Exercise session 3

Thomas Braipson

17 October 2025



Plan

» Today: programming with interrupts

» Next week: lab 2



Exercise 1: Two blinking LEDs

A circuit is composed of two LEDs and a microcontroller equipped with a timer with
tunable frequency. The frequency of this timer can be set to

> 24 kHz,
> 8 kHz,
» 6 kHz, or
> 1 kHz.

LEDs should respectively blink at 8 kHz and 3 kHz. How can we program a solution
for this, without any busywaiting, if we assume that the instruction clock frequency of
the MCU is 1 MHz and that the timer sends an interrupt request at each tick?



Exercise 2: Football score display

A screen equipped with four seven-segment
displays should show the score of the game.
It works as follows: each display is lit at
once by selecting the appropriate SELECT
pin and turing on the desired segments via
the SIGNAL pins. This should be done
often enough so that the naked eye does
not see that only one display is lit at once.

SELECT

SIGNAL




Exercise 2a: Converting numbers to segments

For the following exercises, we will assume

that an 8-bit MCU performs computations.

The score of each team is a number
between 0 and 99. Therefore, this number
can be internally stored as one byte. Yet,
the display takes as input the signal to be
applied to each segment. How can we
convert in constant time the 8-bit value
into the 2 times 7 bits used to display it ?

SELECT

SIGNAL




Exercise 2b: A first program

A team may score a goal at any time (we
assume that a delay under 500 ms between
two goals cannot happen). Per team, one
MCU pin is connected to an external signal
responsible for telling that one extra goal
has just been scored by the corresponding
team. This signal will trigger an interrupt
request. The delay between information
reception and display has to be as short as
possible. It is not permitted to display a
number that is neither the current nor the
previous score for each team.

The following code shows an
implementation. What is wrong with it
(two things)? How can we circumvent this?

char score_t_1, score_t 2 = 0;
void interrupt update_scores(void)
{
if (team_1_has_scored){
team_1_has_scored = O;
score_t_1 ++;
}
if (team_2 has_scored){
team_2_has_scored = O;
score_t_2 ++;

}
}

int main() {

while(1){
display(1l, score_1);
display(2, score_1);
display(3, score_2);
display(4, score_ 2);



Exercise 2c: A second program

int main() {
volatile char score_t_1, score_ t 2 = 0;
while(1){
if (team_1_has_scored){
team_1_has_scored = O;
score_t_1 ++;

}

Here i her impl . Wh if (team_2_has_scored) {
ere Is another implementation. at team_2_has_scored = 0;

i ?
are the issues now score_t.2 ++;

}

display (1, score_1);
display(2, score_1);
display(3, score_2);
display(4, score_2);



Exercise 2d: A third program?!

The MCU is equipped with a timer able to send an interrupt request. How can we use
this to have a good program?

With this solution, is it possible to perform other computations? If yes, what are the
conditions on them?

1} let you think about this and will not send a correction. You are welcome to email me with your
solution to get some feedback.



