
Object-Oriented Programming
August 2025

Notes or documents of any kind forbidden. Duration: 3 1/2h. Please answer the
questions on separate sheets labeled with your name, section, and student ID.

1. The problem consists in programming in Java a class CenteredSegment suited
for representing centered segments on the real line. A centered segment is
characterized by a center c and a diameter d, and contains all the real values
that belong to the closed interval [c − d, c + d]. The parameters c and d
are assumed to be integers, with d ≥ 0. For instance, the centered segment
generated from c = 3 and d = 4 contains all real numbers r such that −1 ≤ r ≤
7. Choosing c = 5 and d = 0 yields a centered segment that only contains the
value 5. In addition, each instance of CenteredSegment has a serial number of
type long. This serial number is unique, meaning that two distinct instances
of CenteredSegment always have different serial numbers.

The class CenteredSegment must have the following features:

• Instantiating CenteredSegment takes as arguments values for the center c
and the diameter d of the centered segment to be created. This operation
automatically assigns a serial number. Instances of CenteredSegment are
immutable. It should be possible to read their serial number.

• Instances of CenteredSegment must be clonable and comparable to each
other for equality. Two centered segments are considered to be equal
if they contain exactly the same real values, regardless of their serial
number.

• It should be possible to check whether a centered segment is a subset of
another, i.e., whether all real values contained in the former also belong
to the latter.

• It must be possible to check whether a given real number belongs or not
to a centered segment.

• In case of any error, a dedicated exception should be thrown.

Notes:

• You are free to implement any additional classes required by your solution,
as well as to choose the interpretation of details that are not specified in
this problem statement.

• If you need to compute the absolute value of an integer number v, you can
use the class method int Math.abs(int v) available in the Java class
library.

1



2. Assuming that the class CenteredSegment of Problem 1 has already been
programmed in some application, and cannot be modified anymore, one wishes
to define a subclass RationalCenteredSegment of this class. The features and
behavior of instances of RationalCenteredSegment are similar to those of
instances of CenteredSegment, with the only difference that their associated
center and diameter can be rational rather than integer numbers.

(a) How would you implement in Java the class RationalCenteredSegment?

Notes:

• You are not asked to provide all details of this implementation, but
only to describe how you would organize it.

• You can assume that the source code of the application already de-
fines a class for representing rational numbers.

(b) Which application of inheritance did you use in your answer to (a)? Is
the substitution principle satisfied? (Justify your answer.)

3. (a) How does a class differ from an object? Can a class contain variables?
methods? constructors? locks?

(b) The Java implementation of generics relies on type erasure. What does
it mean? And why does it make impossible to have arrays with elements
of a generic type?

(c) By which mechanism(s) can the Java compiler locate the source files that
define the classes contained in a given package?

4. A concurrent application needs a class Gate for controlling the access to a
shared resource. This class has the following features:

• It admits a constructor taking as argument a strictly positive integer
number t representing a threshold number of tasks. This threshold cannot
be modified after instantiation.

• It defines a method void access() that will be invoked prior to accessing
the shared resource. This method counts the total number of times n that
it has been invoked for the relevant instance of Gate, and blocks the caller
whenever n < t. If n ≥ t, then all the tasks previously blocked on this
instance of Gate are unblocked.

• It defines a method void reset() that resets to zero the invocation count
n used by void access(). Additionally, if there are tasks blocked on this
instance of Gate, all of them are unblocked by this operation.

You are asked to provide a Java implementation of Gate.

2


