
Chapter 7

Periodic Tasks Scheduling
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Periodic tasks

We consider a simplified programming environment satisfying the following hypotheses:

• The number of tasks to be executed is fixed.

• Each task is characterized by a distinct and constant priority.

• The execution requests for each task occur periodically, i.e., with a constant delay
between two successive requests.

In particular, the timing of execution requests for a task cannot depend on operations
performed by other tasks.

• The execution time of each task is constant.

133



• The following real-time constraint must be satisfied:

Each execution of a task must finish before or at the same time as the next
request for executing this task.

• Context switches are instantaneous and preemptive.
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Critical instants and critical zones

In addition to its priority, each task τi is characterized by

• its period Ti, and

• its execution time (for each period) Ci.

Definitions:

• The response time of an execution request for τi is the delay between this request and
the end of the corresponding execution of this task.

• A critical instant for the task τi is an occurrence of an execution request for τi that
leads to the largest possible response time for this task.

• A critical zone for τi is an interval of duration Ti that starts at a critical instant (for τi).
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Theorem 1: A critical instant for τi occurs when an execution request for this task coincides
with requests for executing all the tasks that have a higher priority than τi.

Proof: Assume that an execution request for τi occurs at t = ti, and that an execution
request for a higher-priority task τ j is received at t = t j.

t
ti ti + Ti

Ti

t j t j + C j t j + T j

Advancing the request for τ j from t j to ti can never decrease the response time of τi.

(Indeed, for each instruction I of τi, advancing τ j by one instruction either leaves
unchanged the execution time of I, or postpones it.)

The same reasoning can be applied to all the tasks that have a higher priority than τi.
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Schedulable tasks

Definition: A set of tasks is schedulable (with respect to a given assignment of priorities) if
the response time of each task τi is always less than or equal to its period Ti.

Thanks to Theorem 1, checking whether a given set of tasks is schedulable reduces to
simulating the scheduling strategy in the particular case of simultaneous execution
requests for all tasks at t = 0.

Examples: Consider two tasks τ1 and τ2, with T1 = 2, T2 = 5, C1 = 1 and C2 = 1.

• If τ1 has a higher priority than τ2.
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t

t

Critical zone

τ2
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The tasks are schedulable, and remain schedulable even if the execution time of τ2 is
increased by one time unit (C2 = 2):

0 1 2 3 4 5

0 1 2 3 4 5

Critical zone

t

t
τ1

τ2

• If τ2 has a higher priority than τ1.

0 1 2 3 4 5

0 1 2 3 4 5

Critical zone

τ1

τ2

t

t

The tasks are schedulable.

Note: In this case, the execution time of τ1 and τ2 cannot be increased anymore.
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Rate-Monotonic Scheduling

In the previous example, the best strategy was to assign the highest priority to the task that
has the smallest period.

Definition: Given a set of tasks τ1, τ2, . . . , τn with respective periods T1,T2, . . . ,Tn, the
Rate-Monotonic Scheduling (RMS) strategy consists in assigning distinct priorities
P1, P2, . . . Pn to the tasks, such that for all i, j:

Ti < T j ⇒ Pi > P j.

The following result establishes that the RMS strategy is optimal:

Theorem 2: If a set of tasks is schedulable with respect to some priorities assignment, then
it is schedulable as well with respect to priorities defined by the RMS strategy.
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Proof: Consider a set of tasks τ1, τ2, . . . , τn for which there exists a priorities assignment
P1, P2, . . . Pn that makes them schedulable.

Let τi and τ j two tasks with adjacent priorities Pi and P j, such that Pi > P j.

If Ti > T j, then the priorities of τi and τ j can be swapped:

τi

τi

τ j

τ j

T j Ti

t

0

The resulting set of tasks remains schedulable.

By performing repeatedly this operation, one eventually obtains a priorities assignment
corresponding to the RMS strategy.
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The processor load factor

Consider a set of tasks τ1, τ2, . . . , τn with respective periods and execution times
T1,T2, . . . ,Tn and C1,C2, . . . ,Cn.

The processor load factor U corresponding to this set of tasks represents the relative
amount of CPU time needed for executing them:

U =

n∑
i=1

Ci
Ti
.

Definition: A set of tasks fully uses the processor if

• this set of tasks is schedulable, and

• any increase of the execution time of a task (and hence of the processor load factor)
yields a set of tasks that is not schedulable anymore.
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Notes:

• Thanks to Theorem 2, checking whether a set of tasks is schedulable or not can be
done by assigning RMS priorities to those tasks.

• A set of tasks that has a processor load factor less than 1 is not necessarily
schedulable:

Example:

τ1 : T1 = 5, C1 = 2
τ2 : T2 = 7, C2 = 4

}
U =

2
5

+
4
7
≈ 97%

t

t

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

τ1

τ2
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Classifying sets of tasks

The set of sets of tasks can be partitioned into three classes:

• The non schedulable sets of tasks.

• The sets of tasks that fully use the processor.

• The schedulable sets of tasks that do not fully use the processor.

U

100%

0%

UL

Non schedulable sets of tasks

Sets of tasks that fullly use the CPU

Schedulable sets of tasks
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The best lower bound UL on the processor load factor of the sets of tasks that fully use the
processor is such that:

• If the processor load factor of a set of tasks is less than or equal to UL, then this set of
tasks is schedulable (regardless of the periods and execution times of the tasks!).

• If the processor load factor of a set of tasks is greater than UL, then this set of tasks
may or may not be schedulable, depending on the details of the tasks.
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UL: Case of two tasks

Let τ1 and τ2 be two tasks with respective periods and execution times T1,T2 and C1,C2.
We assume T1 < T2. According to the RMS strategy, we assign a higher priority to τ1.

During a critical zone of τ2, the number of execution requests for τ1 is equal to
⌈T2

T1

⌉
.

• If all the executions of τ1 in the interval [0,T2] terminate earlier than or at t = T2.

C1 C1

T1

C2

T2

τ2

τ1

t

0

The following condition is satisfied:

C1 ≤ T2 − T1

⌊
T2
T1

⌋
.
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For a given value of C1, the largest possible value of C2 is given by

C2 = T2 −C1

⌈
T2
T1

⌉
.

It follows that the highest possible processor load factor is equal to

U =
C1
T1

+
C2
T2

= 1 + C1

(
1

T1
−

1
T2

⌈
T2
T1

⌉)
.

Note that we have
1

T1
−

1
T2

⌈
T2
T1

⌉
≤ 0.

Therefore, for given values of T1 and T2, the maximum processor load factor
decreases with C1.

1 + C1

(
1

T1
− 1

T2

⌈
T2
T1

⌉)
1

0

U

C1

T2 − T1

⌊
T2
T1

⌋
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• If an execution of τ1 is still unfinished at t = T2.

C2

C1 C1

τ2
T2

τ1

0

t

T1

The following condition is satisfied:

C1 > T2 − T1

⌊
T2
T1

⌋
.

For a given value of C1, the largest possible value of C2 is given by

C2 = (T1 −C1)
⌊
T2
T1

⌋
.

Hence, the highest possible processor load factor is equal to

U =
T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
−

1
T2

⌊
T2
T1

⌋)
.
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For given values of T1 and T2, this expression increases with C1, since

1
T1
−

1
T2

⌊
T2
T1

⌋
≥ 0.

1

T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
− 1

T2

⌊
T2
T1

⌋)
U

0
T2 − T1

⌊
T2
T1

⌋
T1 C1
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Summary:

1

T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
− 1

T2

⌊
T2
T1

⌋)
U

0
T2 − T1

⌊
T2
T1

⌋
T1 C1

The smallest value of U corresponds to the boundary between the two cases, where we
have

C1 = T2 − T1

⌊
T2
T1

⌋
.

By introducing this value in the expression of U, one obtains

U =
T1
T2

⌊
T2
T1

⌋
+

(
T2 − T1

⌊
T2
T1

⌋) (
1

T1
−

1
T2

⌊
T2
T1

⌋)
=

T1
T2

⌊
T2
T1

⌋
+

T2
T1
− 2

⌊
T2
T1

⌋
+

T1
T2

⌊
T2
T1

⌋2
.
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Let us define I =

⌊
T2
T1

⌋
and f =

T2
T1
−

⌊
T2
T1

⌋
.

The previous expression becomes

U =
I

I + f
+ (I + f ) − 2I +

I2

I + f

= 1 − f
1 − f
I + f

.

The smallest possible value of U is obtained with I = 1. We then have

U = 1 − f
1 − f
1 + f

,

and

dU
d f

=
f 2 + 2 f − 1

(1 + f )2 .

The best lower bound UL on U is thus obtained with I = 1 and f = −1 +
√

2:

UL = 1 − (
√

2 − 1)
2 −

√
2

√
2

 = 2(
√

2 − 1) ≈ 0.83.
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Case of two tasks: Conclusions

Theorem 3: If a set of two periodic tasks has a processor load factor that is less than or
equal to 2(

√
2 − 1), then this set of tasks is schedulable.

Notes:

• This sufficient criterion is independent from the periods and execution times of the
tasks.

• In the particular case where T2 is an integer multiple of T1, one has f = 0, hence

UL = 1.

All pairs of tasks satisfying this condition (and such that
C1
T1

+
C2
T2
≤ 1 !) are thus

schedulable.
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UL: Case of n tasks

The goal is now to compute the value of UL

• for a given number n of tasks, and

• for any number of tasks.

The first step is to establish an intermediate result:

Lemma 1: Let τ1, τ2, . . . , τn be periodic tasks with the respective periods and execution
times T1,T2, . . . ,Tn and C1,C2, . . . ,Cn, such that

• This set of tasks fully uses the processor,

• 0 < T1 < T2 < · · · < Tn−1 < Tn < 2T1,

• The processor load factor of this set of tasks is minimum among all sets of tasks that
fully use the processor.
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In this case, one has

C1 = T2 − T1,

C2 = T3 − T2,
...

Cn−1 = Tn − Tn−1,

Cn = Tn − 2(C1 + C2 + · · ·Cn−1)

= 2T1 − Tn.

C1 C1

T1

Cn−1

Tn−1

C2

T2

C2

TnT3

CnCn−1

0

t
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Proof: By contradiction, let us show that we must have C1 = T2 − T1.

• If C1 = T2 − T1 + ∆, with ∆ > 0.

We modify the execution time of tasks in the following way:

C′1 = C1 − ∆,

C′2 = C2 + ∆,

C′3 = C3,
...

C′n−1 = Cn−1,

C′n = Cn.

C′2

C1

C′1 C′1

C1

T1

C2

T2

C′2

t

0

C2

T2 + ∆
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After the modification, the new set of tasks still fully uses the processor. However, the
processor load factor now becomes

U′ = U −
∆

T1
+

∆

T2
< U,

which contradicts the hypothesis that U is minimum.

• If C1 = T2 − T1 − ∆, with ∆ > 0.

We now modify the execution time of tasks as follows:

C′′1 = C1 + ∆,

C′′2 = C2,

C′′3 = C3,
...

C′′n−1 = Cn−1,

C′′n = Cn − 2∆.
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C1

C′′1 C′′1

C2

C′′2 C′′2

τn τnC1 C2

τn

τnτn

∆ ∆ ∆ T1 T2

T2 − ∆

0

t

The resulting set of tasks fully uses the processor. The processor load factor becomes

U′ = U +
∆

T1
−

2∆

Tn
.

Since we have by hypothesis Tn < 2T1, this property contradicts U′ < U.

By similar reasoning, one obtains successively

C2 = T3 − T2,

C3 = T4 − T3,
...

Cn−1 = Tn − Tn−1.
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Since the processor is fully used, one finally gets

Cn = Tn − 2(C1 + C2 + · · ·Cn−1).

Corollary: For each set of tasks that satisfies the hypotheses of Lemma 1, the processor
load factor is equal to

U =
T2 − T1

T1
+

T3 − T2
T2

+ · · · +
Tn − Tn−1

Tn−1

+
2T1 − Tn

Tn

=
T2
T1

+
T3
T2

+ · · · +
Tn

Tn−1
+ 2

T1
Tn
− n.

157



For each i = 1, 2, . . . , n − 1, let us define qi =
Ti+1
Ti

. We then have

U = q1 + q2 + · · · + qn−1 +
2

q1q2 · · · qn−1
− n,

and thus for each i,
∂U
∂qi

= 1 − 2
q1q2 · · · qi−1qi+1 · · · qn−1

(q1q2 · · · qn−1)2 .

The best lower bound UL of U therefore corresponds to

∂U
∂qi

= 0

1 −
1
qi
.

2
q1q2 · · · qn−1

= 0.
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For each i, one has

qi =
2

q1q2 · · · qn−1
,

hence

q1 = q2 = · · · = qn−1 = 2
1
n .

By introducing these values in the expression of U, one obtains

UL = (n − 1)2
1
n +

2

2
n−1

n
− n

= (n − 1)2
1
n + 2

1
n − n

= n(2
1
n − 1).

We thus have the following result:

Theorem 4: If the periods T1,T2, . . . ,Tn of a set of n tasks are such that

0 < T1 < T2 < · · · < Tn−1 < Tn < 2T1,

with a processor load factor that is less than or equal to n(2
1
n − 1), then this set of tasks is

schedulable.
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In the hypotheses of Theorem 4, the constraint over the task periods is actually not
necessary:

Theorem 5: If a set of n periodic tasks has a processor load factor that is less than or equal
to n(2

1
n − 1), then this set of tasks is schedulable.

Proof: Let τ1, τ2, . . . , τn be tasks with respective periods and execution times T1,T2, . . . ,Tn

and C1,C2, . . . ,Cn. We assume that this set of tasks fully uses the processor.

If there exists i ∈ {1, 2, . . . , n − 1} such that 2Ti ≤ Tn, then we define q =

⌊
Tn
Ti

⌋
and

r = Tn − qTi (we thus have q > 1 and r ≥ 0).

We modify the set of tasks in the following way:

• We replace τi by τ′i with the period T ′i = qTi and the execution time C′i = Ci.

• We replace τn by τ′n, with the period T ′n = Tn and an execution time C′n chosen so as to
fully use the processor.
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Ci Ci Ci ≤ Ci

Ti 2Ti (q − 1)Ti qTi

C′i = Ci

T ′i

Tn0

t

In the critical zone of τn, the difference between the execution times needed by τi and τ′i is
at most equal to (q − 1)Ci. Therefore, one has

C′n −Cn ≤ (q − 1)Ci.

After modifying the set of tasks, the processor load factor U′ becomes equal to

U′ ≤ U +
C′i
T ′i
−

Ci
Ti

+
(q − 1)Ci

Tn

where U is the processor load factor of the initial set of tasks.

One then obtains

U′ ≤ U + Ci

(
1

qTi
−

1
Ti

+
q − 1

Tn

)
.
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Since we have qTi ≤ Tn, this leads to

1
qTi
−

1
Ti

+
q − 1

Tn
≤

1
qTi
−

1
Ti

+
q − 1
qTi

≤ 0.

As a consequence, we have U′ ≤ U. This implies that our modification of the set of tasks
did not increase the processor load factor.

By repeatedly performing such a modification, one eventually obtains a set of tasks to
which Theorem 4 can be applied.
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The limit processor load factor

The value of UL decreases with the number n of tasks. Indeed,

dUL
dn

=

(
1 −

ln 2
n

)
2

1
n − 1

= (1 − x)ex − 1,

by defining x =
ln 2
n

. Let us show that we have

(1 − x)ex < 1

for all x > 0 (which implies
dUL
dn

< 0 for all n > 0).

For all x > 0, we have ex = 1 + x +
x2

2!
+

x3

3!
+ · · · , hence

(1 − x)ex = (1 − x) + (1 − x)x + (1 − x)
x2

2!
+ (1 − x)

x3

3!
+ · · ·

= 1 −
(
1 −

1
2!

)
x2 −

(
1
2!
−

1
3!

)
x3 −

(
1
3!
−

1
4!

)
x4 + · · ·

< 1.
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For an asymptotically large number of tasks, we obtain

lim
n→∞

UL(n) = lim
n→∞

n(2
1
n − 1)

= lim
n→∞

2
1
n − 1

1
n

= lim
n→∞

ln 2
n2 2

1
n

1
n2

= ln 2

≈ 0.69
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In summary, we have the following result:

Theorem 6: If a set of periodic tasks has a processor load factor that is less than or equal
to ln 2, then this set of tasks is schedulable.

Conclusion: The following algorithm can be used for checking efficiently whether a set of n
periodic tasks with a processor load factor equal to U is schedulable or not:

1. If U > 100%, then the set of tasks is not schedulable;

2. If U ≤ 69%, then the set of tasks is schedulable;

3. If U ≤ n(2
1
n − 1), then the set of tasks is schedulable;

4. Otherwise, one performs an exact scheduling simulation, based on a RMS priorities
assignment.
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Notes

• In situations where U ≤ 69% for the periodic tasks, the processor does not have to
remain unused during 31% of the time! One can instead run low-priority tasks that are
not bound by real-time constraints.

• For some specific class of sets of tasks, one can obtain UL = 100%, which guarantees
that every set of tasks for which U ≤ 100% is schedulable.

Example: Let τ1, τ2, . . . , τn be a set of tasks with respective periods and execution
times T1,T2, . . . ,Tn and C1,C2, . . . ,Cn, such that

– 0 < T1 ≤ T2 ≤ · · · ≤ Tn,

– ∀i, j : i < j ⇒ T j is an integer multiple of Ti,

– U =

n∑
i=1

Ci
Ti
≤ 1.
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Let us show that this set of tasks is schedulable.

The critical zone of τ2 contains
T2
T1

complete executions of τ1:

τ1
T1 2T1 (k − 1)T1 kT10

T2

t

Similarly, for each j ∈ {2, 3, . . . , n}, the critical zone of τ j contains
T j

T1
complete executions of τ1,

...
T j

T j−1
complete executions of τ j−1.

The condition that must be satisfied in order to finish the execution of τ j before the end
of its critical zone is thus

C j ≤ T j −
T j

T1
C1 −

T j

T2
C2 − · · · −

T j

T j−1
C j−1
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After simplification, this condition becomes

C1
T1

+
C2
T2

+ · · · +
C j

T j
≤ 1,

which immediately follows from the hypothesis U ≤ 1.
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