
Object-Oriented Programming
June 2025

Notes or documents of any kind forbidden. Duration: 3 1/2h. Please answer the
questions on separate sheets labeled with your name, section, and student ID.

1. You are asked to program in Java a class Pair<T> suited for representing pairs
(v1, v2) of values v1, v2 of type T. This class must have the following features:

• Instantiating Pair<T> takes as arguments two references v1, v2 of type T,
which cannot be null.

• Instances of Pair<T> must be clonable, comparable to each other, and
serializable. Two pairs are considered to be equal if they are composed
of the same references v1 and v2, regardless of their order. In other
words, pairs (v1, v2) and (v2, v1) are equal. The cloning operation must
be shallow.

• The class overrides the method String toString() with its own imple-
mentation, that generates a character string of the form “(s1, s2)”, where
s1 and s2 are the strings respectively obtained by invoking toString()

on the components v1 and v2 of the pair.

For example, a pair constructed from two instances of java.lang.Integer
representing respectively 6 and 2025 should produce either "(6, 2025)"

or "(2025, 6)".

• In case of any error, a dedicated exception should be thrown.

Note: You are free to implement any additional classes required by your solu-
tion, as well as to choose the interpretation of details that are not specified in
this problem statement.

2. For a specific application, one needs to define a subclass DistinctPair<T> of
Pair<T>, that only allows to construct pairs (v1, v2) such that v1 ̸= v2, i.e.,
such that the objects referenced by v1 and v2 are not considered to be equal.

(a) Give a Java implementation of DistinctPair<T>, consistent with your
answer to Problem 1.

(b) Which application of inheritance did you use? Is the substitution princi-
ple satisfied? (Justify your answer.)

1



3. (a) What is the purpose of the visibility of a constructor? Enumerate the pos-
sible choices for this visibility in Java, and describe briefly the semantics
of each of them.

(b) Explain the limited form of multiple inheritance allowed by the Java lan-
guage. In this context, how does a Java interface differ from an abstract
class?

(c) Why does the Java language impose to declare checked exceptions thrown
by methods and constructors? Why isn’t there a similar obligation for
runtime exceptions?

(d) In Java, what is a lock, and how can it be created? Are locks associated
to objects or classes?

4. A safety management application relies on a class Room for ensuring that the
maximum occupancy of a room is never exceeded. This class has the following
features:

• It admits a constructor taking as argument an integer number represent-
ing the maximum number of people that can be present at any time in
the instantiated room. This room is initially empty.

• It defines two methods void enter() and void leave() that are in-
voked, from different execution threads, by all people when they (respec-
tively) enter and leave the room.

• When someone tries to enter a room that has reached its maximum oc-
cupancy, the method void enter() should block, until space has been
made available by someone else leaving the room.

• If the method void leave() is invoked when the room is empty, it must
trigger the checked exception RoomException. This exception must also
be thrown by the constructor if it receives an invalid argument.

You are asked to provide a Java implementation of Room, assuming that the
class RoomException is already available.

2


