Chapter 7

Periodic Tasks Scheduling

132

Periodic tasks

We consider a simplified programming environment satisfying the following hypotheses:

e The number of tasks to be executed is fixed.

Each task is characterized by a distinct and constant priority.

The execution requests for each task occur periodically, i.e., with a constant delay
between two successive requests.

In particular, the timing of execution requests for a task cannot depend on operations
performed by other tasks.

The execution time of each task is constant.

133

e The following real-time constraint must be satisfied:

Each execution of a task must finish before or at the same time as the next
request for executing this task.

e Context switches are instantaneous and preemptive.

134

Critical instants and critical zones

In addition to its priority, each task 7; is characterized by

e its period T}, and

e its execution time (for each period) C,.

Definitions:

e The response time of an execution request for 7; is the delay between this request and
the end of the corresponding execution of this task.

e A critical instant for the task 7; is an occurrence of an execution request for 7; that
leads to the largest possible response time for this task.

e A critical zone for 7; is an interval of duration 7T; that starts at a critical instant (for ;).

135

Theorem 1: A critical instant for 7; occurs when an execution request for this task coincides
with requests for executing all the tasks that have a higher priority than ;.

Proof: Assume that an execution request for r; occurs at ¢ = ¢;, and that an execution
request for a higher-priority task 7; is received at 7 = ;.

t; [j Ij+Cj Ij+Tj Zi+Ti
== = Z 4

Advancing the request for 7 ; from 7; to 7; can never decrease the response time of ;.

(Indeed, for each instruction 7 of 7;, advancing 7 ; by one instruction either leaves
unchanged the execution time of I, or postpones it.)

The same reasoning can be applied to all the tasks that have a higher priority than ;.

136

Schedulable tasks

Definition: A set of tasks is schedulable (with respect to a given assignment of priorities) if
the response time of each task t; is always less than or equal to its period 7.

Thanks to Theorem 1, checking whether a given set of tasks is schedulable reduces to
simulating the scheduling strategy in the particular case of simultaneous execution
requests for all tasks at r = 0.

Examples: Consider two tasks 7 and 7o, with 7y =2, T, =5,C;y =1 and Cy = 1.

e |f 71 has a higher priority than r,.

- 1 1 1 !
0 1 2 3 4 5

- | 1 !
2 T T
0 1 2 3 4 5
| |

Critical zone

137

The tasks are schedulable, and remain schedulable even if the execution time of 75 is
increased by one time unit (Cr = 2):

T !
0 1 2 3 4 5
) ! ! g
0 1 2 3 4 5
| |
Critical zone

e |f 75 has a higher priority than .

) ! !
0 1 2 3 4 5
T ! !
0 1 2 3 4 5
| |
Critical zone

The tasks are schedulable.

Note: In this case, the execution time of 71 and 7, cannot be increased anymore.

138

Rate-Monotonic Scheduling

In the previous example, the best strategy was to assign the highest priority to the task that
has the smallest period.

Definition: Given a set of tasks 7, 79, ..., 7, with respective periods T, 1>, ..., Ty, the

Rate-Monotonic Scheduling (RMS) strategy consists in assigning distinct priorities
Py, P, ... P, tothe tasks, such that for all i, j:

Tl'<Tj = Pl'>Pj.

The following result establishes that the RMS strategy is optimal:

Theorem 2: If a set of tasks is schedulable with respect to some priorities assignment, then
it is schedulable as well with respect to priorities defined by the RMS strategy.

139

Proof: Consider a set of tasks 71,79, ..., 7, for which there exists a priorities assignment
Py, P, ... P, that makes them schedulable.

Let 7; and 7; two tasks with adjacent priorities P; and P, such that P; > P ;.

If 7; > T, then the priorities of 7; and 7; can be swapped:

- (== =z
i T T T T
[| [| [|
[| [| [|
[| [| [|
- N Z N~
.] T T L) T
[| [| [|
0 I I I I I I Tj Tz
[| [| [|
[| [| [|
[| [| [|
[| [| [|
[| [| [|
T == 1 1 1
J [| [| [|
[| [| [|
[| [| [|
[| [| [|
T 1 1 1 EA EA t
l

The resulting set of tasks remains schedulable.

By performing repeatedly this operation, one eventually obtains a priorities assignment
corresponding to the RMS strategy.

140

The processor load factor

Consider a set of tasks 7, 79, ..., 7, with respective periods and execution times
T1,T>,....,T,and Cy,Cy,...,Cy.

The processor load factor U corresponding to this set of tasks represents the relative
amount of CPU time needed for executing them:

n

C.

U = Z 7:
i=1

Definition: A set of tasks fully uses the processor if

e this set of tasks is schedulable, and

e any increase of the execution time of a task (and hence of the processor load factor)
yields a set of tasks that is not schedulable anymore.

141

Notes:

e Thanks to Theorem 2, checking whether a set of tasks is schedulable or not can be
done by assigning RMS priorities to those tasks.

e A set of tasks that has a processor load factor less than 1 is not necessarily

schedulable:

Example:

T -
T .

T

2

142

Classifying sets of tasks

The set of sets of tasks can be partitioned into three classes:

e The non schedulable sets of tasks.

e The sets of tasks that fully use the processor.

e The schedulable sets of tasks that do not fully use the processor.

\ U

100% Non schedulable sets of tasks

Sets of tasks that fullly use the CPU

UL

— Schedulable sets of tasks

0%

143

The best lower bound U, on the processor load factor of the sets of tasks that fully use the
processor is such that:

e |f the processor load factor of a set of tasks is less than or equal to Uy, then this set of
tasks is schedulable (regardless of the periods and execution times of the tasks!).

e |f the processor load factor of a set of tasks is greater than Uy, then this set of tasks
may or may not be schedulable, depending on the details of the tasks.

144

U : Case of two tasks

Let 71 and 7, be two tasks with respective periods and execution times 7’1, 7> and Cy, C».
We assume 7| < T,. According to the RMS strategy, we assign a higher priority to 7.

. . . . T
During a critical zone of 75, the number of execution requests for 71 is equal to [T—ﬂ

e If all the executions of 7 in the interval [0, T»] terminate earlier than or at r = 7).

C] Cl
[1 [1

71

G

[y

The following condition is satisfied:

145

For a given value of Cy, the largest possible value of C, is given by

U = —L4+=2
1 1 7>

1+ Cq — .
Ty T |T)

1 1 |T
Note that we have — 2 <0.
Ty T, |1

Therefore, for given values of 71 and 7T, the maximum processor load factor

decreases with (.
U

1 \:

146

e If an execution of 7 is still unfinished at r = T5.

T

T2

The following condition is satisfied:

For a given value of Cy, the largest possible value of C, is given by
T
Cy = (T - Cy) H .

Hence, the highest possible processor load factor is equal to

T11T 1 1 |T
U==L|2+C|=—- 21).
I [T I T[T

147

For given values of 71 and T, this expression increases with Cy, since

1 B 1 |7 > 0.

T T>|T,
" rlnl+alm-%l7)
0 -

148

Summary:

The smallest value of U corresponds to the boundary between the two cases, where we

have

C1=T2—T1{

By introducing this value in the expression of U, one obtains

U = —|=

T
+=2-2
Iy

o)

|

)

1

)

)

T

[+

)7

T
)

|

)
T

[

|

T

)

149

T T T
Let us define I = |2 and f = 2 _|22].
I Iy |1y

The previous expression becomes

U = ! I/ 21 I
T AR
3 B 1-f
= 1 f1+f'

The smallest possible value of U is obtained with 7 = 1. We then have

1 —
U=1—fT:§

and
dU f2+2f -1
df — (1+f)? "
The best lower bound U; on U is thus obtained with / = 1 and f = —1 + V2:

2- 12
V2

U = 1—(\6—1)():2(@—1)z0.83.

150

Case of two tasks: Conclusions

Theorem 3: If a set of two periodic tasks has a processor load factor that is less than or
equal to 2(V/2 — 1), then this set of tasks is schedulable.

Notes:

e This sufficient criterion is independent from the periods and execution times of the
tasks.

e In the particular case where T is an integer multiple of T, one has f = 0, hence
U =1.

C; C
All pairs of tasks satisfying this condition (and such that 1,224 l) are thus

I 1p
schedulable.

151

U;: Case of n tasks

The goal is now to compute the value of Uy,

e for a given number n of tasks, and

e for any number of tasks.

The first step is to establish an intermediate result:

Lemma 1: Let 7,70, ..., 7, be periodic tasks with the respective periods and execution
timesT{,7>,...,T,and C{,C»,...,C,, such that

e This set of tasks fully uses the processor,
° O<T1<T2<---<Tn_1<Tn<2T1,

e The processor load factor of this set of tasks is minimum among all sets of tasks that
fully use the processor.

152

In this case, one has

C, = Tp,-Tjy,
Cr, = T3-T>,

Cn—l — Tn - Tn—l’
Ch = T,-20Ci+Cr+---Cy_1)

153

Proof: By contradiction, let us show that we must have C| = 7, — 7.

o fCy=Tr—-T1+A,with A> 0.

We modify the execution time of tasks in the following way:

C! = Ci-A,
C, = Cy+A,
Ci = Cs,
Cz;—l = Cu-1,
T2+A
Cl C2 C1 Cz
| [T e I B R 4
0 T, T,
¢ G Ci| &
Fooo] i s T

154

After the modification, the new set of tasks still fully uses the processor. However, the

processor load factor now becomes
, A A
U'=U-—+—<U,
ry 1

which contradicts the hypothesis that U is minimum.
o fCy=T>—-T1—-A,with A > 0.

We now modify the execution time of tasks as follows:

Ci, = (C1 + A,

Cé’ = (9,

cl’ = Cs,
CN_ = Cy-1,

155

Cl CZ Tn Cl Th CZ Tn Tn

Since we have by hypothesis 7, < 27, this property contradicts U’ < U.

By similar reasoning, one obtains successively

Cy = T3-1Ty,
Cy3 = Ty-Tjs,

9

7
I

.

—T,_1-

156

Since the processor is fully used, one finally gets

Chn=T,-2(C1+Cr+---C,,_1).

Corollary: For each set of tasks that satisfies the hypotheses of Lemma 1, the processor
load factor is equal to

U = -+
I I Ty—1
+
Ty
>, T T T
S P L A Y

157

T.
Foreachi=1,2,...,n—1, let us define g; = ;1. We then have

l

2
U=q1+q+ - +qu-1+ —n,
q1492 " - " 4n-1
and thus for each i,
oU _ | _,4192" " 4i-19i+1 """ dn-1
g (@192 Gn-1)?

The best lower bound U; of U therefore corresponds to

ou
0qi
1 2

I - —. = 0.
q4i 49192 " 4n-1

158

For each i, one has
2

Q192 Gn-1

qi

b

hence

1
q1=q2 =" =qp-1=2".

By introducing these values in the expression of U, one obtains

1 2
(n—1)25+?—n

UL

1 1
= (n—1)2n+21—n
1
= n(2n—1).

We thus have the following resuli:

Theorem 4: If the periods 71,75, ..., T, of a set of n tasks are such that
O<Ty<Try<:---<Ty,_1<Ty<2Ty,

1
with a processor load factor that is less than or equal to n(2% — 1), then this set of tasks is
schedulable.

159

In the hypotheses of Theorem 4, the constraint over the task periods is actually not
necessary:

Theorlem 5: If a set of n periodic tasks has a processor load factor that is less than or equal
to n(2n — 1), then this set of tasks is schedulable.

Proof: Let 71,75, ..., 7, be tasks with respective periods and execution times 71, T»>, ..., T,
and C{,C»,...,C,. We assume that this set of tasks fully uses the processor.

T
If there exists i € {1,2,...,n— 1} such that 27; < T}, then we define g = {7”‘ and

l
r=1T,—qT; (we thus have ¢ > 1 and r > 0).

We modify the set of tasks in the following way:

e We replace 7; by 77 with the period 77 = ¢7; and the execution time C’ = C;.

e We replace 7, by 1), with the period 7, = T, and an execution time C;, chosen so as to
fully use the processor.

160

/7 N\
N e Y s I I o Y s
O Ti 2Tz (q - l)Ti qu Tn
C;ZCI'
| 1 ___ [
T/

In the critical zone of 7,,, the difference between the execution times needed by 7; and T; IS
at most equal to (¢ — 1)C;. Therefore, one has

C,—Cn<(qg-10C,
After modifying the set of tasks, the processor load factor U’ becomes equal to

U’3U+(Tj’i—§’:+(q_T1)Ci
; i n

where U is the processor load factor of the initial set of tasks.

One then obtains

161

Since we have ¢7; < T,, this leads to

1 1 g-1 1 1 g-1
+ < +
qgl; 1T; Ty gl T1; qT;

IA
.

As a consequence, we have U’ < U. This implies that our modification of the set of tasks
did not increase the processor load factor.

By repeatedly performing such a modification, one eventually obtains a set of tasks to
which Theorem 4 can be applied.

162

The limit processor load factor

The value of U; decreases with the number n of tasks. Indeed,

dUp _ (1 _ '”_2) 2
dn n
=(1 —x)e* -1,
. In2
by defining x = —. Let us show that we have
n
(1 -x)e* <1
dU
for all x > 0 (which implies d_L < 0 for all n > 0).
n
2 .3
X X
For all x > 0, we have ¢* = 1+x+5+§+---, hence

2 3

(1—x)exz(1—x)+(1—x)x+(1—x)%+(1—x)%+---

~ 1\ o (1 1\ 3 (1 1)4
”‘(“z—z)x‘(5‘5)“(5‘4—!)““'

163

For an asymptotically large number of tasks, we obtain

1
lim Uy(n) = lim n(2n —1)

n—oo n—oo
1
o 2n—1
= lim
n—oo 1
n
1
M_zzzﬁ
. n
= lim
n—oo 1
2
= In2

164

In summary, we have the following result:

Theorem 6: If a set of periodic tasks has a processor load factor that is less than or equal
to In 2, then this set of tasks is schedulable.

Conclusion: The following algorithm can be used for checking efficiently whether a set of n
periodic tasks with a processor load factor equal to U is schedulable or not:

1. If U > 100%, then the set of tasks is not schedulable;
2. If U < 69%, then the set of tasks is schedulable;

1
3. If U <n2n — 1), then the set of tasks is schedulable;

4. Otherwise, one performs an exact scheduling simulation, based on a RMS priorities
assignment.

165

Notes

e In situations where U < 69% for the periodic tasks, the processor does not have to
remain unused during 31% of the time! One can instead run low-priority tasks that are

not bound by real-time constraints.

e For some specific class of sets of tasks, one can obtain U; = 100%, which guarantees
that every set of tasks for which U < 100% is schedulable.

Example: Let 71, 79,..., 7, be a set of tasks with respective periods and execution
times7{,7>,...,T,and C{,C»,...,C,, such that
- 0<T| 1 <TH) <--- < Ty,

— Vi,j i< j = Tjis aninteger multiple of 7;,

— U= Z_:

166

Let us show that this set of tasks is schedulable.

» . I .
The critical zone of 7, contains T complete executions of 7y:

r
71 ! | ! | | __ |

0 T, 2T, (k— 1T, kT,
1>

Similarly, for each j € {2,3,...,n}, the critical zone of 7; contains

T .
T_J complete executions of 7,

1

T.
L complete executions of 7;_j.
T

j—1

The condition that must be satisfied in order to finish the execution of T; before the end
of its critical zone is thus

T, T T,
Ci<Tj-=C1—=Cy—+—="Cj_y
T, ' T, T

167

After simplification, this condition becomes

which immediately follows from the hypothesis U < 1.

168

