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Chapter 1

Verification: Goals and principles
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Introduction

Problem: What does this function compute (assuming that initially, x, y > 0)?

int f(int x, int y)

{

while (x != y)

if (x < y)

y -= x;

else

x -= y;

return x;

}
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Answer: f(x0, y0) computes the greatest common divisor (gcd) of x0 and y0, and we can
prove it!

φ(x0, y0)

I(x0, y0, x, y)

ψ(x0, y0, z)

y← y − x x← x − y

x = y

(x, y)← (x0, y0)

x < y

z← xT

FT

F
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• Initially:

φ(x0, y0) : x0 > 0 ∧ y0 > 0

• At each iteration:

I(x0, y0, x, y) : x0 > 0 ∧ y0 > 0 ∧ x > 0 ∧ y > 0
∧ gcd(x, y) = gcd(x0, y0)

(Indeed, if a > b > 0, then gcd(a, b) = gcd(b, a) = gcd(a − b, b).)

• At the end:

ψ(x0, y0, z) : z = gcd(x0, y0)

Notes:

• These properties (which express an invariant of the program) can be proved using
Hoare logic.

• One can also prove (using a different technique) that this program terminates for all
x0, y0 > 0.
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Question: Can we really analyze every program using this method?

Answer: No, for the following reasons.

• From a theoretical point of view, the problem is undecidable.

• Finding invariants is difficult, especially for programs that have already been written.

Note: Once invariants have been found, tools exist to help to prove them.

• Hoare logic is not easily applicable to some mechanisms of real programming
languages, such as pointers, exceptions, dynamic memory allocation, . . .

• Concurrent (parallel) programs are especially tricky to handle: Hoare logic reasons
about the initial and final states of computations, and parallelism requires to take into
account what happens during them.

• Checking programs manually is tedious and error-prone.
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Software verification

Goal: Check algorithmically whether a given program is correct, i.e., whether all its
executions satisfy some properties expressed by a specification.

Examples of properties:

• The function f always computes the gcd of its arguments.

• For every access to an array, the index stays within the bounds of this array.

• Two processes can never enter simultaneously a critical section.

• Every request sent to a server will eventually be answered.

• . . .
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Main principles

• The program to be verified is written in an abstract formalism, that precisely describes
its relevant elements, and abstracts away unnecessary details.

• The specification is expressed as a formula, in a logic that makes it possible to reason
about the behavior of executions.

• The goal is to check algorithmically whether every execution of the program satisfies
the specification. Since in logic, this is equivalent to checking that the program is a
model of the formula expressing the specification, this approach is called model
checking.

Note: This is similar to other engineering disciplines (civil engineering, electronics,
aeronautics, . . . ), where designs are also checked by computer.
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Target application

The focus of verification is mainly on concurrent reactive systems, i.e., systems composed
of several processes that continuously or frequently interact with their environment.

Examples:

• Elements of concurrent programs (algorithms for mutual exclusion, synchronization,
leader election, . . . ).

• Interactive programs.

• Process control software.

• Embedded controllers.

• Communication protocols.

• . . .
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Justification:

• These systems are usually difficult to test: large number of possible behaviors, non
reproducible executions, unpredictable environment, . . .

• Yet they are used in safety-critical applications, where failure can lead to loss of life or
money.

Famous examples:

– Therac-25 radiation therapy machine (several deaths).

– Ariane 5 maiden flight (> 300 Me).

– Mars Polar Lander and Mars Climate Orbiter (> 300 Me).

– . . .

• They are usually simple, with little data manipulation and finite-state descriptions.
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Writing specifications

Problem: Obtaining an adequate, complete and correct specification is difficult (sometimes
as difficult as writing the program itself).

This is not a big deal:

• Checking simple properties (e.g., the program can never reach the state #error), as
well as generic ones (absence of buffer overflows, of deadlocks, . . . ) is already
extremely useful.

• The goal is not really to prove that the system is completely, absolutely and
undoubtedly correct, but to have powerful tools for finding bugs and improve the
confidence in the design.

Notes:

• That a system behaves correctly does not only depend on its software, but also on its
CPU, OS, compiler, . . .

11



• Verification is a tool that accompanies other strategies for developing good-quality
software: good methodology, testing, documentation, . . .

• We have mentioned concurrent reactive systems, but there are other important
application domains, such as the verification of hardware designs (famous example:
Pentium FDIV bug, > 400 Me).

What follows in the course:

• How to write programs to be verified.

• How to write specifications, using tools such as finite automata and temporal logic.

• How to explore algorithmically the state space of a program.

• How to deal with large, or even infinite, state spaces.
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Chapter 2

Modeling concurrent reactive systems
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Motivation

There exist many programming languages, and their semantics is not always precisely
defined.

Example (C language): What is the effect of the following code?

int x = 0;

x = ++x + x--;

To avoid this issue, we introduce a modeling language, with the following characteristics:

• It has a precise semantics.

• It is simple enough to be handled by verification algorithms.

• It is expressive enough to describe the programs of interest.

• It can model concurrency, as well as common process communication and
synchronization algorithms.
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Formal Concurrent Systems

The language of Formal Concurrent Systems (FCS) is a modeling formalism with the
following features:

• The number of processes is fixed and constant.

• Each process has finitely many control locations.

• The processes access a commonly shared memory, represented by a fixed number of
variables.

• The actions of the system are described by transitions, that specify

– A change of control location for one (simple transition) or several (joint transition)
processes.

– A condition (guard) on the variable values. This condition must be true for the
transition to be enabled.

– A set of simultaneous memory assignments that describe a modification of the
memory content.
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Definition

A Formal Concurrent System is defined by a triple (P,M,T ), where

• P is a finite set of processes.

Each process pi ∈ P is characterized by a finite set `(pi) of control locations, with an
initial location `pi

0 ∈ `(pi). The sets of locations of distinct processes must be disjoint:
for all i , j : `(pi) ∩ `(p j) = ∅.

• M is a memory, consisting of a finite set of variables and a function I that assigns an
initial value to each variable.

Note: The type of the variables is not imposed. In this course, we will only use
common simple types: integers, Booleans, arrays, . . .

• T is a finite set of transitions.
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A transition t ∈ T is characterized by the following elements:

• A function n(t) that gives a name (in the form of an identifier) to t.

• The set p(t) ⊆ P of the processes that are active for the transition.

• For each process pi ∈ p(t):

– A source location `s(t, pi) ∈ `(pi).

– A destination location `d(t, pi) ∈ `(pi).

• A Boolean condition C(t) expressed over the values of the variables inM.

Note: The form of conditions is not imposed. It can be any Boolean combination of
computable predicates.

• An assignment A(t) of the form

(var1, var2, . . . , vark) := (exp1, exp2, . . . , expk),

where k ≥ 0, var1, . . . , vark ∈ M such that vari , var j for all i , j, and exp1, . . . , expk
are computable expressions over the value of the variables inM.
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Note: When the transition is followed, the assignment

(var1, var2, . . . , vark) := (exp1, exp2, . . . , expk)

is performed in two steps:

1. First, all the expressions exp1, exp2, . . . , expk are evaluated.

2. Then, the values of var1, var2, . . . , vark are updated.
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Notation conventions

• Processes in P are denoted by p1, p2, p3, . . .

• The control locations of a process pi are denoted by `pi
0 , `pi

1 , `pi
2 , . . . By convention, `pi

0
is the initial location of pi.

• The variables inM are denoted by x1, x2, x3, . . . , or by specific identifiers.

• A transition t is denoted by

n(t), p(t) : (sources, C(t)→ A(t), destinations),

where

– sources is a list of the source locations `s(t, pi), for all pi ∈ p(t).

– destinations is a list of the destination locations `d(t, pi), for all pi ∈ p(t).
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Example: Dekker’s mutual exclusion algorithm

`
p1
1

`
p1
0

`
p1
2

`
p1
3 `

p1
6

`
p1
4 `

p1
7

`
p1
5

`
p2
1

`
p2
0

`
p2
2

`
p2
3 `

p2
6

`
p2
4 `

p2
7

`
p2
5

Initially: c1 = 0
c2 = 0
trn = 1

T F

rem1

c1 ← 1

c2 = 1

trn = 1 crit1

c1 ← 0

trn = 2

trn← 2
c1 ← 0

T

F

F T

T F

rem2

c2 ← 1

c1 = 1

trn = 2 crit2

c2 ← 0

trn = 1

trn← 1
c2 ← 0

T

F

F T
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Dekker’s algorithm as a FCS

• Processes: P = {p1, p2}, with

`(p1) ={`
p1
0 , `

p1
1 , `

p1
2 , `

p1
3 , `

p1
4 , `

p1
5 , `

p1
6 , `

p1
7 }

`(p2) ={`
p2
0 , `

p2
1 , `

p2
2 , `

p2
3 , `

p2
4 , `

p2
5 , `

p2
6 , `

p2
7 }

• Memory: M = {c1, c2, trn}, with

I(c1) = 0, I(c2) = 0,I(trn) = 1

• Transitions: The elements of T are:

rem1, p1 :
(
`

p1
0 , true→ ( ) := ( ), `p1

1

)
t1,2, p1 :

(
`

p1
1 , true→ (c1) := (1), `p1

2

)
t1,3, p1 :

(
`

p1
2 , c2 , 1→ ( ) := ( ), `p1

6

)
crit1, p1 :

(
`

p1
6 , true→ ( ) := ( ), `p1

7

)
t1,5, p1 :

(
`

p1
7 , true→ (trn, c1) := (2, 0), `p1

0

)
t1,6, p1 :

(
`

p1
2 , c2 = 1→ ( ) := ( ), `p1

3

)
t1,7, p1 :

(
`

p1
3 , trn = 1→ ( ) := ( ), `p1

2

)
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t1,8, p1 :
(
`

p1
3 , trn , 1→ ( ) := ( ), `p1

4

)
t1,9, p1 :

(
`

p1
4 , true→ (c1) := (0), `p1

5

)
t1,10, p1 :

(
`

p1
5 , trn = 2→ ( ) := ( ), `p1

5

)
t1,11, p1 :

(
`

p1
5 , trn , 2→ ( ) := ( ), `p1

1

)
rem2, p2 :

(
`

p2
0 , true→ ( ) := ( ), `p2

1

)
t2,2, p2 :

(
`

p2
1 , true→ (c2) := (1), `p2

2

)
t2,3, p2 :

(
`

p2
2 , c2 , 1→ ( ) := ( ), `p2

6

)
crit2, p2 :

(
`

p2
6 , true→ ( ) := ( ), `p2

7

)
t2,5, p2 :

(
`

p2
7 , true→ (trn, c2) := (1, 0), `p2

0

)
t2,6, p2 :

(
`

p2
2 , c1 = 1→ ( ) := ( ), `p2

3

)
t2,7, p2 :

(
`

p2
3 , trn = 2→ ( ) := ( ), `p2

2

)
t2,8, p2 :

(
`

p2
3 , trn , 2→ ( ) := ( ), `p2

4

)
t2,9, p2 :

(
`

p2
4 , true→ (c2) := (0), `p2

5

)
t2,10, p2 :

(
`

p2
5 , trn = 1→ ( ) := ( ), `p2

5

)
t2,11, p2 :

(
`

p2
5 , trn , 1→ ( ) := ( ), `p2

1

)
22



A semantics for FCS

We need to define the rules that describe the possible behaviors of a FCS, in other words
to provide a semantics for FCS.

Note: The semantics of a language defines the meaning of what can be expressed in this
language. To be useful, it must be expressed in a simpler language.

Our semantics for FCS will be expressed as a transition system (or automaton).
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Transition systems

A transition system is defined by a tuple (S ,Σ, s0,T ), where

• S is a (finite or infinite) set of states.

• Σ is an alphabet, i.e., a finite set of distinct symbols.

• s0 ∈ S is the initial state.

• T ⊆ S × Σ × S is a set of transitions.

Each transition is a triple (s1, σ, s2) composed of

– a source state s1.

– a label σ.

– a destination state s2.
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Graphical representation

If a transition system has finitely many states, then it can be represented by a finite graph:

• Each state is represented by a node. The initial state is shown with an arrow.

• Each transition is represented by a labeled edge.

Example:

s0 s1

a b

b

a

S = {s0, s1}
Σ = {a, b}

T = {(s0, a, s0), (s0, b, s1), (s1, a, s0), (s1, b, s1)}
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A semantics for transition systems

A transition system can itself be given a semantics, which takes the form of a set of
behaviors.

An infinite behavior ρ of a transition system (S ,Σ, s0,T ) is a pair of functions ρS : N→ S
and ρT : N→ T , often written as

ρS (0)
ρT (0)
→ ρS (1)

ρT (1)
→ ρS (2)

ρT (2)
→ · · ·

such that

• ρS (0) = s0, and

• ∀i ≥ 0 : (ρS (i), ρT (i), ρS (i + 1)) ∈ T.

Note: Finite behaviors can be defined similarly, as functions defined on an interval [0, k]
instead of N.
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The transition system corresponding to a FCS

Problem: Given a FCS (P,M,T ), how can we compute a transition system (S ,Σ, s0,T ) that
describes its semantics?

Solution:

• If P = {p1, . . . , pm},M = {x1, . . . , xq}, and the domain of each variable xi is Di, then the
set of states is

S = `(p1) × · · · × `(pm) × D1 × · · · × Dq.

In other words, each state s ∈ S takes the form

(s(p1), . . . , s(pm), s(x1), . . . , s(xq)),

which associates

– one control location s(pi) ∈ `(pi) to each process pi, and

– one value s(xi) ∈ Di to each variable xi.
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• The alphabet is

Σ = {n(t) | t ∈ T }.

• The initial state is

s0 =
(
`

p1
0 , . . . , `

pm
0 ,I(x1), . . . ,I(xq)

)
.

(Recall that I is the function that assigns the initial value of variables.)

• The set T of transitions is computed as follows:

For each transition t ∈ T and state s ∈ S , if

– for each pi ∈ p(t), i.e., each process that is active for t, we have s(pi) = `s(t, pi),
and

– the condition C(t) is satisfied by the values (s(x1), . . . , s(xq)) of the variables in s,

then the transition t is said to be enabled in s.
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If t is enabled in s, then the transition system contains a transition

(s, n(t), s′),

where s′ is the state defined as follows:

– For each pi ∈ p(t), i.e., process that is active for t, we have s′(pi) = `d(t, pi).

– For each pi < p(t), i.e., process that is not active for t, we have s′(pi) = s(pi).

– For each variable xi to which A(t) assigns an expression expi, we have
s′(xi) = [expi]s, where [expi]s denotes the result produced by the evaluation of expi
in which the variables are replaced by their value in s.

– For each variable xi that is not modified by A(t), we have s′(xi) = s(xi).

Note: With this definition, for a given state s and transition t ∈ T that is enabled in s,
the state s′ is unique.
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Fairness constraints

The semantics that we have introduced for FCS is an interleaving semantics: The
behaviors of the transition system are obtained by interleaving those of the processes.

Problem: This semantics allows some behaviors that are not realistic, in particular those in
which some process is deliberately ignored even though it could progress.

Example: Our model of Dekker’s algorithm admits the behavior(
`

p1
0 , `

p2
0 , 0, 0, 1

) rem1
→

(
`

p1
1 , `

p2
0 , 0, 0, 1

) rem2
→

(
`

p1
1 , `

p2
1 , 0, 0, 1

)
t1,2
→

(
`

p1
2 , `

p2
1 , 1, 0, 1

) t2,2
→

(
`

p1
2 , `

p2
2 , 1, 1, 1

)
t1,6
→

(
`

p1
3 , `

p2
2 , 1, 1, 1

) t1,7
→

(
`

p1
2 , `

p2
2 , 1, 1, 1

)
t1,6
→

(
`

p1
3 , `

p2
2 , 1, 1, 1

) t1,7
→

(
`

p1
2 , `

p2
2 , 1, 1, 1

)
t1,6
→ · · ·

in which p2 is stalled forever.
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A consequence is that it would be impossible to prove properties that require the progress
of one or many processes.

Solution: Impose fairness assumptions on behaviors.

Principles:

• Fairness assumptions are qualitiative, not quantitative: They can express that a
process cannot wait indefinitely before performing some action, but not for how long it
can wait.

• Fairness assumptions can be seen as abstractions of concrete process scheduling
policies, such as those implemented by operating systems.

If a fairness assumption is used for verifying a property of a system, it guarantees that
this property holds for any implementation that satisfies this assumption.

• There exist several forms of fairness assumptions. One of the least restrictive is called
weak fairness.
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Weak fairness

We define weak fairness at the level of processes. (There exists another notion of weak
fairness based on transitions.)

It is easier to first define the negation of weak fairness:

Definition: A behavior is not weakly fair if, for some process pi and some point on, there
always exists an enabled transition in which pi is active, and no such transition is taken.

pi pi pi pi pi

· · ·
, pi , pi , pi , pi , pi

We then have the following positive definition:

Definition: A behavior is weakly fair if, for every process pi, it is the case that infinitely often

• either no transition in which pi is active is enabled, or

• a transition in which pi is active is followed.
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In other words, weak fairness expresses that every process that needs to progress must,
from some point on, always get a chance to do so, and must eventually take this chance.
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Observer processes

Question: How do we impose fairness assumptions on the system’s behaviors?

Answer: By adding observer processes.

Principles:

• An observer process is a process that does not affect the behaviors of a FCS, but
observes them in order to check some properties.

• An observer process is similar to a regular process, except that its transitions

– do not contain assignments, and

– admit a more general form of conditions.

Formally, an observer process ob for a FCS (P,M,T ) is defined by the following elements:

• A finite set `(ob) of control locations.

• An initial location `ob
0 ∈ `(ob).

• A finite set Tob of transitions.
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A transition τ ∈ Tob of an observer process ob is characterized by the following elements:

• A source location `s(τ) ∈ `(ob).

• A destination location `d(τ) ∈ `(ob).

• A Boolean condition C(τ) expressed in terms of

– a location variable locpi for each (non-observer) process pi ∈ P.

– the variables inM.

– a variable tr whose value is an element of the set T of transitions of the FCS.

Notation:

• Such a transition τ will usually be written (`s(τ),C(τ), `d(τ)).

• We will write

C(τ)[locp1, . . . , locpm, x1, . . . , xq, tr]

when we wish to make explicit the variables involved in C(τ).

35



The conditions in observer processes

The conditions in the transitions of observer processes take the form of Boolean formulas
built from atomic formulas that belong to the following (non exhaustive) list:

• Computable predicates applied to the variables inM.

Examples: x1 ≤ x2, x3 = 10.

• Equalities and inequalities between a location variable for a process and a control
location of that process.

Examples: locp2 = `
p2
3 , locp1 , `

p1
0 .

• Comparisons between the components of the transition tr and the elements of
transitions in the FCS.

Examples: n(tr) = t1,2, p1 ∈ p(tr), `s(tr, p2) = `
p2
4 .
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Example: Dekker’s algorithm

Exercise: Write an observer process for our model of Dekker’s algorithm, that checks
whether both processes can enter simultaneously their critical section.

Solution: Detect whether the transition crit1 can be immediately followed by crit2, or vice
versa.

• The set of locations is `(ob) = {`ob
0 , `ob

1 , `ob
2 , `ob

3 }, with `ob
0 initial.

• The transitions are (
`ob

0 , n(tr) = crit1, `
ob
1

)(
`ob

1 , n(tr) = crit2, `
ob
3

)(
`ob

1 , n(tr) , crit2, `
ob
0

)(
`ob

0 , n(tr) = crit2, `
ob
2

)(
`ob

2 , n(tr) = crit1, `
ob
3

)(
`ob

2 , n(tr) , crit1, `
ob
0

)
The problem of checking that mutual exclusion is not always satisfied then amounts to
checking whether the process ob can reach the control location `ob

3 .
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Composing observers with a FCS

When building the transition system corresponding to FCS, observer processes should not
be handled in the same way as other processes: Their transitions must not be interleaved
with those of the other processes, but synchronized with them.

In order words, each time that the FCS follows a transition, the observers must also follow
a transition. If an observer does not have an enabled transition, we consider that it follows
a default transition that keeps it in the same state.

Let (P,M,T ) be a formal concurrent system, and ob1 = (`(ob1), `ob1
0 ,Tob1),

ob2 = (`(ob2), `ob2
0 ,Tob2), . . . , obk = (`(obk), `obk

0 ,Tobk) be observer processes. The
corresponding transition system (S ,Σ, s0,T ) is defined as follows.

• If P = {p1, . . . , pm},M = {x1, . . . , xq}, and the domain of each variable xi is Di, then the
set of states is

S = `(p1) × · · · × `(pm) × `(ob1) × · · · × `(obk) × D1 × · · · × Dq.

Note: In the same way as regular processes, for s ∈ S , s(obi) denotes the location of
the observer process obi in s.
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• The alphabet is

Σ = {n(t) | t ∈ T }.

• The initial state is

s0 =

(
`

p1
0 , . . . , `

pm
0 , `

ob1
0 , . . . , `

obk
0 ,I(x1), . . . ,I(xq)

)
.

• The set T of transitions is computed as follows:

For each transition t ∈ T and state s ∈ S , if

– for each pi ∈ p(t), i.e., each process that is active for t, we have s(pi) = `s(t, pi),
and

– the condition C(t) is satisfied by the values (s(x1), . . . , s(xq)) of the variables in s,

then the transition t is said to be enabled in s.

Note: The criterion for a transition to be enabled is not affected by observer processes.
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Let t be a transition that is enabled in s. For each observer process obi and transition
τi of this process such that either

– τi ∈ Tobi, `s(τi) = s(obi), and C(τi)[s(p1), . . . , s(pm), s(x1), . . . , s(xq), t] = true, where
P = {p1, . . . , pm} andM = {x1, . . . xq}, or

– τi is a default transition (sobi, true, sobi) of obi,

the transition system contains a transition

(s, n(t), s′),

where s′ is the state defined as follows:

– For each p j ∈ p(t), i.e., regular process that is active for t, we have
s′(p j) = `d(t, p j).

– For each p j < p(t), i.e., regular process that is not active for t, we have
s′(p j) = s(p j).

– For each observer process obi, we have s′(obi) = `d(τi).
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– For each variable x j to which A(t) assigns an expression exp j, we have
s′(x j) = [exp j]s.

– For each variable x j that is not modified by A(t), we have s′(x j) = s(x j).

Notes: If the model contains observer processes, then for a given state s and transition
t ∈ T that is enabled in s, the state s′ is no longer necessarily unique.
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Modeling fairness conditions with observers

A fairness assumption restricts the possible infinite behaviors of a FCS. It can be modeled
by an observer process that distinguishes between fair and unfairs behaviors.

This requires to extend our definitions of observer processes and transition systems with a
notion of acceptance condition.

Definitions: Let ρ be an infinite behavior of a transition system (S ,Σ, s0,T ).

• A state s ∈ S appears infinitely often in ρ if there exist infinitely many i ∈ N such that
ρS (i) = s.

• The set of states in S that appear infinitely often in ρ is denoted by inf (ρ).

• A generalized Büchi acceptance condition for the infinite behaviors of (S ,Σ, s0,T ) is a
set F = {F1, F2, . . . , Fk} of subsets of S .

• The behavior ρ satisfies the acceptance condition F = {F1, F2, . . . , Fk} (in other words,
ρ is accepted) if for all Fi ∈ F, one has inf (ρ) ∩ Fi , ∅.
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Example 1

s0 s1

a a, b

b

F = {{s1}}

The accepted behaviors are those in which a transition labeled by b is followed at least
once.
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Example 2

s0 s1

a b

b

a

F = {{s0}, {s1}}

The accepted behaviors are those in which transitions labeled by a and b are both followed
infinitely many times.
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Example 3

s0 s1

a, b

a

b

F = {{s1}}

The accepted behaviors are those in which infinitely many times, one follows a transition
labeled by a and then immediately a transition labeled by b.
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Example 4

s0 s1

a, b

b

b

F = {{s1}}

The accepted behaviors are those that follow finitely many transitions labeled by a and
infinitely many labeled by b.
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Acceptance conditions for observers

We have defined the notion of acceptance condition with respect to a transition system. A
similar definition can be given for observer processes.

Definition: Consider a FCS for which the observer processes are ob1, ob2, . . . , obk. An
acceptance condition for one of these observer processes obi = (`(obi), `

obi
0 ,Tobi) is a set

Fobi = {Fobi
1 , Fobi

2 , . . . , Fobi
hi
}

where each Fobi
j is a subset of `(obi).

The transition system (S ,Σ, s0,T ) corresponding to this FCS then admits the accepting
condition

F = {F1,1, F1,2, . . . , F1,h1, F2,1, F2,2, . . . , F2,h2, . . . , Fk,1, Fk,2, . . . , Fk,hk},

where for each i ∈ [1, k] and j ∈ [1, hi], we have

Fi, j = {s ∈ S | s(obi) ∈ Fobi
j }.
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Observers for weak fairness

To impose the weak fairness assumption, we add an observer process for each (regular)
process pi of the FCS.

Those observer processes are described in terms of the two following predicates, evaluated
with respect to a state s of the global transition system and a transition t of the FCS:

• e(pi)[s, t] is true if the process pi is active for at least one transition that is enabled in s.

(In other words, e(pi)[s, t] is true if pi can progress from s.)

• a(pi)[s, t] is true if the process pi is active for the transition t.

For each process pi of the FCS, one then defines its corresponding observer obi as
follows:

• Its set of control locations is `(obi) =

{
`

obi
0 , `

obi
1

}
.
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• Its initial location is `obi
0 .

• Its set of transitions is Tobi =

{ (
`

obi
0 , e(pi) ∧ ¬a(pi), `

obi
1

)
,(

`
obi
1 , ¬e(pi) ∨ a(pi), `

obi
0

) }
.

• Its acceptance condition is Fobi =

{{
`

obi
0

}}
.

Notes:

• Such an observer accepts only the infinite behaviors of pi in which infinitely often
either e(pi) is false, or a(pi) is true.

• The transitions
(
`

obi
0 , ¬e(pi) ∨ a(pi), `

obi
0

)
and

(
`

obi
1 , e(pi) ∧ ¬a(pi), `

obi
1

)
are implicit

and can be omitted.
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Modeling semaphores

Definition: A semaphore is an integer variable s that admits two atomic operations:

• wait(s): if s > 0 then s := s − 1
else suspend until s > 0

• signal(s): s := s + 1

Question: How can a semaphore be represented in a FCS?

Answer: A possible solution is to

• represent the value of the semaphore by an integer variable s.

• model a wait operation of a process pi by a transition t of the form

t, pi :
(
`

pi
1 , s > 0 → (s) := (s − 1), `pi

2

)
,

where `pi
1 and `pi

2 are respectively the source and destination locations of the operation.
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• model a signal operation of a process pi by a transition t of the form

t, pi :
(
`

pi
1 , true → (s) := (s + 1), `pi

2

)
,

Problem: With this model, weak fairness assumptions are not sufficient for preventing
process starvation.

Illustration: (initially, s = 1)

`
p1
1

`
p1
2

`
p1
3

`
p1
0

`
p2
1

`
p2
2

`
p2
3

`
p2
0

wait(s)

crit1

signal(s)

rem1

wait(s)

crit2

signal(s)

rem2
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This FCS admits the behavior(
`

p1
0 , `

p2
0 , 1

) wait1
→

(
`

p1
1 , `

p2
0 , 0

) crit1
→

(
`

p1
2 , `

p2
0 , 0

)
signal1
→

(
`

p1
3 , `

p2
0 , 1

) rem1
→

(
`

p1
0 , `

p2
0 , 1

)
wait1
→

(
`

p1
1 , `

p2
0 , 0

) crit1
→

(
`

p1
2 , `

p2
0 , 0

)
signal1
→

(
`

p1
3 , `

p2
0 , 1

) rem1
→

(
`

p1
0 , `

p2
0 , 1

)
wait1
→ · · ·

in which the process p2 never progresses, even though this behavior satisfies the weak
fairness assumption.

Indeed, in this behavior:

• a(p1) is infinitely often true (actually, it is always true), and

• e(p2) is infinitely often false.
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Modeling fairness for semaphores

Weak fairness assumptions are thus not sufficient for accurately describing the behavior of
semaphores. There are two approaches to solving this problem.

Solution 1: Represent explicitly the process scheduling policy.

Illustration: (FIFO semaphores)

• The process table is represented by an array variable status that associates to each
process pi the symbol

– R if pi is running, and

– W if pi is waiting on a semaphore.

• The wait queue of a semaphore s is represented by a variable lists that contains a
FIFO list of the processes waiting for s.
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• In the process pi, the wait(s) operation is modeled by three transitions of the form

t1, pi :
(
`

pi
1 , s > 0 → (s) := (s − 1), `pi

2

)
t2, pi :

(
`

pi
1 , s ≤ 0 → (status[pi], lists) := (W, lists · pi), `

pi
3

)
t3, pi :

(
`

pi
3 , status[pi] = R → ( ) := ( ), `pi

2

)
,

where `pi
1 and `pi

2 are respectively the source and destination control locations of the
operation, and `pi

3 is an auxiliary location.

• The signal(s) operation is modeled by

t1, pi :
(
`

pi
1 , lists = [ ] → (s) := (s + 1), `pi

2

)
t2, pi :

(
`

pi
1 , lists , [ ] → (status[head(lists)], lists) := (R, tail(lists)), `

pi
2

)
,

where `pi
1 and `pi

2 are respectively the source and destination control locations.

Drawbacks:

• This approach is only valid for a particular process scheduling policy.

• The size of the corresponding transition system is increased.

Solution 2: Introduce a stronger form of fairness assumptions.
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Strong fairness

Like for weak fairness, we define strong fairness at the level of processes. (There exists
another notion based on transitions.)

The negation of strong fairness is defined as follows.

Definition: A behavior is not strongly fair if for some process pi, there is infinitely often an
enabled transition for which pi is active, but from some point on, no such transition is taken.

· · ·
, pi , pi , pi , pi , pi

pi pi pi

A positive definition is then:

Definition: A behavior is strongly fair if, for every process pi,

• either from some point on, no transition for which pi is active is enabled, or

• a transition in which pi is active is followed infinitely often.
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In other words, strong fairness expresses that every process that needs to progress must,
from some point on, get infinitely often a chance to do so, and must eventually take this
chance.

Advantage: With strong fairness assumptions, the simple model of semaphores is
sufficient for proving most properties of interest.
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Observers for strong fairness

The weak fairness assumption can be imposed by adding for each (regular) process pi of
the FCS an observer process obi defined as follows.

• Its set of control locations is `(obi) =

{
`

obi
0 , `

obi
1 , `

obi
2 , `

obi
3

}
.

• Its initial location is `obi
0 .

• Its set of transitions is Tobi =

{ (
`

obi
0 , ¬e(pi), `

obi
0

)
,(

`
obi
0 , a(pi), `

obi
1

)
,(

`
obi
1 , true, `obi

0

)
,(

`
obi
0 , ¬e(pi), `

obi
2

)
,(

`
obi
2 , e(pi), `

obi
3

) }
.

• Its acceptance condition is Fobi =

{{
`

obi
1 , `

obi
2

}}
.

57



Notes:

• Those observers are nondeterministic.

• The observer for pi accepts only the infinite behaviors in which

– either e(pi) is, from some point on, always false, or

– a(pi) is true infinitely often.
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Chapter 3

Infinite-word automata
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Words and automata

Finite case:

• A finite word w of length n over an alphabet Σ is a mapping

w : {0, 1, . . . , n − 1} → Σ.

• An automaton on finite words is a finite-state machine that accepts a set (language) of
finite words.

Infinite case:

• An infinite word w over an alphabet Σ is a mapping

w : N → Σ.

• An automaton on infinite words is a finite-state machine that accepts a set (language)
of infinite words.

Note: Automata are sometimes introduced as models of computation. Here, we just view
them as descriptions of languages.
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Automata on infinite words

Definition: A Büchi automaton is a tuple (S ,Σ, δ, S 0, F), where

• S is a finite set of states.

• Σ is a finite alphabet.

• δ is a transition function, either of the form

– δ : S × Σ → S (deterministic automaton), or

– δ : S × Σ → 2S (nondeterministic automaton).

• S 0 ⊆ S is a set of initial states.

• F ⊆ S is a set of accepting states.

Note: This structure is similar to the one of finite-word automata. The difference is in their
semantics.
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Semantics of finite-word automata

Note: We consider the more general case of nondeterministic automata.

Semantics: A word

w : {0, 1, . . . , n − 1} → Σ

is accepted by an automaton (S ,Σ, δ, S 0, F) if there exists a labeling

λ : {0, 1, . . . n} → S

such that

• λ(0) ∈ S 0 (the initial label is an initial state).

• ∀i ∈ [0, n − 1] : λ(i + 1) ∈ δ(w(i), λ(i)) (the labeling is compatible with the transition
relation).

• λ(n) ∈ F (the last label is an accepting state).
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Semantics of Büchi automata

A word

w : N → Σ

is accepted by an automaton (S ,Σ, δ, S 0, F) if there exists a labeling

λ : N → S

such that

• λ(0) ∈ S 0 (the initial label is an initial state).

• ∀i ∈ N : λ(i + 1) ∈ δ(w(i), λ(i)) (the labeling is compatible with the transition relation).

• inf (λ) ∩ F , ∅ (the set of repeating states intersects F).
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Example 1

a, b

This automaton accepts all the infinite words over Σ = {a, b}.

Note: The accepting states are denoted by double circles.
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Example 2

a a, b

b

This automaton accepts all the infinite words composed of

• a finite number of symbols a, followed by

• one copy of b, followed by

• any finite suffix over Σ = {a, b}.

Note: Such a language can de described by an ω-regular expression a∗b (a + b)ω, where ∗

and ω denote respectively finite and infinite repetition.
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Example 3

a b

b

a

This automaton accepts all the infinite words over Σ = {a, b} that contain infinitely many
symbols b.
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Example 4

a, b

a

b

This automaton accepts all the infinite words over Σ = {a, b} that contain infinitely many
symbols a immediately followed by a symbol b.
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Example 5

a, b

b

b

This automaton accepts all the infinite words over Σ = {a, b} that contain finitely many
symbols a.
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Different types of acceptance conditions

• Büchi: Accepting states: F ⊆ S . Condition on labelings: inf (λ) ∩ F , ∅.

• Generalized Büchi: Accepting states: F ⊆ 2S , i.e., F = {F1, . . . , Fk} with ∀i : Fi ⊆ S .
Condition on labelings: For each Fi, inf (λ) ∩ Fi , ∅.

• Rabin: Accepting states: F ⊆ 2S × 2S , i.e., F = {(G1, B1), (G2, B2), . . . , (Gk, Bk)}.
Condition on labelings: For some pair (Gi, Bi) ∈ F, inf (λ) ∩Gi , ∅ and inf (λ) ∩ Bi = ∅.

• Streett: Accepting states: F ⊆ 2S × 2S , i.e., F = {(G1, B1), (G2, B2), . . . , (Gk, Bk)}.
Condition on labelings: For all pairs (Gi, Bi) ∈ F, inf (λ) ∩Gi , ∅ or inf (λ) ∩ Bi = ∅.

• Muller: Accepting states: F ⊆ 2S , i.e., F = {F1, . . . , Fk} with ∀i : Fi ⊆ S . Condition on
labelings: For some Fi, inf (λ) = Fi.
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The expressiveness of infinite-word automata

All those forms of infinite-word automata (in their nondeterministic version) share the same
expressive power: They all define the ω-regular languages⋃

i
L1,i Lω2,i ,

where the union is finite, each L1,i and L2,i is a regular finite-word language, and ω denotes
infinite repetition.

For deterministic automata, Büchi and Generalized Büchi are weaker: There exist
ω-regular languages that cannot be accepted by such automata.

Example: (a + b)∗ bω.

In contrast, the deterministic and nondeterministic forms of Rabin, Streett and Muller
automata share the same expressive power, which is identical to that of nondeterministic
Büchi automata.
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Operations on infinite-word automata

Nondeterministic Büchi:

• These automata are closed under union, intersection, projection, and
complementation.

Notes:

– Projection is an operation defined by a morphism π : Σ1 → Σ2 that maps every
symbol of the alphabet Σ1 onto a symbol in another alphabet Σ2.

– Complementation of Büchi automata is a difficult operation.

• Nonemptiness can be decided in linear time (by computing the reachable strongly
connected components).

Rabin: Nonemptiness can be decided in polynomial time (by a conversion to
nondeterministic Büchi automata).

Street & Muller: The conversion to nondeterministic Büchi automata incurs an exponential
blowup.
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Union of Büchi automata

Problem: Given two Büchi automata A1 = (S 1,Σ, δ1, S 01, F1) and A2 = (S 2,Σ, δ2, S 02, F2),
compute an automaton A = (S ,Σ, δ, S 0, F) that accepts the union of the languages
accepted by A1 and A2.

Solution:

• S = S 1 ∪ S 2 (assuming w.l.o.g. that S 1 ∩ S 2 = ∅).

• S 0 = S 01 ∪ S 02.

• s′ ∈ δ(s, a) if either

– s′ ∈ δ1(s, a) and s ∈ S 1, or

– s′ ∈ δ2(s, a) and s ∈ S 2.

• F = F1 ∪ F2.
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Intersection of Büchi automata

Problem: Given two Büchi automata A1 = (S 1,Σ, δ1, S 01, F1) and A2 = (S 2,Σ, δ2, S 02, F2),
compute an automaton A = (S ,Σ, δ, S 0, F) that accepts the intersection of the languages
accepted by A1 and A2.

Solution: We first construct a generalized Büchi automaton:

• S = S 1 × S 2.

• S 0 = S 01 × S 02.

• (s′1, s
′
2) ∈ δ((s1, s2), a) if both

– s′1 ∈ δ1(s1, a) and

– s′2 ∈ δ2(s2, a).

• F = {F1 × S 2, S 1 × F2}.
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From generalized Büchi to Büchi

Problem: Given a generalized Büchi automaton A = (S ,Σ, δ, S 0, F), compute a Büchi
automaton A′ = (S ′,Σ, δ′, S ′0, F

′) that accepts the same language.

Solution: Let F = {F1, F2, . . . Fk}. We have

• S ′ = S × {1, 2, . . . , k}.

• S ′0 = S 0 × {1}.

• (s′, j) ∈ δ′((s, i), a) if s′ ∈ δ(s, a) and either

– s < Fi and j = i, or

– s ∈ Fi and j = (i mod k) + 1.

• F′ = F1 × {1}.
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Illustration

Generalized Büchi automaton:

s0 s1

a b

b

a

F1 = {s0}, F2 = {s1}
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Equivalent Büchi automaton:

s0,1 s1,1

b

s0,2 s1,2

b

a

a

a
a

b
b
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Chapter 4

Temporal logic
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Introduction

• Temporal logics are formalisms used for expressing properties of infinite sequences.

• They extend propositional or first-order logic.

• In this course, we will study Linear-time Temporal Logic (LTL) on discrete time.

– A LTL formula is interpreted on states belonging to a sequence:

. . .

– Each state assigns a truth value to atomic propositions.

– Temporal operators indicate in which states the components of formulas should be
interpreted.
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Temporal operators

• �ϕ (Next): ϕ is true in the next state of the sequence.

• �ϕ (Always): ϕ is true in the current and all future states of the sequence.

• ^ϕ (Eventually): ϕ is true in the current or some future state of the sequence.

• ϕ1 U ϕ2 (Until): ϕ1 is true in the current and all future states until ϕ2 becomes true,
which must occur.

• ϕ1 Ũ ϕ2 (Releases): ϕ2 is true in the current and all future states, until this obligation is
released by ϕ1 being true in a previous state, which will not necessarily occur.
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Examples

. . .

¬p, ¬q ¬p, q p, q p, ¬q ¬p, ¬qp, q

In the colored state, the following formulas are true:

• ¬p ∧ q

• � (p ∧ q)

• ^¬q

In that state, the following formulas are false:

• � q

• �� p
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More examples

• � (p ⇒ � q) is satisfied in all states where, for this state and all future ones, each state
in which p is true is immediately followed by a state in which q is true.

• � (p ⇒ � (¬q U r)) is satisfied in all states where, for this state and all future ones,
after each state in which p is true, q is false from the next state on, and remains false
until the first state where r is true, which must occur.

• �^ p is satisfied in all states for which p is true infinitely often in the future.

• ^� p is satisfied in all states for which, from some point on in the future, p becomes
and remains true.
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Syntax of LTL

The formulas of LTL built from a set P of atomic propositions are the following:

• true, false, as well as p and ¬p for all p ∈ P.

• ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas.

• �ϕ1, ϕ1 U ϕ2, and ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are LTL formulas.

The operators ^ and � are then defined as the following abbreviations:

• ^ϕ := true U ϕ

• �ϕ := false Ũ ϕ
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Semantics of LTL

The semantics of LTL is defined with respect to paths π : N → 2P (in other words, infinite
sequences of subsets of atomic propositions).

Notation: For a path π and i ≥ 0, the notation πi represents the suffix of π obtained by
removing its i first states, in other words, πi( j) = π(i + j) for all j ≥ 0.

Semantic rules: The following rules give the truth value of a formula in the first state of a
path π:

• π |= true and π 6|= false (for any path π).

• For each p ∈ P:

– π |= p iff p ∈ π(0).

– π |= ¬p iff p < π(0).

• π |= ϕ1 ∧ ϕ2 if π |= ϕ1 and π |= ϕ2.

• π |= ϕ1 ∨ ϕ2 if π |= ϕ1 or π |= ϕ2.
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• π |= �ϕ iff π1 |= ϕ.

• π |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that πi |= ϕ2 and for all j such that 0 ≤ j < i, we
have π j |= ϕ1.

• π |= ϕ1 Ũ ϕ2 iff for all i ≥ 0 such that πi 6|= ϕ2, there exists j such that 0 ≤ j < i and
π j |= ϕ1.

Notes:

• As we have defined it, the syntax of the logic only allows to apply negation to atomic
propositions. This restriction can be lifted with the help of additional definitions:

– π 6|= ϕ1 U ϕ2 iff π |= (¬ϕ1) Ũ (¬ϕ2)

– π 6|= ϕ1 Ũ ϕ2 iff π |= (¬ϕ1) U (¬ϕ2)

– π 6|= �ϕ iff π |= �¬ϕ

• A LTL formula can be seen as a description of a set of infinite sequences (those that
satisfy it).
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From LTL to automata

Problem: Given a LTL formula ϕ built from a set P of atomic propositions, construct
algorithmically an infinite-word automaton over the alphabet 2P that accepts exactly the
infinite sequences satisfying ϕ.

Example: ϕ = ^¬p, with P = {p}:

{p}

∅

{p}, ∅

(Büchi acceptance condition)

85



Closure of a formula

We first look at the problem of determining whether a sequence π : N → 2P satisfies a
formula ϕ.

A possible solution is to label the positions of π with subformulas of ϕ, in a way that is
consistent with LTL semantics. The subformulas of ϕ that need to be considered form the
closure cl(ϕ) of ϕ.

Definition: cl(ϕ) is the smallest set of formulas such that

• ϕ ∈ cl(ϕ).

• If ϕ1 ∧ ϕ2 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).

• If ϕ1 ∨ ϕ2 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).

• If �ϕ1 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ).

• If ϕ1 U ϕ2 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).

• If ϕ1 Ũ ϕ2 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).
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Example:

cl(^¬p) = cl(true U ¬p)

= {true U ¬p, ¬p, true}

= {^¬p, ¬p, true} .

Note: Remember that in our definition of LTL, negation is only applied to atomic
propositions (Negation Normal Form).
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Sequence labeling rules

A labeling τ : N → 2cl(ϕ) of a sequence π : N → 2P is valid if for every position i ≥ 0 and
formula ϕ′ such that ϕ′ ∈ τ(i), we have πi |= ϕ′.

For this property to hold, it is sufficient to satisfy the following rules at every position i ≥ 0:

Propositional rules:

• Rule 1: false < τ(i).

• Rule 2: For every p ∈ P:

– If p ∈ τ(i), then p ∈ π(i).

– If ¬p ∈ τ(i), then p < π(i).

• Rule 3: If ϕ1 ∧ ϕ2 ∈ τ(i), then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i).

• Rule 4: If ϕ1 ∨ ϕ2 ∈ τ(i), then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i).
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Notes:

• Rules 2–4 are “if” and not “if and only if” rules. In other words, a valid labeling is not
necessarily maximal.

For instance, it is allowed to have ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i) without having ϕ1 ∧ ϕ2 ∈ τ(i).

• Rule 2 implies that τ(i) cannot contain both p and ¬p, for any atomic proposition p ∈ P.

Temporal rules:

The rule for the Next operator is easy:

• Rule 5: If �ϕ1 ∈ τ(i), then ϕ1 ∈ τ(i + 1).

For the Until and Release operators, the situation is more tricky, since their semantics
involve the whole sequence. They can however be reduced to local conditions as follows:

• ϕ1 U ϕ2 = (ϕ2 ∨ (ϕ1 ∧ � (ϕ1 U ϕ2)))

• ϕ1 Ũ ϕ2 = (ϕ2 ∧ (ϕ1 ∨ � (ϕ1 Ũ ϕ2)))
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We then obtain the following labeling rules:

• Rule 6: If ϕ1 U ϕ2 ∈ τ(i), then either

– ϕ2 ∈ τ(i), or

– ϕ1 ∈ τ(i) and ϕ1 U ϕ2 ∈ τ(i + 1).

• Rule 7: If ϕ1 Ũ ϕ2 ∈ τ(i), then

– ϕ2 ∈ τ(i), and

– either ϕ1 ∈ τ(i), or ϕ1 Ũ ϕ2 ∈ τ(i + 1).

Rule 7 is sufficient for establishing the validity of the labeling. Rule 6, on the other hand, is
incomplete: it does not force the existence of a future position in which ϕ2 holds. An
additional rule is therefore needed:

• Rule 8: If ϕ1 U ϕ2 ∈ τ(i), then there exists j ≥ i such that ϕ2 ∈ τ( j).
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Correctness of the rules

Theorem: Let ϕ be a formula build from a set P of atomic propositions, and let π : N → 2P.
We have π |= ϕ if and only if there exists a labeling τ : N → 2cl(ϕ) of π that satisfies Rules
1–8, and that is such that ϕ ∈ τ(0).

Proof sketch:

• If τ satisfies Rules 1–8, then for every i ≥ 0 and ϕ′ ∈ τ(i), we have πi |= ϕ′.

This can be established by induction on the structure of the formulas in cl(ϕ):

– The base case directly follows from Rules 1–2.

– The inductive cases are handled by reasoning about the semantics of the
operators.

Example: If ϕ′ is of the form ϕ1 U ϕ2:

∗ By Rule 8, there exists j ≥ i such that ϕ2 ∈ τ( j). By inductive hypothesis, this
implies π j |= ϕ2.

∗ Consider the smallest such j. For k = i, i + 1, . . . , j − 1, we have ϕ2 < τ(k),
hence by repeated applications of Rule 6, ϕ1 ∈ τ(k) and ϕ1 U ϕ2 ∈ τ(k + 1). We
therefore have πk |= ϕ1 by inductive hypothesis, which leads to πi |= ϕ′.
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• If π |= ϕ, then there exists a labeling τ that satisfies Rules 1–8 and such that ϕ ∈ τ(0).

Such a labeling can be obtained by defining for all i ≥ 0

τ(i) = {ϕ′ ∈ cl(ϕ) | πi |= ϕ′}.

Indeed:

– Since π |= ϕ, we have ϕ ∈ τ(0).

– The semantics of LTL ensure that Rules 1–8 are satisfied at all positions.
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Automaton construction

Principle: An automaton accepting the sequences that satisfy a given LTL formula ϕ over a
set P of atomic propositions can be obtained by

• associating its states with the subsets of cl(ϕ) that satisfy Rules 1 and 3–4,

• defining its transitions so as to satisfy Rules 2 and 5–7,

• enforcing Rule 8 with the help of the accepting condition.

Formal construction: One builds a generalized Büchi automaton (S ,Σ, δ, S 0, F) as follows.

• Its set of states S is the set of subsets s of cl(ϕ) that satisfy

– false < s

– if ϕ1 ∧ ϕ2 ∈ s, then ϕ1 ∈ s and ϕ2 ∈ s, and

– if ϕ1 ∨ ϕ2 ∈ s, then ϕ1 ∈ s or ϕ2 ∈ s.

• Its alphabet Σ is 2P.
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• Its transition relation δ is such that (s, a, s′) ∈ δ iff all the following conditions are
satisfied:

– For every p ∈ P:

∗ if p ∈ s, then p ∈ a,

∗ if ¬p ∈ s, then p < a.

– If �ϕ1 ∈ s, then ϕ1 ∈ s′.

– If ϕ1 U ϕ2 ∈ s, then either

∗ ϕ2 ∈ s, or

∗ ϕ1 ∈ s and ϕ1 U ϕ2 ∈ s′.

– If ϕ1 Ũ ϕ2 ∈ s, then

∗ ϕ2 ∈ s, and

∗ either ϕ1 ∈ s, or ϕ1 Ũ ϕ2 ∈ s′.

• Its set of initial states is S 0 = {s ∈ S | ϕ ∈ s}.
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• Its accepting set F is obtained as follows:

– We call an eventuality formula every formula of the form ϕ1 U ϕ2 that belongs to
cl(ϕ). We have to ensure that every state that contains such a formula is eventually
followed by a state that contains ϕ2.

– The transition relation is such that from every state in which ϕ1 U ϕ2 appears, this
formula keeps appearing until ϕ2 appears.

– It is thus sufficient to consider as accepting the runs of the automaton that visit
infinitely often either

∗ a state in which ϕ1 U ϕ2 does not appear, or

∗ a state in which ϕ1 U ϕ2 and ϕ2 both appear.

– Let ϕ1,1 U ϕ2,1, ϕ1,2 U ϕ2,2, . . . , ϕ1,k U ϕ2,k be all the eventuality formulas in cl(ϕ).
We have F = {F1, F2, . . . , Fk}, where for each i such that 1 ≤ i ≤ k:

Fi = {s ∈ S | {ϕ1,i U ϕ2,i, ϕ2,i} ⊆ s ∨ ϕ1,i U ϕ2,i < s}.
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Improving the construction

The previous construction generates an automaton that is needlessly complicated. The
following simplifications are aimed at reducing its size without affecting its accepted
language:

• We can consider implicitly that for every s ∈ S , we have true ∈ s. (Indeed, any
sequence satisfies true.)

• For every p ∈ P, the states that contain both p and ¬p do not need to be considered.
(Indeed, such states cannot have outgoing transitions.) More generally, states with
inconsistent formulas can be dropped.

• The unreachable states of the automaton can be discarded.
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Example

ϕ = ^¬p = true U ¬p cl(ϕ) = {^¬p, ¬p, true}

s1

∅

s3

∅

s4

{p}, ∅

s2

{p}, ∅

∅

{p}, ∅

{p}, ∅

∅

{p}, ∅

∅

∅

∅ ∅
{p}, ∅

^¬p
¬p ^¬p

¬p ∅

F = {{s1, s3, s4}}

97



Removing redundant transitions

The automaton can be further simplified thanks to the following property:

If two states s and s′ are such that s′ ⊂ s, and s′ has at least one outgoing
transition, then every infinite sequence that can be read from s can also be read
from s′.

As a consequence, if there exist two transitions (s1, a, s) and (s1, a, s′) for such s and s′, the
former is redundant and can be discarded. However, this is only correct if all sequences
accepted from s can also be accepted from s′. We thus have the following rule:

Simplification rule: If there exist two transitions (s1, a, s) and (s1, a, s′) such that

• s′ ⊂ s,

• s′ has at least one outgoing transition, and

• for every eventuality formula ϕ1 U ϕ2 ∈ s, if ϕ1 U ϕ2 ∈ s′ and ϕ2 ∈ s, then also ϕ2 ∈ s′,

then the transition (s1, a, s) can be omitted.
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Illustration

ϕ = ^¬p

s1

s4

{p}, ∅

s2

{p}, ∅

^¬p
¬p ^¬p

∅

{p}, ∅

∅

F = {{s1, s4}}
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Example 2

ϕ = �^ p = false Ũ (true U p) cl(ϕ) = {�^ p, ^ p, p, true, false}

s1

{p}

s2

{p}, ∅

{p}

{p}, ∅

�^ p
^ p

�^ p
^ p

p

F = {{s1}}
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Example 3

ϕ = ^� p = true U (false Ũ p) cl(ϕ) = {^� p, � p, p, true, false}

s2

{p}, ∅

{p}, ∅
s3 s4

^� p

{p}

^� p
� p
p

� p
p

{p}
s1 p

^� p

{p}{p}

F = {{s3, s4}}
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Further improvements

The procedure for generating an infinite-word automaton from a LTL formula can still be
improved in many ways:

• The automaton’s states can be generated by need.

• States that are syntactically distinct but semantically identical can be merged.

Example: {ϕ1 U ϕ2, ϕ2 } ≡ {ϕ2 }.

• LTL formulas can be simplified before the construction.

Example: ��^ϕ ≡ �^ϕ.

• . . .
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Chapter 5

State-space exploration
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The verification approach

• The central part of the verification process consists in computing the transition system
corresponding to the FCS to be analyzed.

Note: In practice, only the reachable states need to be computed.

• One can then check properties by examining this transition system.

The properties that can be checked include the reachability of a given state or set of
states, the absence of deadlocks, the correctness of an invariant, . . .
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Depth-first search

Goal: Developing an algorithm that computes the transition system (S , Σ, s0, T )
corresponding to the reachable state-space of a formal concurrent system { P, M, T }.

Mechanisms:

• The algorithm explores the states by means of a depth-first search, using a stack St
and a data structure H for memorizing the set of visited states.

Note: In actual implementations, the structure H usually takes the form of a hash table.

• A function enabled(s) returns the transitions of T that are enabled in a state s ∈ S .

• A function succ(s, t) returns, for each s ∈ S and t ∈ enabled(s), the state s′ ∈ S such
that (s, n(t), s′) ∈ T .
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State-space exploration algorithm

procedure explore(s):
St.push(s)
H := H ∪ {s}
for all t ∈ enabled(s):

s′ := succ(s, t)
if s′ < H then:

explore(s′)
St.pop()

St := [ ]
H := ∅
explore(s0)
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Notes:

• The reachable states of the generated transition system are those that belong to H.
The transitions are the triples (s, n(t), s′) that correspond to the s, t and s′ considered
at Line 5 of the algorithm.

• The stack St does not affect the execution of the algorithm. If an erroneous state is
reached, its purpose is to provide an execution trace that is helpful for understanding
how such a state can be reached.

• Observer processes can be added for checking more elaborate properties, such as
properties expressed in linear-time temporal logic.

• The transition relation does not need to be stored: verification is performed on-the-fly
while exploring the state space.
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Checking LTL properties

Principles:

• To check that a transition system satisfies a LTL property, one needs to check that all
its behaviors satisfy this property (in other words, are models of this property).

• To obtain a model-checking procedure, one can add an observer process
corresponding to the infinite-word automaton obtained from the property.

Problem: Such an automaton is non-deterministic, and accepts a behavior if there exists
some computation for which it accepts. How can we check that for all behaviors of a
transition system, the property is satisfied?

Solution: First complement the property to be checked!
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Model-checking algorithm for LTL

Goal: Checking whether all executions of a given FCS satisfy a given LTL property ϕ.

Solution:

1. Build an infinite-word automaton A¬ϕ that accepts exactly all the infinite sequences
that do not satisfy ϕ.

2. Add A¬ϕ as an observer process to the FCS. If needed, add also observer processes
for the fairness conditions.

3. Explore the corresponding transition system with a depth-first search.

Note: The generated transition system will have a generalized Büchi acceptance
condition.

4. Check whether the resulting transition system is empty or not, i.e., whether it accepts
at least one infinite sequence.

An accepted infinite sequence corresponds to a behavior of the system that does not
satisfy the property ϕ.
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Note: We have not yet discussed how to check with a depth-first search the emptiness of
the language accepted by a generalized Büchi automaton.

The goal is to be able to carry out this operation without explicitly computing the strongly
connected components of the transition system.
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Safety properties

Consider a property ϕ such that the corresponding automaton Aϕ admits the generalized
Büchi acceptance condition F = ∅.

This means that every infinite sequence that can be read by the automaton is accepted. In
other words, the only way that a sequence cannot be accepted is by reaching a state from
which no suitable transition can be followed.

Note: Since Aϕ does not impose an acceptance condition, it can be determinized with the
same algorithm as for finite-word automata.

The complement automaton A¬ϕ then has a single accepting state from which all
sequences are accepted. In other words, once this state is reached, the sequence is
accepted whatever happens next. The automaton A¬ϕ thus behaves like a finite-word one.
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As a consequence:

• Fairness conditions are not necessary.

• The emptiness test reduces to a simple reachability test.

Remember that a LTL property can be seen as a set of sequences (or words): those that
satisfy it.

Definition: A LTL property is a safety property if it corresponds to a set of sequences of the
form

Σω \ L · Σω,

where L is a (finite-word) regular language.
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Liveness properties

We have seen that to falsify a safety property, it is enough to follow a finite prefix of a
sequence.

Question: What are the properties that cannot be falsified by a finite prefix, i.e., such that
every finite prefix can always be continued to form an accepted sequence?

Definition: A LTL property is a liveness property if it corresponds to a set L of sequences
such that

∀w ∈ Σ∗ : ∃w′ ∈ Σω : w w′ ∈ L.

Note: One can prove that every property expressible by an infinite-word automaton is
equivalent to the conjunction of a safety property and a liveness property.
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Checking the nonemptiness of infinite-word automata

Principle: A Büchi automaton accepts a nonempty language if it has an accepting state
that is reachable from an initial state, as well as reachable from itself by a path of non-zero
length.

Note: Generalized Büchi automata can be handled by converting them to Büchi ones.

Algorithm:

1. Perform a depth-first search of the reachable states.

2. During this search, build a postorder list Q = [s1, s2, . . . , sk] of the reachable states
that are accepting, where s1 is the first visited accepting state and sk the last.

3. Perform a second search from the states in Q.
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Notes:

• In a postorder traversal of a graph, the children of a node appear before this node.

Example:

1

4 5

2 3

6

Q = [4, 6, 3, 5, 2, 1]

• For the correctness proof, we will also consider another postorder Q′ containing all
visited states (not only accepting ones as Q).

117



The second search

Goal: Check whether Q contains a state that is is reachable from itself by a path of
non-zero length.

Algorithm:

1. Start the search from s1.

2. The search from si is finished when either

• si is reached, or

• there is no more reachable state to visit.

In the first case, the nonemptiness check has succeeded. In the second case, if i < k,
we restart the search from si+1 but without reconsidering the states that have already
been visited during the searches from s1, s2, . . . , si.

3. If all the si have been searched without success, then the nonemptiness check has
failed.
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Notes:

1. During this second search, each node of the automaton is visited at most once.

2. The first and second searches can be interleaved.
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Why does it work?

Lemma: If j < i and si is reachable from s j, then s j is reachable from itself.

Proof: Consider a path from s j to si.

1. If no node on this path had been visited (by the second search) before s j, then the
search would have reached si from s j, and si would have appeared before s j in the
postorder.

Thus, the path necessarily contains a state that has been visited before s j. Let s be
the last such state in the path.

2. The state s cannot appear before s j in the postorder Q′, since si would then appear
before s j as well.

3. Since s has been visited before s j, but appears after s j in the postorder Q′, it must be
an ancestor of s j.

4. Thus, s j can reach one of its ancestors, and is thus reachable from itself.
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Theorem: The second search correctly detects whether there exists some si that is
reachable from itself.

Proof: The proof is by induction on the value of i:

1. For i = 1, the second search explores exhaustively all the states reachable from s1.

2. For i > 1, if there exists a path from si to itself, then this path cannot contain a state
reachable from some s j with j < i.

Indeed, in such a case, si would be reachable from s j, and by the Lemma, s j would be
reachable from itself. By induction, this should have been detected in a prior step.
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Complexity of LTL model-checking

• Linear (NLOGSPACE) in the size of the transition system.

• Exponential (PSPACE) in the size of the FCS.

• Exponential (PSPACE) in the size of the LTL formula.
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Improvements to the state-space exploration procedure

• There exist advanced hash techniques for minimizing the amount of data that needs to
be stored in the set H of all visited states.

Some of these techniques are probabilistic, and may (infrequently) miss some
reachable states.

• Partial-order methods have been developed for avoiding to explore redundant parts of
the state-space, such as the sequences produced by the interleaving of independent
transitions.

• There exist model checking algoritms suited for properties expressed in more
elaborate temporal logics.

• . . .

Notes: Implementations are available, e.g. the Spin tool (https://spinroot.com).
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Chapter 6

Symbolic verification methods
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Introduction

The state-space exploration algorithms studied in Chapter 5 have the advantage of being
simple and general, but there are not able to handle very large state spaces.

One possibility of overcoming this limitation is to express verification as a logical problem:

• The transition system of the program under analysis defines a Kripke structure
K = (P,W,R,W0, L), where

– P is a finite set of atomic propositions.

– W is a finite set of states.

– R ⊆ W ×W is a transition relation between states, that is left-total, i.e., for each
w ∈ W, there exists w′ ∈ W such that (w,w′) ∈ R.

Note: Deadlock situations can be modeled by transitions from a state to itself.

– W0 ⊆ W is a set of initial states.

– L : W → 2P is a labeling of the states with sets of atomic propositions.
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• The verification problem then reduces to checking properties of K .

• The approach consists in performing such checks by logical methods, i.e., by
representing and manipulating K and the properties of interest by formulas.

Principles:

• Since W is finite, each state w ∈ W can be encoded with a fixed number n of Boolean
values forming a bit vector b1b2 . . . bn.

• A set of states can then be represented by a Boolean function over b1, b2, . . . , bn.

In particular:

– The set W0 of initial states can be represented by a function I such that
I(b1, b2, . . . , bn) = true iff b1b2 . . . bn encodes a state w that belongs to W0.

– For each p ∈ P, the set of states w such that p ∈ L(w) can be represented by a
function p such that p(b1, b2, . . . , bn) = true iff b1b2 . . . bn encodes a state w such
that p ∈ L(w).
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• Similarly, the transition relation R can be represented by a Boolean function over 2n
variables, such that R(b1, b2, . . . , bn, b′1, b

′
2, . . . , b

′
n) = true iff b1b2 . . . bn encodes a state

w and b′1b′2 . . . b
′
n encodes a state w′ such that R(w,w′) holds.

• Properties of K can then be checked by computing with those Boolean functions.

Problems to address:

• How can we check properties (in particular, safety or LTL ones) of a Kripke structure
represented by Boolean functions? What computations are required?

• What operations do these computations have to perform on Boolean functions?

• What is a good data structure for representing Boolean functions, that allows the
required operations to be performed efficiently?
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A description language for Kripke structures

The functions I, R, and p for each p ∈ P, that represent a Kripke structure
K = (P,W,R,W0, L), are expressed over Boolean variables.

In order to describe more simply the operations that need to be performed, we introduce a
logical language based on states. This language is built from the following elements:

• A set V = {x, y, z, . . .} of variables over the domain W, i.e., the values taken by these
variables are states.

• An interpreted predicate I(x) that is true iff the value of x belongs to W0, i.e., if it
corresponds to an initial state.

• An interpreted predicate p(x) for each p ∈ P, that is true iff the value of x is a state w
such that p ∈ L(w).

• An interpreted predicate R(x, y) that is true iff the values of x and y are (respectively)
states w and w′ such that R(w,w′) holds.
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• A set V′ = {X,Y,Z, . . .} of uninterpreted predicate variables, each of those predicates
having an arbitrary number of arguments.

If needed for clarity, the fact that the predicate variable X admits k arguments (i.e., that
X stands for a k-ary predicate) will be made explicit by writing Xk.

We are now ready to define a first version of our formalism:

• An interpreted predicate or a predicate variable applied to the required number of
variables (corresponding to its number of arguments) is a formula.

• If ϕ1 and ϕ2 are formulas, then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 and ¬ϕ1 are formulas as well.

• If ϕ is a formula and x is a variable, then ∃xϕ and ∀xϕ are formulas.

Examples:

• This formula expresses that every transition originating from a state in which p is true
leads to a state in which q is false:

∀x∀y (p(x) ∧ R(x, y) ⇒ ¬q(y))

(Note: As usual, ϕ1 ⇒ ϕ2 is a shorthand for ¬ϕ1 ∨ ϕ2.)
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• This formula expresses that a state in which p is true is reachable in one step from the
state corresponding to x:

∃y (p(y) ∧ R(x, y))

• This formula expresses that the predicate corresponding to X is satisfied by all initial
states as well as those reachable in one step from an initial state:

∀x (X(x) ⇔ I(x) ∨ ∃y (I(y) ∧ R(y, x)))

Note: ϕ1 ⇔ ϕ2 is a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).
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Recursive definition of predicates

Our goal is now to extend our logical formalism by introducing a mechanism for defining
predicates recursively.

Principes:

• We first introduce a notation for naming explicitly the free variables in a formula: if ϕ is
a formula and x1, x2, . . . , xk are variables, then

λx1, x2, . . . xk ϕ

is a definition for a predicate Π with k arguments.

This predicate is such that Π(w1,w2, . . . ,wk) = true, for some w1,w2, . . . ,wk ∈ W, iff
the formula ϕ in which the free variable x1 takes the value w1, the free variable x2
takes the value w2, and so on, is true.

• A predicate definition λx1, x2, . . . xk ϕ is said to be monotone in a predicate variable X if
X appears under the scope of an even number of negations in ϕ.
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Intuitively, when a predicate definition for a predicate Π is monotone in X, modifying
the predicate represented by X by adding new argument values for which this
predicate is true leads to new argument values for which Π is true.

Formally, if the predicate B corresponding to X is replaced by B′ such that

∀x1, x2, . . . (B(x1, x2, . . .) ⇒ B′(x1, x2, . . .)),

then the predicate Π expressed by the predicate definition becomes Π′ such that

∀x1, x2, . . . (Π(x1, x2, . . .) ⇒ Π′(x1, x2, . . .)).

• If Λ is a k-ary predicate definition that is monotone in Xk, then µX Λ is also a k-ary
predicate definition, that corresponds to the least fixpoint of X with respect to Λ.

This least fixpoint is defined as the smallest subset S of Wk such that if X takes the
value S (meaning that X(x1, . . . , xk) = true iff (x1, . . . , xk) ∈ S ), then the predicate
defined by Λ takes the value S as well.
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Example: An unary predicate expressing that its argument is a reachable state can be
expressed as follows:

µX λx (I(x) ∨ ∃y (X(y) ∧ R(y, x)))

Notes:

– Let Λ : λ x1, . . . , xk ϕ be a predicate definition that is monotone in Xk, and let
[[Λ]]B ⊆ Wk denote the predicate defined by Λ when X takes the value B, with
B ⊆ Wk.

The predicate defined by

µX λ x1, . . . , xk ϕ

is the limit of the sequence

B0 ⊆ B1 ⊆ B2 ⊆ B3 ⊆ · · · ,

where B0 = ∅, and for each i > 0, Bi = [[Λ]]Bi−1.

– There also exists a notion of greatest fixpoint for a variable X that is monotone in a
predicate definition Λ, denoted by νX Λ. (It will not be used in this chapter.)

• If Λ is a k-ary predicate definition, then Λ(x1, x2, . . . , xk), where x1, x2, . . . , xk are
variables, is a formula.
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Example: The following formula expresses that there exists a reachable state in which
p is true:

∃z (p(z) ∧ (µX λx (I(x) ∨ ∃y (X(y) ∧ R(y, x))))(z))
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Evaluating a formula of the description language

Problem: Let ϕ be a closed formula of the description language, i.e., without any free
variable. How do we compute the truth value of ϕ?

Solution:

• If ϕ does not involve any fixpoint predicate definition, then since each w ∈ W is
encoded by n Boolean values, each variable x ∈ V can be replaced by a set of n
Boolean variables bx

1, bx
2, . . . , bx

n.

Checking whether ϕ is valid then reduces to Boolean satisfiability:

– Quantifications ∃x φ and ∀x φ can be replaced (respectively) by ∃bx
1 ∃bx

2 . . .∃bx
n φ

and ∀bx
1 ∀bx

2 . . .∀bx
n φ.

– For a Boolean variable b, the quantified formulas ∃b φ(b) and ∀b φ(b) are
respectively equivalent to

φ(true) ∨ φ(false)

and
φ(true) ∧ φ(false).
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• For computing the predicate corresponding to a least fixpoint definition

µX λx1, . . . xk φ,

where φ is monotone in X, we explicitly develop the sequence

B0 ⊆ B1 ⊆ B2 ⊆ B3 ⊆ · · · ,

where B0 = ∅, and for each i > 0, Bi = [[λx1, . . . xk φ]]Bi−1, until it stabilizes.

Since W is finite, and Bi ⊆ W for all i, this always happens after finitely many steps.
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Computing reachable states symbolically

• As already discussed, a predicate corresponding to the set of reachable states of a
symbolically defined Kripke structure is given by

µX λx (I(x) ∨ ∃y (X(y) ∧ R(y, x))).

Notes:

– Evaluating this predicate definition requires a number of steps that is bounded by
the diameter of the Kripke structure.

– In practice, the Boolean formulas appearing in the computation can become huge.

• To check if there exists a reachable state in which p is true, we can evaluate the
formula

∃z (I(z) ∧ (µX λx (p(x) ∨ ∃y (X(y) ∧ R(x, y))))(z)),

which amounts to a backward search through the Kripke structure.

This provides a method for checking safety properties.
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Checking LTL properties

To check an LTL property, one adds an observer corresponding to the negation of this
property to the system. One then obtains a Kripke structure with accepting states, for
which we have to check repeated reachability.

Principes:

• The transitive closure R+of the reachability relation R can be computed thanks to the
following predicate definition:

µR+ λx, y (R(x, y) ∨ ∃z (R(x, z) ∧ R+(z, y)))

• If p ∈ P indicates accepting states, i.e., p is true in a state w ∈ W iff w is accepting,
then the predicate definition

λx (p(x) ∧ R+(x, x))

characterizes the set of states that are (non-trivially) reachable from themselves.

• Checking that there exists an accepting run then amounts to evaluating the formula

∃z (p(z) ∧ R+(z, z) ∧ (µX λx (I(x) ∨ ∃y (X(y) ∧ R(y, x))))(z)).
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Speeding up the computation

The following predicate definition can be used to speed up the computation of R+:

µR+ λx, y (R(x, y) ∨ ∃z (R+(x, z) ∧ R+(z, y)))

Indeed, at each step of the fixpoint computation, this formula doubles the length of the
paths that are considered.

However, in practice, the size of the generated formulas can become too large for the
computation to succeed.
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Required Boolean operations

To implement the method that we have described, we need a data structure for
representing and manipulating Boolean formulas.

The following operations need to be computable on the representation of Boolean
formulas:

1. Taking Boolean combinations and negations of formulas.

2. Applying existential and universal quantifiers.

3. Checking implication between two formulas (to terminate a fixpoint computation).

4. Computing the truth value of a closed formula (to get the result of the verification).

Operations (1) and (2) are immediate if the corresponding operators are in the language.
However, performing (3) and (4) then becomes difficult.

A better strategy consists in representing formulas in a normal form from which (3) and (4)
are easy, and to reduce formulas to this normal form each time (1) and (2) are performed.
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Binary decision diagrams

A Binary Decision Diagram (BDD), or Ordered Binary Decision Diagram (OBDD), is a data
structure for representing symbolically Boolean formulas with a fixed number of free
variables (or, equivalently, Boolean functions with a fixed arity).

Main properties:

• BDDs depend on a total order that must be defined over the set of free variables.

• For a given order, each formula admits an easily computable normal form that is
unique up to isomorphism.

• Algorithms are available for performing all the operations of interest over formulas
represented by BDDs.

• BDDs can be much more concise that the formulas that they represent.
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Principles of BDDs

Consider a Boolean function f (b1, b2, . . . , bk) with k arguments b1, b2, . . . , bk taken in that
order.

This function can be represented by a full binary tree of depth k in which

• for all i ∈ 1, . . . , k, the interior nodes at depth i − 1 are labeled by bi.

Note: The root has the depth 0, and the leaves the depth k.

• each interior node has one outgoing transition labeled by 0 (false), and another one by
1 (true).

• the leaves are labeled by either 0 or 1. The label of a leaf provides the truth value of
the function for input values that correspond to the label of paths leading to this leaf.
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Example: For the function

f (a, b, c) = (a ∨ b) ∧ (¬a ∨ ¬b ∨ c),

we obtain the following tree.

b

cc

a

b

c c

0 0 1 1 1 1 0 1

Note: Edges labeled by 0 are denoted by dashed lines, and those labeled by 1 by solid
lines.
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Reducing BDDs

The following rules can be used to reduce BDDs:

• Eliminate redundant leaf nodes: In other words, keep at most one leaf node labeled by
1 and at most one labeled by 0.

• Remove duplicate interior nodes: If two nodes labeled by the same variable have
identical successors, eliminate one of these nodes, and redirect its incoming edges to
the other.

• Remove redundant tests: If the two successors of a node are identical, eliminate that
node and redirect its incoming edges to its unique successor.

• Remove unreachable nodes.

These rules are applied until no further reduction is possible.

Theorem: For a given Boolean function and variable order, the maximally reduced BDD is
unique up to isomorphism.
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Illustration

Applying the first rule to the BDD for f (a, b, c) = (a ∨ b) ∧ (¬a ∨ ¬b ∨ c) yields

0 1

b

cc

a

b

c c
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After applying the second rule, we get

0 1

b

c

b

cc

a
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Finally, the third rule yields

0 1

b

c

a

b

which is the maximally reduced BDD representing f .
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Elementary BDDs

• A BDD representing the function f (b1, b2, . . . , bk) = bi is easy to construct:

bi

0 1

• The functions f (b1, b2, . . . , bk) = true and f (b1, b2, . . . , bk) = false are represented by
BDDs that are only composed of one leaf node:

01
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Operations on BDDs

Complementation:

Complementing a Boolean function represented by a BDD simply amounts to
complementing the label of the leaves.

Example: f (a, b, c) = ¬((a ∨ b) ∧ (¬a ∨ ¬b ∨ c))

1 0

b

c

a

b
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Binary Boolean operations (∧ and ∨):

These operations are performed by constructing a BDD that simulates the combined
operation of the two BDDs representing the arguments, on the same input.

Formally, we represent a BDD by a tuple (V,N, n0, L0, L1, var, lo, hi), where

• V is a finite totally ordered set of variables.

• N is a finite set of nodes.

• n0 ∈ N is the root node.

• L0 ⊆ N and L1 ⊆ N are sets of respectively 0- and 1-leaves, such that L0 ∩ L1 = ∅.

• var : N → V is a labeling of the nodes by variables. This labeling is such that for
every leaf node n ∈ L0 ∪ L1, its label var(n) is a dummy maximal variable.

• lo : N → N and hi : N → N are respectively the 0- and 1-successor functions. These
functions are total, and such that

– For every n ∈ N \ (L0 ∪ L1): var(lo(n)) > var(n) and var(hi(n)) > var(n).

– For every n ∈ L0 ∪ L1: lo(n) = hi(n) = n.
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Given a BDD B1 = (V,N1, n0,1, L0,1, L1,1, var1, lo1, hi1) representing a Boolean function f1
and a BDD B2 = (V,N2, n0,2, L0,2, L1,2, var2, lo2, hi2) representing a Boolean function f2
over the same variables, a BDD B = (V,N, n0, L0, L1, var, lo, hi) representing f1 ∧ f2 or
f1 ∨ f2 can be constructed as follows:

• N = N1 × N2.

• n0 = (n0,1, n0,2).

• L0 and L1 are defined according to the Boolean function to be computed:

– For f1 ∧ f2: L0 = (L0,1 ∪ L1,1) × L0,2 ∪ L0,1 × (L0,2 ∪ L1,2), and L1 = L1,1 × L1,2.

– For f1 ∨ f2: L0 = L0,1 × L0,2 and L1 = (L0,1 ∪ L1,1) × L1,2 ∪ L1,1 × (L0,2 ∪ L1,2).

• For each (n1, n2) ∈ N, var((n1, n2)) = min(var1(n1), var2(n2)).

• For each (n1, n2) ∈ N,

lo((n1, n2)) =


(lo(n1), lo(n2)) if var1(n1) = var2(n2)

((lo(n1), n2) if var1(n1) < var2(n2)
((n1, lo(n2)) if var1(n1) > var2(n2).
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• For each (n1, n2) ∈ N,

hi((n1, n2)) =


(hi(n1), hi(n2)) if var1(n1) = var2(n2)

((hi(n1), n2) if var1(n1) < var2(n2)
((n1, hi(n2)) if var1(n1) > var2(n2).

In practice, the BDD is constructed incrementally from its root node, and only reachable
nodes are considered. The resulting BDD is then reduced to its normal form.
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Example

Computation of the disjunction of the Boolean functions represented by the two following
BDDs.

0 1

d

c n′5

n′2

n′3 n′4

a n′1a

b

0 1

d

c

n1

n2

n6

n3

n4 n5
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Result of the construction:

1 (n5, n′4)(n4, n′3)0 (n4, n′4)1 (n5, n′3)1

d d d

c

b

a

c

(n3, n′2) (n3, n′4) (n5, n′2)

(n6, n′2) (n6, n′5)

(n2, n′2)

(n1, n′1)
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After reduction:

10

d

c

b

a

155



Quantification:

To implement quantification, one uses the restrict operator that forces the value of a given
variable to be 0 or 1.

Notation: For a function f and a variable x, the restrictions of f to the values 0 and 1 of x
are (respectively) denoted by f |x←0 and f |x←1.

Computing f |x←0 or f |x←1 from a BDD representing f amounts to eliminating all nodes
labeled by x, and redirecting their incoming edges to the appropriate successor.

For computing the effect of a quantification, one then uses the following identities:

• ∃x f ≡ f |x←0 ∨ f |x←1.

• ∀x f ≡ f |x←0 ∧ f |x←1.
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Implication:

To determine whether f1 ⇒ f2 holds, one computes the BDD for ¬ f1 ∨ f2, and then check
that the resulting Boolean function is valid.

Checking for validity, satisfiability and unsatisfiability:

• Validity: All reachable leaf nodes are labeled by 1 (or equivalently, the reduced BDD is
only composed of the leaf node 1).

• Satisfiability: At least one reachable leaf node is labeled by 1.

• Unsatisfiability: All reachable leaf nodes are labeled by 0 (or equivalently, the reduced
BDD is only composed of the leaf node 0).
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Complexity

• The reduction of a BDD B to its normal form can be performed in O(|B|) time.

• Complementation is O(1).

• Binary Boolean operations applied to two BDDs B1 and B2 and testing their inclusion
need O(|B1|.|B2|) time.

• Applying a quantifier to a BDD B needs O(|B|2) time.

• Tests for validity, satisfiability, and unsatisfiability run in O(1) or O(|B|) time, depending
on whether the BDD is or is not in normal form.

In practice:

• The variable ordering can have a huge impact on the size of BDDs.

• The state encoding is derived from the text of the program under analysis, hence the
number of bits used is often much larger than the logarithm of the number of reachable
states.
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