
Chapter 7

Periodic Tasks Scheduling

132



Periodic tasks

We consider a simplified programming environment satisfying the following hypotheses:

• The number of tasks to be executed is fixed.

• Each task is characterized by a distinct and constant priority.

• The execution requests for each task occur periodically, i.e., with a constant delay
between two successive requests.

In particular, the timing of execution requests for a task cannot depend on operations
performed by other tasks.

• The execution time of each task is constant.

133



• The following real-time constraint must be satisfied:

Each execution of a task must finish before or at the same time as the next
request for executing this task.

• Context switches are instantaneous and preemptive.

134



Critical instants and critical zones

In addition to its priority, each task τi is characterized by

• its period Ti, and

• its execution time (for each period) Ci.

Definitions:

• The response time of an execution request for τi is the delay between this request and
the end of the corresponding execution of this task.

• A critical instant for the task τi is an occurrence of an execution request for τi that
leads to the largest possible response time for this task.

• A critical zone for τi is an interval of duration Ti that starts at a critical instant (for τi).

135



Theorem 1: A critical instant for τi occurs when an execution request for this task coincides
with requests for executing all the tasks that have a higher priority than τi.

Proof: Assume that an execution request for τi occurs at t = ti, and that an execution
request for a higher-priority task τ j is received at t = t j.

t
ti ti + Ti

Ti

t j t j + C j t j + T j

Advancing the request for τ j from t j to ti can never decrease the response time of τi.

(Indeed, for each instruction I of τi, advancing τ j by one instruction either leaves
unchanged the execution time of I, or postpones it.)

The same reasoning can be applied to all the tasks that have a higher priority than τi.

136



Schedulable tasks

Definition: A set of tasks is schedulable (with respect to a given assignment of priorities) if
the response time of each task τi is always less than or equal to its period Ti.

Thanks to Theorem 1, checking whether a given set of tasks is schedulable reduces to
simulating the scheduling strategy in the particular case of simultaneous execution
requests for all tasks at t = 0.

Examples: Consider two tasks τ1 and τ2, with T1 = 2, T2 = 5, C1 = 1 and C2 = 1.

• If τ1 has a higher priority than τ2.

0 1 2 3 4 5

0 1 2 3 4 5

t

t

Critical zone

τ2

τ1

137



The tasks are schedulable, and remain schedulable even if the execution time of τ2 is
increased by one time unit (C2 = 2):

0 1 2 3 4 5

0 1 2 3 4 5

Critical zone

t

t
τ1

τ2

• If τ2 has a higher priority than τ1.

0 1 2 3 4 5

0 1 2 3 4 5

Critical zone

τ1

τ2

t

t

The tasks are schedulable.

Note: In this case, the execution time of τ1 and τ2 cannot be increased anymore.

138



Rate-Monotonic Scheduling

In the previous example, the best strategy was to assign the highest priority to the task that
has the smallest period.

Definition: Given a set of tasks τ1, τ2, . . . , τn with respective periods T1,T2, . . . ,Tn, the
Rate-Monotonic Scheduling (RMS) strategy consists in assigning distinct priorities
P1, P2, . . . Pn to the tasks, such that for all i, j:

Ti < T j ⇒ Pi > P j.

The following result establishes that the RMS strategy is optimal:

Theorem 2: If a set of tasks is schedulable with respect to some priorities assignment, then
it is schedulable as well with respect to priorities defined by the RMS strategy.

139



Proof: Consider a set of tasks τ1, τ2, . . . , τn for which there exists a priorities assignment
P1, P2, . . . Pn that makes them schedulable.

Let τi and τ j two tasks with adjacent priorities Pi and P j, such that Pi > P j.

If Ti > T j, then the priorities of τi and τ j can be swapped:

τi

τi

τ j

τ j

T j Ti

t

0

The resulting set of tasks remains schedulable.

By performing repeatedly this operation, one eventually obtains a priorities assignment
corresponding to the RMS strategy.

140



The processor load factor

Consider a set of tasks τ1, τ2, . . . , τn with respective periods and execution times
T1,T2, . . . ,Tn and C1,C2, . . . ,Cn.

The processor load factor U corresponding to this set of tasks represents the relative
amount of CPU time needed for executing them:

U =

n∑
i=1

Ci
Ti
.

Definition: A set of tasks fully uses the processor if

• this set of tasks is schedulable, and

• any increase of the execution time of a task (and hence of the processor load factor)
yields a set of tasks that is not schedulable anymore.

141



Notes:

• Thanks to Theorem 2, checking whether a set of tasks is schedulable or not can be
done by assigning RMS priorities to those tasks.

• A set of tasks that has a processor load factor less than 1 is not necessarily
schedulable:

Example:

τ1 : T1 = 5, C1 = 2
τ2 : T2 = 7, C2 = 4

}
U =

2
5

+
4
7
≈ 97%

t

t

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

τ1

τ2

142



Classifying sets of tasks

The set of sets of tasks can be partitioned into three classes:

• The non schedulable sets of tasks.

• The sets of tasks that fully use the processor.

• The schedulable sets of tasks that do not fully use the processor.

U

100%

0%

UL

Non schedulable sets of tasks

Sets of tasks that fullly use the CPU

Schedulable sets of tasks

143



The best lower bound UL on the processor load factor of the sets of tasks that fully use the
processor is such that:

• If the processor load factor of a set of tasks is less than or equal to UL, then this set of
tasks is schedulable (regardless of the periods and execution times of the tasks!).

• If the processor load factor of a set of tasks is greater than UL, then this set of tasks
may or may not be schedulable, depending on the details of the tasks.

144



UL: Case of two tasks

Let τ1 and τ2 be two tasks with respective periods and execution times T1,T2 and C1,C2.
We assume T1 < T2. According to the RMS strategy, we assign a higher priority to τ1.

During a critical zone of τ2, the number of execution requests for τ1 is equal to
⌈T2

T1

⌉
.

• If all the executions of τ1 in the interval [0,T2] terminate earlier than or at t = T2.

C1 C1

T1

C2

T2

τ2

τ1

t

0

The following condition is satisfied:

C1 ≤ T2 − T1

⌊
T2
T1

⌋
.

145



For a given value of C1, the largest possible value of C2 is given by

C2 = T2 −C1

⌈
T2
T1

⌉
.

It follows that the highest possible processor load factor is equal to

U =
C1
T1

+
C2
T2

= 1 + C1

(
1

T1
−

1
T2

⌈
T2
T1

⌉)
.

Note that we have
1

T1
−

1
T2

⌈
T2
T1

⌉
≤ 0.

Therefore, for given values of T1 and T2, the maximum processor load factor
decreases with C1.

1 + C1

(
1

T1
− 1

T2

⌈
T2
T1

⌉)
1

0

U

C1

T2 − T1

⌊
T2
T1

⌋
146



• If an execution of τ1 is still unfinished at t = T2.

C2

C1 C1

τ2
T2

τ1

0

t

T1

The following condition is satisfied:

C1 > T2 − T1

⌊
T2
T1

⌋
.

For a given value of C1, the largest possible value of C2 is given by

C2 = (T1 −C1)
⌊
T2
T1

⌋
.

Hence, the highest possible processor load factor is equal to

U =
T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
−

1
T2

⌊
T2
T1

⌋)
.

147



For given values of T1 and T2, this expression increases with C1, since

1
T1
−

1
T2

⌊
T2
T1

⌋
≥ 0.

1

T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
− 1

T2

⌊
T2
T1

⌋)
U

0
T2 − T1

⌊
T2
T1

⌋
T1 C1

148



Summary:

1

T1
T2

⌊
T2
T1

⌋
+ C1

(
1

T1
− 1

T2

⌊
T2
T1

⌋)
U

0
T2 − T1

⌊
T2
T1

⌋
T1 C1

The smallest value of U corresponds to the boundary between the two cases, where we
have

C1 = T2 − T1

⌊
T2
T1

⌋
.

By introducing this value in the expression of U, one obtains

U =
T1
T2

⌊
T2
T1

⌋
+

(
T2 − T1

⌊
T2
T1

⌋) (
1

T1
−

1
T2

⌊
T2
T1

⌋)
=

T1
T2

⌊
T2
T1

⌋
+

T2
T1
− 2

⌊
T2
T1

⌋
+

T1
T2

⌊
T2
T1

⌋2
.

149



Let us define I =

⌊
T2
T1

⌋
and f =

T2
T1
−

⌊
T2
T1

⌋
.

The previous expression becomes

U =
I

I + f
+ (I + f ) − 2I +

I2

I + f

= 1 − f
1 − f
I + f

.

The smallest possible value of U is obtained with I = 1. We then have

U = 1 − f
1 − f
1 + f

,

and

dU
d f

=
f 2 + 2 f − 1

(1 + f )2 .

The best lower bound UL on U is thus obtained with I = 1 and f = −1 +
√

2:

UL = 1 − (
√

2 − 1)
2 −

√
2

√
2

 = 2(
√

2 − 1) ≈ 0.83.

150



Case of two tasks: Conclusions

Theorem 3: If a set of two periodic tasks has a processor load factor that is less than or
equal to 2(

√
2 − 1), then this set of tasks is schedulable.

Notes:

• This sufficient criterion is independent from the periods and execution times of the
tasks.

• In the particular case where T2 is an integer multiple of T1, one has f = 0, hence

UL = 1.

All pairs of tasks satisfying this condition (and such that
C1
T1

+
C2
T2
≤ 1 !) are thus

schedulable.

151



UL: Case of n tasks

The goal is now to compute the value of UL

• for a given number n of tasks, and

• for any number of tasks.

The first step is to establish an intermediate result:

Lemma 1: Let τ1, τ2, . . . , τn be periodic tasks with the respective periods and execution
times T1,T2, . . . ,Tn and C1,C2, . . . ,Cn, such that

• This set of tasks fully uses the processor,

• 0 < T1 < T2 < · · · < Tn−1 < Tn < 2T1,

• The processor load factor of this set of tasks is minimum among all sets of tasks that
fully use the processor.

152



In this case, one has

C1 = T2 − T1,

C2 = T3 − T2,
...

Cn−1 = Tn − Tn−1,

Cn = Tn − 2(C1 + C2 + · · ·Cn−1)

= 2T1 − Tn.

C1 C1

T1

Cn−1

Tn−1

C2

T2

C2

TnT3

CnCn−1

0

t

153



Proof: By contradiction, let us show that we must have C1 = T2 − T1.

• If C1 = T2 − T1 + ∆, with ∆ > 0.

We modify the execution time of tasks in the following way:

C′1 = C1 − ∆,

C′2 = C2 + ∆,

C′3 = C3,
...

C′n−1 = Cn−1,

C′n = Cn.

C′2

C1

C′1 C′1

C1

T1

C2

T2

C′2

t

0

C2

T2 + ∆

154



After the modification, the new set of tasks still fully uses the processor. However, the
processor load factor now becomes

U′ = U −
∆

T1
+

∆

T2
< U,

which contradicts the hypothesis that U is minimum.

• If C1 = T2 − T1 − ∆, with ∆ > 0.

We now modify the execution time of tasks as follows:

C′′1 = C1 + ∆,

C′′2 = C2,

C′′3 = C3,
...

C′′n−1 = Cn−1,

C′′n = Cn − 2∆.

155



C1

C′′1 C′′1

C2

C′′2 C′′2

τn τnC1 C2

τn

τnτn

∆ ∆ ∆ T1 T2

T2 − ∆

0

t

The resulting set of tasks fully uses the processor. The processor load factor becomes

U′ = U +
∆

T1
−

2∆

Tn
.

Since we have by hypothesis Tn < 2T1, this property contradicts U′ < U.

By similar reasoning, one obtains successively

C2 = T3 − T2,

C3 = T4 − T3,
...

Cn−1 = Tn − Tn−1.

156



Since the processor is fully used, one finally gets

Cn = Tn − 2(C1 + C2 + · · ·Cn−1).

Corollary: For each set of tasks that satisfies the hypotheses of Lemma 1, the processor
load factor is equal to

U =
T2 − T1

T1
+

T3 − T2
T2

+ · · · +
Tn − Tn−1

Tn−1

+
2T1 − Tn

Tn

=
T2
T1

+
T3
T2

+ · · · +
Tn

Tn−1
+ 2

T1
Tn
− n.

157



For each i = 1, 2, . . . , n − 1, let us define qi =
Ti+1
Ti

. We then have

U = q1 + q2 + · · · + qn−1 +
2

q1q2 · · · qn−1
− n,

and thus for each i,
∂U
∂qi

= 1 − 2
q1q2 · · · qi−1qi+1 · · · qn−1

(q1q2 · · · qn−1)2 .

The best lower bound UL of U therefore corresponds to

∂U
∂qi

= 0

1 −
1
qi
.

2
q1q2 · · · qn−1

= 0.

158



For each i, one has

qi =
2

q1q2 · · · qn−1
,

hence

q1 = q2 = · · · = qn−1 = 2
1
n .

By introducing these values in the expression of U, one obtains

UL = (n − 1)2
1
n +

2

2
n−1

n
− n

= (n − 1)2
1
n + 2

1
n − n

= n(2
1
n − 1).

We thus have the following result:

Theorem 4: If the periods T1,T2, . . . ,Tn of a set of n tasks are such that

0 < T1 < T2 < · · · < Tn−1 < Tn < 2T1,

with a processor load factor that is less than or equal to n(2
1
n − 1), then this set of tasks is

schedulable.

159



In the hypotheses of Theorem 4, the constraint over the task periods is actually not
necessary:

Theorem 5: If a set of n periodic tasks has a processor load factor that is less than or equal
to n(2

1
n − 1), then this set of tasks is schedulable.

Proof: Let τ1, τ2, . . . , τn be tasks with respective periods and execution times T1,T2, . . . ,Tn

and C1,C2, . . . ,Cn. We assume that this set of tasks fully uses the processor.

If there exists i ∈ {1, 2, . . . , n − 1} such that 2Ti ≤ Tn, then we define q =

⌊
Tn
Ti

⌋
and

r = Tn − qTi (we thus have q > 1 and r ≥ 0).

We modify the set of tasks in the following way:

• We replace τi by τ′i with the period T ′i = qTi and the execution time C′i = Ci.

• We replace τn by τ′n, with the period T ′n = Tn and an execution time C′n chosen so as to
fully use the processor.

160



Ci Ci Ci ≤ Ci

Ti 2Ti (q − 1)Ti qTi

C′i = Ci

T ′i

Tn0

t

In the critical zone of τn, the difference between the execution times needed by τi and τ′i is
at most equal to (q − 1)Ci. Therefore, one has

C′n −Cn ≤ (q − 1)Ci.

After modifying the set of tasks, the processor load factor U′ becomes equal to

U′ ≤ U +
C′i
T ′i
−

Ci
Ti

+
(q − 1)Ci

Tn

where U is the processor load factor of the initial set of tasks.

One then obtains

U′ ≤ U + Ci

(
1

qTi
−

1
Ti

+
q − 1

Tn

)
.

161



Since we have qTi ≤ Tn, this leads to

1
qTi
−

1
Ti

+
q − 1

Tn
≤

1
qTi
−

1
Ti

+
q − 1
qTi

≤ 0.

As a consequence, we have U′ ≤ U. This implies that our modification of the set of tasks
did not increase the processor load factor.

By repeatedly performing such a modification, one eventually obtains a set of tasks to
which Theorem 4 can be applied.

162



The limit processor load factor

The value of UL decreases with the number n of tasks. Indeed,

dUL
dn

=

(
1 −

ln 2
n

)
2

1
n − 1

= (1 − x)ex − 1,

by defining x =
ln 2
n

. Let us show that we have

(1 − x)ex < 1

for all x > 0 (which implies
dUL
dn

< 0 for all n > 0).

For all x > 0, we have ex = 1 + x +
x2

2!
+

x3

3!
+ · · · , hence

(1 − x)ex = (1 − x) + (1 − x)x + (1 − x)
x2

2!
+ (1 − x)

x3

3!
+ · · ·

= 1 −
(
1 −

1
2!

)
x2 −

(
1
2!
−

1
3!

)
x3 −

(
1
3!
−

1
4!

)
x4 + · · ·

< 1.

163



For an asymptotically large number of tasks, we obtain

lim
n→∞

UL(n) = lim
n→∞

n(2
1
n − 1)

= lim
n→∞

2
1
n − 1

1
n

= lim
n→∞

ln 2
n2 2

1
n

1
n2

= ln 2

≈ 0.69

164



In summary, we have the following result:

Theorem 6: If a set of periodic tasks has a processor load factor that is less than or equal
to ln 2, then this set of tasks is schedulable.

Conclusion: The following algorithm can be used for checking efficiently whether a set of n
periodic tasks with a processor load factor equal to U is schedulable or not:

1. If U > 100%, then the set of tasks is not schedulable;

2. If U ≤ 69%, then the set of tasks is schedulable;

3. If U ≤ n(2
1
n − 1), then the set of tasks is schedulable;

4. Otherwise, one performs an exact scheduling simulation, based on a RMS priorities
assignment.

165



Notes

• In situations where U ≤ 69% for the periodic tasks, the processor does not have to
remain unused during 31% of the time! One can instead run low-priority tasks that are
not bound by real-time constraints.

• For some specific class of sets of tasks, one can obtain UL = 100%, which guarantees
that every set of tasks for which U ≤ 100% is schedulable.

Example: Let τ1, τ2, . . . , τn be a set of tasks with respective periods and execution
times T1,T2, . . . ,Tn and C1,C2, . . . ,Cn, such that

– 0 < T1 ≤ T2 ≤ · · · ≤ Tn,

– ∀i, j : i < j ⇒ T j is an integer multiple of Ti,

– U =

n∑
i=1

Ci
Ti
≤ 1.

166



Let us show that this set of tasks is schedulable.

The critical zone of τ2 contains
T2
T1

complete executions of τ1:

τ1
T1 2T1 (k − 1)T1 kT10

T2

t

Similarly, for each j ∈ {2, 3, . . . , n}, the critical zone of τ j contains
T j

T1
complete executions of τ1,

...
T j

T j−1
complete executions of τ j−1.

The condition that must be satisfied in order to finish the execution of τ j before the end
of its critical zone is thus

C j ≤ T j −
T j

T1
C1 −

T j

T2
C2 − · · · −

T j

T j−1
C j−1

167



After simplification, this condition becomes

C1
T1

+
C2
T2

+ · · · +
C j

T j
≤ 1,

which immediately follows from the hypothesis U ≤ 1.

168


