
Embedded systems
Exercise session, 29/11



About the project

From now on, all questions / demands / submissions of
deliverables −→ bernard.boigelot@uliege.be.

Next deadline: 6/12, report on hardware and software
architectures:

High-level description of what you intend to develop, and
shopping list:

Three suppliers: Farnell (https://be.farnell.com),
Mouser (https://www.mouser.be),
RS Components (https://befr.rs-online.com).

Send Excel files generated by exporting your shopping basket.

Max. 60 e/group (TVAC).

https://be.farnell.com
https://www.mouser.be
https://befr.rs-online.com


Exercices
Software architectures



Principles

Decision guidelines:

1 Make an inventory of all tasks.

2 Identify those that can be (or need to be) performed by interrupt
routines.

3 Is preemption needed? (Yes→ RTOS).

4 Are interrupts needed? (No→ RR).

5 Is static CPU assignment acceptable? (Yes→ RR/I, No→WQ).

Important points:

1 Only urgent and short operations in interrupt routines!

2 When peripherals are busy, the processor can do something else.



Problem 1

The onboard microcontroller of a homemade quadcopter has to receive and execute
instructions sent by the pilot via a wireless link (such as taking off, landing, flying in a
specified direction, . . . ). In addition to processing those instructions, it constantly
stabilizes the vehicle. In order to monitor and control stability, the quadcopter is
equipped with two 3-axis accelerometers and one gyroscope. It also includes a
camera whose signal, along with other monitoring data, has to be sent back to the
pilot. The microcontroller has to perform the following tasks:

Receiving and processing instructions: 10 times per second, execution time = 5
ms.

Controlling the motors: 100 times per second, execution time = 2 ms.

Acquiring data from sensors: period of 4 ms, execution time = 1 ms.

Sending the video signal and other data: period of 40 ms, execution time = 20
ms.

1 What is the best software architecture for this system? Justify.
2 Using pseudocode, give a suitable global structure for this software.



List of tasks:

τ1: Receiving & processing instructions: period = 100 ms, exec.
time = 5 ms.
τ2: Motors control: period = 10 ms, exec. time = 2 ms.
τ3: Sensor data acquisition: period = 4 ms, exec. time = 1 ms.
τ4: Sending data: period = 40 ms, exec. time = 20 ms.

Can some tasks be performed by interrupt routines?

No! (Execution times in milliseconds.)

Is preemption needed?

Yes! (τ2 and τ3 over τ4.)

→ RTOS.



Task priorities?

P(τ2) > P(τ3) > P(τ1) > P(τ4).

Tasks communication:

Global variables for the current mode of operation and last sensor
data.
Binary semaphores for controlling concurrent access to those
variables.



#include <rtos.h>
#include <rtos-semaphores.h>
#include "datastruct.h"
#include "instruction.h"

static volatile mode current_mode;
static volatile sensor_values last_sensors_data;
static semaphore mode_sem, sensors_sem;

void task1(void) /* Receiving and processing instructions */
{
instruction *in;
mode m;

in = !! get data from wireless link
if (in)
{
m = process_instruction(in);

wait(mode_sem);
current_mode = m;
signal(mode_sem);

}
}



void task2(void) /* Motor control */
{
mode m;
sensors_values v;

wait(mode_sem);
m = current_mode;
signal(mode_sem);

wait(sensors_sem);
v = last_sensors_data;
signal(sensors_sem);

!! compute control variables according to m and v
!! command motors

}

void task3(void) /* Sensor data acquisition */
{
sensors_values v;

v = !! get sensors data



wait(sensors_sem);
last_sensors_data = v;
signal(sensors_sem);

}

void task4(void) /* Sending data */
{
!! get camera data
!! send camera data

}

void main(void)
{
!! initialize OS
!! initialize data structures

create_periodic_task(task1, 100, 2);
create_periodic_task(task2, 10, 4);
create_periodic_task(task3, 4, 3);
create_periodic_task(task4, 40, 1);



mode_sem = create_binary_semaphore(1);
sensors_sem = create_binary_semaphore(1);

!! start tasks sequencing
}



Problem 2

A portable audio player is equipped with a microcontroller that has to react to user
actions, display messages on a small screen, and send audio data to an MP3 decoder.
The function of the MP3 decoder is to convert audio data into analog signals. This
decoder is connected to a dedicated digital input of the microcontroller, on which it
signals whether it is ready or not to receive data. The microcontroller needs to run the
following tasks:

A task τ1 checking the state of the keyboard 25 times per second. Its execution
time is negligible.

A task τ2 sending a fixed number of characters to the screen, at most 25 times
per second. This task requires 3 ms to complete.

A task τ3 sending audio data to the MP3 decoder whenever it is ready to receive
it. Sending data can take up to 80 ms. In the worst case, this operation might be
requested 10 times per second. The microcontroller is the master of the
transaction; it can pause the data transfer in order to perform other tasks,
provided that the duration of this pause does not exceed 10 ms.

Note: The input of the microcontroller connected to the decoder can be configured to
trigger interrupts.



List of tasks:

τ1: Checking keyboard: period = 40 ms, exec. time = ε.
τ2: Updating screen: period ≥ 40 ms, exec. time = 3 ms.
τ3: Sending audio data: period: ≥ 100 ms, exec. time = 80 ms.
τ4: React to ready-to-receive signal: exec. time = ε.

Notes:

τ1 and τ2 can be grouped into a single task with a period of 40 ms.
τ4 implemented by an interrupt routine.

Is preemption needed?

Yes! (τ1&2 over τ3.)

→ RTOS.



Task priorities?

P(τ1&2) > P(τ3). Task τ4 moved to an interrupt routine.

Tasks communication:

Global variable for the current status of the device.
Binary semaphore for controlling access to this variable.
Counter semaphore for signaling that the MP3 decoder is ready to
receive new data.



#include <rtos.h>
#include <rtos-semaphores.h>
#include "datastruct.h"

static volatile status current_status;
static semaphore status_sem, data_sem;

void task1_2(void) /* Keyboard and screen management */
{
keyboard_state k;
status s;

k = !! read_keyboard_state;

!! compute new status s from current_status and k

wait(status_sem);
current_status = s;
signal(status_sem);

!! update screen
}



void task3(void) /* Audio data sending */
{
status s;

for (;;)
{
wait(status_sem);
s = current_status;
signal(status_sem);

!! compute data (using value of s)

wait(data_sem);

!! send data to MP3 decoder
}

}

interrupt void task4(void) /* Decoder is ready to receive */
{
signal(data_sem);

}



void main(void)
{
!! initialize OS
!! initialize data structures

create_periodic_task(task1_2, 40, 2);
create_one_shot_task(task3, 1);

status_sem = create_binary_semaphore(1);
data_sem = create_counter_semaphore(0);

/* Assuming that the MP3 decoder emits an initial
interrupt request */

enable(); /* User-programmed interrupts */

!! start tasks sequencing
}



Problem 3

An homemade digital oscilloscope has two analog input channels, four digital logic
input channels, a LCD screen for displaying signals, a serial connection for sending
data to a computer, and some control buttons. There is one button for switching
between digital and analog modes, and another one for choosing between displaying
the current signals on the screen, or sending these signals to the computer via the
serial connection. By pressing two additional buttons, one can also modify the current
voltage and time scales.

The microcontroller is only able to perform a single A/D conversion at a given
time. (In order to acquire both analog input channels, it is thus necessary to
sample them one after the other.) Such a conversion takes at least 12 µs, and
triggers an interrupt upon completion.
In order to sample the digital inputs, the microcontroller reads the values on the
corresponding pins every 10 µs.
Processing acquired data before displaying it needs at most 4 ms of CPU time.
The screen contents have to be refreshed at least 20 times per second, and
each refresh takes 3 ms.
Sending acquired data via the serial connection takes 5 ms and must be done
20 times per second.
Buttons are checked at least 25 times per second.



List of tasks:

τ1: A/D conversion on one channel: period ≥ 12 µs.
τ2: Digital input sampling: period = 10 µs, exec. time = ε.
τ3: Processing data: same rate as τ4, exec. time = 4 ms.
τ4: Screen refresh: period ≤ 50 ms, exec. time = 3 ms.
τ5: Serial communication: period = 50 ms, exec. time = 5 ms.
τ6: Checking buttons: period ≤ 40 ms, exec. time = ε.

Notes:

τ3, τ4 and τ5 can be grouped into a single task run every 50 ms.
At any time, only one of τ1 or τ2 should be operating.
τ1 is performed by a peripheral, and managed by an interrupt
routine.
τ2 and τ6 can be implemented by interrupt routines.



Is preemption needed?

No.

Are interrupts needed?

Yes.

Is static processor assignment OK?

Yes!

→ Round-Robin with Interrupts.



Task/task and task/interrupt routine communication:

Global variables:

Flags for digital/analog and screen/remote modes.
Flag for 50 ms timer expiration.
Structure for raw and processed data, with separate fields for
digital and analog samples.
Structure for buttons input.



#include "types.h"
#include "datastruct.h"

volatile bool mode_is_digital = 1, mode_is_remote = 0;
volatile scales scaling_info;
volatile bool timer1_ready = 0;
volatile samples_data raw_data;

samples_data processed_data;
volatile buttons_state buttons;

interrupt void timer1(void) /* 50 ms timer */
{
timer1_ready = 1;

}

interrupt void timer2(void) /* Read buttons */
{
!! Read keyboard status and update global variable buttons

}

interrupt void task1(void) /* End of A/D conversion */
{
!! Fetch conversion result and append it to raw_data.analog
!! Start next A/D conversion

}



interrupt void task2(void) /* Digital input sampling */
{
digital_data d;

d = read_digital_inputs();

data_append(raw_data.digital, d);
}

void task3(void) /* Data processing */
{
samples_data d;

disable();
d = raw_data;
enable();

!! Process d and store the result in processed_data
}



void task4(void) /* Screen refresh */
{
!! Display the contents of processed_data on the screen,
!! taking current value of mode_is_remote and
!! scaling_info into account.

}

void task5(void) /* Serial communication */
{
!! Send the contents of processed_data over the serial
!! line.

}

void task6(void) /* React to buttons */
{
buttons_state s;

disable();
s = buttons;
buttons.new_keypress = KEY_NONE;
enable();



switch (s.new_keypress)
{
case KEY_DIGITAL_OR_ANALOG:

mode_is_digital = !mode_is_digital;
break;

case KEY_SCREEN_OR_REMOTE:
mode_is_remote = !mode_is_remote;
break;

case KEY_SCALING:
!! Modify scaling_info
break;

case KEY_NONE:
default:

break;
}

}



void main(void)
{
!! Initialize global data structures

!! Configure A/D: 12 µs sampling period, end-of-conversion
interrupt (calling task1())

!! Configure timer1 interrupt (calling timer1()),
with period : 50 ms

!! Configure timer2 interrupt (calling timer2()),
with period = 40 ms

!! Configure timer3 interrupt (calling task2()),
with period = 10 µs and high priority.

enable(); /* Global interrupts */



for (;;)
{

if (mode_is_digital)
{
if (!! A/D enabled)

!! Disable A/D conversion

!! Enable timer3 interrupt
}

else
{
if (!! A/D disabled or inactive)

!! Enable and start A/D conversion

!! Disable timer3 interrupt
}



if (timer1_ready)
{
timer1_ready = 0;
task3();
task4();

if (mode_is_remote)
task_5();

}

task_6();
}

}


