs
+ 4 digital inputs with pull-up).

23

Schematics:

MCU

24

Chapter 3

Interrupts

25

Introduction

An interrupt is a signal that requests the processor to temporarily suspend program
execution, in order to execute an interrupt routine (or Interrupt Service Routine, ISR).

Advantages:

• A very short response time to solicitations is achievable.

• Urgent operations can be programmed independently from the main code.

Interrupts can be triggered either by an exterior component:

• Interrupt ReQuest (IRQ), received from dedicated input pins,

• change of logic value at digital input pins,

26

or by the processor itself:

• timer expiration,

• arithmetic or instruction exception,

• software interrupt request,

• . . .

27

The interrupt mechanism

Upon receiving and accepting to service an interrupt request, the processor performs the
following operations:

1. The execution of the current instruction terminates.

2. A pointer to the next instruction to be executed is stored on the runtime stack.

3. The address of the interrupt routine is read from the appropriate interrupt vector
(according to the source of the interrupt request).

4. The interrupt routine is executed.

5. At the end of the interrupt routine, the processor resumes program execution, at the
address retrieved from the stack.

28

Interrupt control

Some critical operations can never be interrupted. It is then necessary to temporarily
disable interrupts prior to their execution, and to enable them again afterwards.

Some processors allow to assign specific priorities to interrupts originating from different
sources. Such architectures generally provide a mechanism for disabling the interrupts
having a priority less than some specified threshold. Interrupt priorities are also used for
resolving simultaneous interrupt requests.

Enabling and disabling interrupts is performed by executing specific instructions, or by
setting the value of dedicated registers.

Notes:

• At power-on, interrupts are disabled by default, in order to allow correct initialization of
the program.

29

• When an interrupt is triggered, some processors automatically disable all interrupts of
less or equal priority. They have to be explicitly reenabled in the interrupt routine if
needed.

• When an interrupt request is received, the processor sets interrupt flags, in order to
trigger the interrupt as soon as it becomes enabled. Interrupt flags have to be cleared
explicitly by the interrupt routine.

• Some architectures provide an interrupt source that cannot be disabled (Non
Maskable Interrupt, NMI). Its usage is limited to exceptional situations (e.g., backing
up critical data upon detecting an imminent power failure).

30

Saving and restoring context

The correct operation of a program must not be influenced by interrupts triggered during its
execution.

It is thus mandatory for interrupt routines to leave the processor state unchanged: values of
registers and flags, interface configuration, status of peripherals, . . . , must not be modified.

This is achieved by saving the context at the beginning of interrupt routines, and restoring it
at the end.

Notes:

• The context is either saved on the execution stack or in a specific memory area.

• Some processors automatically save the context (either totally or in part) when an
interrupt is triggered.

31

• Context save and restore operations can sometimes be simplified by using dedicated
instructions.

• The processors that automatically disable interrupts when branching to an interrupt
routine enable them again as a side effect of context restoration.

32

Programming interrupts

The compilers aimed at embedded applications provide language extension mechanisms
for programming interrupts without going down to assembly language.

• Some functions can be designated as being interrupt routines (e.g., interrupt
keyword, __attribute((interrupt)) attribute or #pragma interrupt compilation
directive in C).

With some compilers, such mechanisms automatically insert context save and restore
instructions to interrupt routines, and take care of setting interrupt vectors.

• Enabling and disabling interrupts is performed with the help of macros or specific
compilation directives (e.g., enable()/disable() or
__enable_irq()/__disable_irq() macros, critical keyword).

• It is sometimes necessary to inform the compiler than the value of a variable can be
modified by interrupt routines, in order to prevent incorrect optimizations (e.g.,
volatile keyword in C).

33

Communicating with interrupt routines

Interrupt requests are by nature unpredictable. This complicates data exchange operations
between interrupt routines and the main code.

Example: Industrial controller. The alarm must sound if two temperature measurements
made by an interrupt routine differ.

Wrong solution:

static volatile int temp[2];

interrupt void measure(void)
{
temp[0] = !! first measurement;
temp[1] = !! second measurement;

}

void controller(void)
{
int temp0, temp1;
for (;;)
{
temp0 = temp[0];
temp1 = temp[1];
if (temp0 != temp1) !! sound the alarm;

}
}

34

Notes:

• Carrying out the comparison between the two measurements in a single C instruction
does not solve the problem:

...
void controller(void)
{
for (;;)
if (temp[0] != temp[1]) !! sound the alarm;

}
...

(Indeed, such an instruction is generally compiled into several machine instructions.)

• Even in programs written in assembly language, it is possible for the execution of
individual instructions to be interrupted before their completion.

This only happens with specific instructions, often repeatedly performing a simpler
operation (e.g., block copy instructions).

• This type of bug can be very difficult to detect and to reproduce!

35

Correct solution:

The instructions that read the measurements sent by the interrupt routine to the controller
form a critical section, the execution of which cannot be interrupted.

static volatile int temp[2];

interrupt void measure(void)
{
temp[0] = !! first measurement;
temp[1] = !! second measurement;

}

void controller(void)
{
int temp0, temp1;
for (;;)
{
disable(); /* Disable interrupts */
temp0 = temp[0];
temp1 = temp[1];
enable(); /* Reenable interrupts */

if (temp0 != temp1) !! sound the alarm;
}

}

36

Other solution:

static volatile int temp_a[2], temp_b[2];
static int controller_uses_b = 0;

interrupt void measure(void)
{
if (controller_uses_b)
{
temp_a[0] = !! first measurement;
temp_a[1] = !! second measurement;

}
else
{
temp_b[0] = !! first measurement;
temp_b[1] = !! second measurement;

}
}

void controller(void)
{
for (;; controller_uses_b = !controller_uses_b)
if (controller_uses_b)
{
if (temp_b[0] != temp_b[1]) !! sound the alarm;

}
else
if (temp_a[0] != temp_a[1]) !! sound the alarm;

}

37

Notes:

• This solution does not require to disable interrupts.

• The main code must sometimes perform one useless iteration before sounding the
alarm.

38

Improved solution:
#define MAX_FIFO 10 /* Must be even ! */
static volatile int temp_fifo[MAX_FIFO];
static volatile int first = 0;
static int last = 0;

interrupt void measure(void)
{

/* If the buffer is not saturated */
if (!((first + 2 == last)

|| (first == MAX_FIFO - 2 && last == 0)))
{
temp_fifo[first] = !! first measurement;
temp_fifo[first + 1] = !! second measurement;
first += 2;
if (first == MAX_FIFO)
first = 0;

}
else !! discard measurements;

}

void controller(void)
{
int temp0, temp1;

for (;;)
if (first != last) /* If the buffer is not empty */
{
temp0 = temp_fifo[last];
temp1 = temp_fifo[last + 1];
last += 2;
if (last == MAX_FIFO)
last = 0;

if (temp0 != temp1) !! sound the alarm;
}

}

39

Note: For this solution to be correct, it is necessary that the instruction last += 2
executes atomically.

This kind of solution is thus very sensitive to implementation details!

In practice, disabling interrupts during communications with interrupt routines is acceptable
in most situations. The more complex solutions are used only when disabling interrupts is
impossible or forbidden.

40

Interrupt latency

The delay between an interrupt request I and the end of execution of urgent operations in
an interrupt routine RI is called the response time, or latency of the interrupt.

This latency is influenced by four parameters:

1. The longest interval during which interrupts of priority larger or equal to I are disabled.

2. The time needed for executing the interrupt routines with a higher priority than RI.

3. The maximum delay between an interrupt trigger and the branch to the corresponding
interrupt routine.

4. The time spent in RI before having executed the urgent operations.

41

A good strategy is therefore to

• disable interrupts for the shortest possible time (parameter 1);

• make the interrupt routines quick and efficient (parameters 2 and 4).

Parameter 3 is a feature of the processor, and cannot be influenced by the programmer.

42

Example

• A system implements the following interrupt routines, sharing the same priority.

Name Description Execution time Period
I1 Temperature measurement 100 µs 500 µs
I2 Timer expiration 200 µs 1000 µs
I3 Network I/0 300 µs > 1000 µs

• The main program disables interrupts during resp. 200 µs and 250 µs for exchanging
data with I1 and I2.

• The time needed for triggering I3 and executing the corresponding urgent operations is
equal to 100 µs.

Question: Is the latency of I3 smaller than 1000 µs ?

43

Answer:

It is sufficient to study the system during an interval of length equal to 1000 µs. The highest
possible latency is obtained with the following delays:

• Interrupts disable time : 250 µs.

• Executing I1 : 2 × 100 µs.

• Executing I2 : 200 µs.

• Triggering and executing the urgent operations of I3 : 100 µs.

• → Total: 750 µs.

Notes:

• Only the largest interval in which interrupts are disabled has to be taken into account!

44

• Example of scenario in which the maximum latency is reached:

0 100 200 300 400 500 600 700 800 900 1000 (µs)

IRQ2
IRQ1

IRQ3

IRQ1

I3

I2

I1

disable()

enable()

urgent
operations

Main program

completed

• The execution of I3 always terminates before 1000 µs.

45

Chapter 4

Software architectures

46

The round-robin architecture

Principles:

• Interrupts are not used.

• Tasks are invoked in turn, and run until their completion.

Illustration:
void main(void)
{
for (;;)
{
if (!! task 1 is ready)
{

!! operations of task 1;
}

if (!! task 2 is ready)
{

!! operations of task 2;
}

...

if (!! task n is ready)
{

!! operations of task n;
}

}
}

47

Advantages:

• Simple solution, but sufficient for some applications.

• Exchanging data between tasks is easy.

Drawbacks:

• The worst-case latency of an external request is equal to the execution time of the
entire main loop.

• Implementing additional features can adversely affect the correctness of a system, by
increasing latencies beyond acceptable bounds.

48

Example (multimeter):
#include "types.h"
#include "multimeter.h"

static UINT1 phase = 0; /* 0–3: display, 4: keyboard, 5: channels */
static UINT1 display_content[4];
static SINT4 measures[4];

static keyboard_state keys;
static multimeter_state parameters;

void main(void)
{

!! initialize global data;

for (;;)
{
switch (phase)
{
case 4:
handle_keyboard();
if (keys.new_keypress)
{
keypress_action();
keys.new_keypress= 0;

}
break;

case 5:
handle_channels();
update_display_content();
break;

default:
handle_display();

}
if (++phase > 5)
phase = 0;

}
}

49

void handle_display(void)

{
UINT1 digit, segments;

!! PORTA: 4 digital outputs;
!! PORTB: 8 digital outputs;

digit = !! compute the digit to be displayed, from the
!! values of display_content and phase;

segments = !! pattern corresponding to digit;

out(PORTA, 1 < < phase);
out(PORTB, segments);

delay(DISPLAY_DELAY);
}

void handle_channels()
{

!! PORTA: 4 analog inputs;
!! PORTB: 8 digital outputs;

out(PORTB, 0);
delay(CHANNELS_DELAY);

!! read PORTA, and place the result in measures;
}

void handle_keyboard()
{
static UINT1 column = 0;
UINT1 row;

!! PORTA: 4 digital outputs;
!! PORTB: 4 digital outputs (low nibble),
!! 4 digital inputs with pull-ups (high nibble);

50

out(PORTA, 0);
out(PORTB, 1 < < column);
row = in(PORTB) > > 4;

!! update keys according to the content of row;

if (++column >= 4)
column = 0;

}

void keypress_action()
{

!! update parameters according to the key that has
!! been pressed (specified in keys);

}

void update_display_content()
{

!! update display_content according to the values in
!! measures and parameters;

}

Notes: The parameters DISPLAY_DELAY and CHANNELS_DELAY must be chosen

• large enough to ensure an accurate conversion of analog samples, and a good
illumination of display segments.

• small enough to avoid display flickering, as well as missing key presses.

51

The round-robin with interrupts architecture

Principles: Tasks are invoked in round-robin fashion, but interrupt routines take care of
urgent operations.

Illustration:
volatile BOOL ready1 = 0, ready2 = 0, ...,

readyn = 0;

interrupt void urgent1(void)
{

!! urgent operations of task 1;
ready1 = 1;

}

interrupt void urgent2(void)
{

!! urgent operations of task 2;
ready2 = 1;

}

...

interrupt void urgentn(void)
{

!! urgent operations of task n;
readyn = 1;

}

52

void main(void)
{
for (;;)
{
if (ready1)
{

!! non-urgent operations of task 1;
ready1 = 0;

}
if (ready2)
{

!! non-urgent operations of task 2;
ready2 = 0;

}

...

if (readyn)
{

!! non-urgent operations of task n;
readyn = 0;

}
}

}

53

Advantage: The urgent operations take priority over the non-urgent ones.

Round-robin Round-robin with interrupts

priority

Urg. 1 Urg. n

Urgent 1

Urgent 2

Urgent n

Task 1 Task n

Task 1 Task 2 Task n

Drawbacks:

• The non-urgent tasks share the same effective priority. This yields high latencies when
at least one task has a large execution time (e.g., raster generation in laser printers).

Important note: Moving non-urgent operations from tasks to interrupt routines is
not a good solution!

54

Indeed,

– performing non-urgent operations in an interrupt routine increases the latency of
interrupts with a lower or equal priority;

– interrupts do not offer flexible synchronization mechanisms.

• Data exchange operations between interrupt routines and tasks have to be correctly
implemented (cf. Chapter 3).

55

Example: Serial filter

The goal is to develop a two-way filter connecting two serial lines.

CPUUART UART

Principles:

• Incoming bytes are signaled by interrupt requests, which must be answered as soon
as possible (before the next received byte).

• When a UART is ready to send a byte on its output line, it requests an interrupt. The
processor is then free to wait for an arbitrarily long time before providing this byte.

56

Solution:
#include "types.h"
#include "fifo.h"
#include "filter.h"

static volatile BOOL uart1_ready, uart2_ready;
static volatile fifo rx1, tx1,

rx2, tx2;

interrupt void uart1_rx(void)
{
char byte;

byte = !! reception from UART1;
fifo_put(rx1, byte);

}

interrupt void uart2_rx(void)
{
char byte;

byte = !! reception from UART2;
fifo_put(rx2, byte);

}

interrupt void uart1_ready_to_send(void)
{
uart1_ready = 1;

}

interrupt void uart2_ready_to_send(void)
{
uart2_ready = 1;

}

57

void main(void)
{

!! initialize global data;
!! initialize interrupt vectors;

enable();

for (;;)
{
if (fifo_content_size(rx1) >= FILTER_THRESHOLD)
{

!! remove data from rx1;
!! filter;
!! add the result to tx2;

}

if (fifo_content_size(rx2) >= FILTER_THRESHOLD)
{

!! remove data from rx2;
!! filter;
!! add the result to tx1;

}

if (uart1_ready && !fifo_is_empty(tx1))
{
char byte;

byte = fifo_get(tx1);
disable();
!! send byte to UART1;
uart1_ready = 0;
enable();

}

58

if (uart2_ready && !fifo_is_empty(tx2))
{
char byte;

byte = fifo_get(tx2);
disable();
!! send byte to UART2;
uart2_ready = 0;
enable();

}
}

}

Notes:

• Attempting to add data to a saturated FIFO buffer cannot be a blocking operation (i.e.,
it must instead discard data).

59

• The functions for handling FIFO buffers must execute correctly both in the interrupt
routines and in the main code.

Example of implementation:

void fifo_put(fifo q, char c)
{
BOOL intr_enabled;

...

intr_enabled = disable();

!! critical section;

if (intr_enabled)
enable();

...
}

60

The waiting-queue architecture

Principles:

• In the same way as the round-robin with interrupts architecture, the operations are
partitioned into urgent and non-urgent tasks.

• Interrupt routines perform urgent operations, and then place in a waiting queue
requests for executing non-urgent tasks.

• The main program retrieves execution requests from the queue and calls the
corresponding functions. These requests are not necessarily processed in FIFO order.
(For instance, different selection priorities can be assigned to non-urgent tasks.)

61

Illustration:
#include "queue.h"

static volatile queue waiting_queue;

interrupt void urgent1(void)
{

!! urgent operations of task 1;
!! add task1 to waiting_queue;

}

interrupt void urgent2(void)
{

!! urgent operations of task 2;
!! add task2 to waiting_queue;

}

...

interrupt void urgentn(void)
{

!! urgent operations of task n;
!! add taskn to waiting_queue;

}

62

void main(void)
{

!! initialize waiting_queue with an empty content;

for (;;)
{
while (!queue_is_empty(waiting_queue))
{

!! extract a function from waiting_queue;
!! execute this function;

}
}

}

void task1(void)
{

!! non-urgent operations of task 1;
}

void task2(void)
{

!! non-urgent operations of task 2;
}

...

void taskn(void)
{

!! non-urgent operations of task n;
}

63

Advantage: The latency of a non-urgent high-priority task can become smaller than the
execution time of all the non-urgent operations.

Drawbacks:

• The maximum latency of a non-urgent task is still at least as large as the execution
time of the slowest task.

• Implementing the waiting-queue data structure can be tricky.

Example of application: A system monitors an industrial process by receiving data from an
array of sensors, processing this data, and displaying summarized results.

With the queue architecture, it is possible to ensure that the values produced by critical
sensors are always taken into account, even in the case of data saturation caused by a
malfunctioning low-priority sensor.

64

The real-time operating system architecture

Principles:

• Urgent operations are performed by interrupt routines. Those are able to signal to
other tasks that non-urgent operations are ready to be carried out.

• The non-urgent tasks are invoked dynamically rather than in a predefined order. The
responsibility of calling tasks is assigned to the operating system, implemented as an
additional software component.

• The operating system is able to suspend the execution of a task before its completion,
in order to transfer the processor to another task.

• The signals exchanged between tasks are handled by the operating system, instead of
being implemented with shared variables.

65

Illustration: #include "signal.h"

interrupt void urgent1(void)
{

!! urgent operations of task 1;
!! send signal 1;

}

interrupt void urgent2(void)
{

!! urgent operations of task 2;
!! send signal 2;

}

...

void task1(void)
{

!! wait for signal 1;
!! non-urgent operations of task 1;

}

void task2(void)
{

!! wait for signal 2;
!! non-urgent operations of task 2;

}

...

void main(void)
{

!! initialize the operating system;
!! create and enable tasks;
!! start task sequencing;

}

66

Advantages:

• One can easily combine low-latency operations together with long computations.

Urgent 1

Urgent 2

Urgent n

Task 1

priority

Round-robin with interrupts Operating system

Task 1 Task 2 Task n

Urgent n

Urgent 2

Urgent 1

Task 2

Task n

67

• The system is efficient: When a non-urgent task is waiting for a signal, the processor
remains available for other computations.

• The structure of the system is robust: New features can easily be added without
affecting the latencies of urgent operations or of high-priority tasks.

• Operating systems tailored to embedded applications are commercially available.

68

Drawbacks:

• The system is complex (but this complexity is mainly located in the operating system,
which can be reused over many projects).

• Data exchange operations have to be coordinated between a task and an interrupt
routine, but also between tasks.

• The operating system consumes some amount of system resources (a typical figure is
2 to 4 % of the instructions executed by the processor).

69

Summary

Task priorities and latencies:

Architecture Available priorities Maximum latency

round-robin none total execution time
of all tasks

round-robin interrupt routines; total execution time
with all tasks share the of all tasks
interrupts same priority + interrupt routines

waiting queue interrupt routines, execution time of
then tasks the longest task

+ interrupt routines

operating interrupt routines, execution time of
system then tasks interrupt routines

70

Robustness and simplicity:

Architecture Robustness against Complexity
modifications

round-robin poor very simple

round-robin good for interrupt must handle data exchanges
with routines, poor for between tasks and interrupt
interrupts the tasks routines

waiting queue fair must handle data exchanges,
and implement the waiting
queue

operating very good quite complex
system

71

