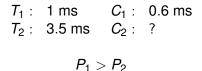
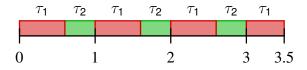
Embedded systems Exercise session, 6/12 Scheduling problems

Two periodic tasks τ_1 , τ_2 are characterized by their respective periods $T_1 = 1$ ms and $T_2 = 3.5$ ms. The execution time C_1 of τ_1 is equal to 0.6 ms.

For which value(s) of C_2 does this pair of tasks fully use the processor? (Justify all steps of your reasoning.)

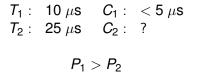


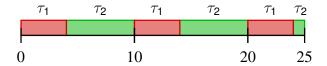


 $C_2 = 3 \times 0.4 \text{ ms} = 1.2 \text{ ms}$

Let τ_1 and τ_2 be periodic tasks with the respective periods T_1 , T_2 and execution times C_1 , C_2 , such that $T_1 = 10 \ \mu$ s, $T_2 = 25 \ \mu$ s, and $C_1 < 5 \ \mu$ s. The priority of τ_1 is higher than the one of τ_2 . This pair of tasks fully uses the processor.

- Represent this problem graphically.
- **2** Compute the value of C_2 as a function of C_1 .





 $\mathit{C}_{2} = 25 \; \mu \mathrm{s} - 3 \mathit{C}_{1}$

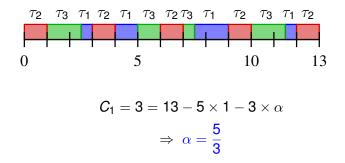
Consider the following set of periodic tasks $\tau_i = (C_i, T_i)$:

$$\{\tau_1 = (3, 13), \tau_2 = (1, 3), \tau_3 = (\alpha, 5)\},\$$

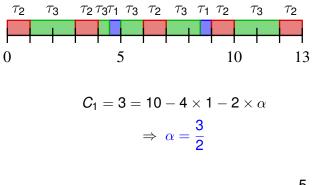
where α is a parameter.

- Compute the maximum value of α for this set of tasks to be schedulable.
- 2 Verify your answer with a graphical simulation.

Case 1: τ_3 finishes before t = 12:

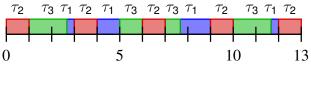


Case 2: τ_3 still active at t = 12:



(Contradiction! α should be greater than $\frac{5}{3}$)

Simulation with $\alpha = \frac{5}{3}$:



$$C_1 = \frac{1}{3} + 1 + \frac{4}{3} + \frac{1}{3} \\ = 3 \text{ (OK!)}$$

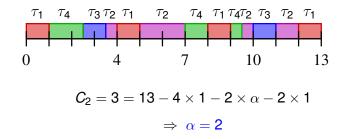
Consider the following set of periodic tasks $\tau_i = (C_i, T_i)$:

$$\{\tau_1 = (1, 4), \tau_2 = (3, 13), \tau_3 = (1, 10), \tau_4 = (\alpha, 7)\},\$$

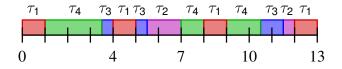
where α is a parameter.

Compute the largest value of α that makes this set of tasks schedulable.

Case 1: τ_4 finishes before t = 10:



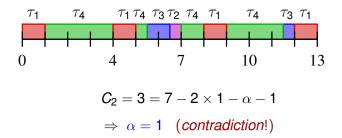
Case 2: τ_4 still active at t = 10, and τ_3 finishes before t = 12:



(Similar to previous case)

$$C_2 = 3 = 13 - 4 \times 1 - 2 \times \alpha - 2 \times 1$$
$$\Rightarrow \alpha = 2$$

Case 3: τ_3 still active at t = 12:

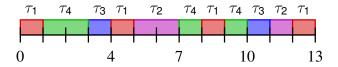


Case 4: τ_4 still active at t = 12:

 \Rightarrow Impossible (does not leave any room for τ_2)!

Conclusion: $\alpha = 2$

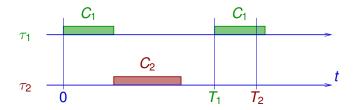
Simulation:



Let τ_1 and τ_2 be two periodic tasks with respective periods and execution times T_1 , T_2 and C_1 , C_2 . We assume that these tasks satisfy $T_1 < T_2$, that they both initially start at t = 0, that they fully use the processor, that they are scheduled under the RMS policy, and that τ_1 is not idle (i.e., it is active) at $t = T_2$.

Under those hypotheses, express the processor load factor in terms of C_1 , T_1 and T_2 , carefully justifying your developments. Show graphically how this load factor varies with C_1 , when T_1 and T_2 are assumed to be constant.

(Slides 147–148 of the course)



The following condition is satisfied:

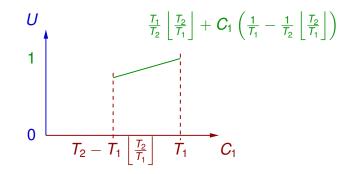
$$C_1 > T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

For a given value of C_1 , the largest possible value of C_2 is given by

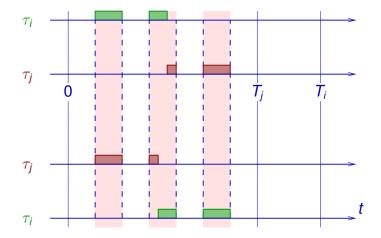
$$C_2 = (T_1 - C_1) \left\lfloor \frac{T_2}{T_1} \right\rfloor.$$

For given values of T_1 and T_2 , this expression increases with C_1 , since

$$\frac{1}{T_1}-\frac{1}{T_2}\left\lfloor\frac{T_2}{T_1}\right\rfloor\geq 0.$$



Prove that every schedulable set of exactly three periodic tasks remains schedulable with a rate-monotonic assignment of priorities. 1. If two tasks τ_i and τ_j have priorities P_i and P_j that are adjacent and such that $P_i > P_j$, and periods T_1 and T_2 such that $T_1 > T_2$, then swapping their priorities preserves schedulability.



2. This is equivalent to saying that if two tasks τ_i and τ_j have priorities P_i and P_j that are adjacent and such that $P_i > P_j$, and periods T_1 and T_2 such that $T_1 > T_2$, then swapping their periods preserves schedulability.

3. Let us assume without loss of generality $P_1 < P_2 < P_3$.

If $T_1 < T_2$, we swap T_1 and T_2 . Then, if $T_2 < T_3$, we swap T_2 and T_3 . Afterwards, T_3 becomes equal to the smallest period.

If $T_1 < T_2$, we swap T_1 and T_2 . One then has $T_1 > T_2 > T_3$, which corresponds to the RMS policy.

Every permutation operation in this procedure preserves schedulability.

If a set $\{\tau_1, \tau_2, \tau_3\}$ of three periodic tasks τ_1, τ_2 and τ_3 is schedulable, is the set $\{\tau_1, \tau_2\}$ always schedulable as well? (Justify your answer.)

1. Since $\{\tau_1, \tau_2, \tau_3\}$ is schedulable, if we simulate them in the critical zone of the task with the longest period, starting each task at t = 0, then τ_1 finishes at or before $t = T_1$, and τ_2 finishes at or before $t = T_2$.

2. Removing τ_3 can only advance the execution time of each instruction of τ_1 and τ_2 , or leave it unchanged. The real-time constraints on τ_1 and τ_2 will thus remain satisfied, therefore $\{\tau_1, \tau_2\}$ is schedulable.