
3. Cloud environment 

* Voyeur Tools cloud-based text analytics 
* web interface 

* compute cluster: 224 cores, 1 GB RAM per core
* multiple filesystems: HDFS, Lustre, local
* implementation: Java, Apache Hadoop 

Structuring All-Pairs as a MapReduce Application 

http://voyeurtools.org/ 
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All-Pairs problem (Thain 2008):

<< All-Pairs(set A, set B, function F) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M, 
such that M[i,j] = F(A[i],B[j]) >> 

1. Problem description 2. Application scenario 
Old Bailey corpus (London court, 17th-20th cent.):
* largest historical collection of judicial records
* 200,000 TEI-encoded XML documents 

<< estimate document similarity for all 40 billion pairs of Old Bailey records >>
* comparison metric applied to full text of records: 
  Normalized Compression Distance (Cilibrasi 2005)

* challenge at scale: transferring large amounts of data 

* each record (full text + id) = 4 kilobytes 
* 40 billion of record pairs = 320 terabytes
  (unoptimized approach)
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* a structuring of All-Pairs as a MapReduce application has been presented
* summary: MapReduce transfers only the designation of input data, external channel transfers the actual input data
* approach valid because of: (1) problem structure, (2) availability of high performance file system / file sharing system
* All-Pairs for 20% of Old Bailey corpus is computed in 40 minutes on current cluster
* experiments needed to determine conditions under which to use HDFS, Lustre or BitTorrent 

5. Conclusion 

4. Dictionary data as the main input data transfer channel
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200,000 record full texts 
* ~800 MB = 0.004% of unoptimized approach
* transferred using HDFS, Lustre or (soon...) BitTorrent, 
   but not Hadoop distributed cache (does not scale) 

40 billion record id
* packaged into many MapReduce input files
  (so that each map task runs ~20 minutes)
* ~5GB (448 files, ~10 MB each)
* transferred using HDFS 

  local 
storage

shared 
storage

mapper 

MapReduce 
   daemon 

 shared 
storage

  local 
storage

reducer 

MapReduce 
   daemon 

output 
records 

shared 
storage

* total order of the output data (comparisons of record pairs)
  guaranteed by passing an output shard index through the mapper and reducer keys
  (each record pair preassigned to an output shard before invoking MapReduce) 

* in practice, each mapper maintains an in-memory hierarchical cache to minimize accesses to the file system 

* our approach: provide MapReduce with data designation information only,
transfer input data as dictionary data, using an external data transfer channel 

* typical MapReduce app: partition input data into key/value MapReduce records

* original insight: All-Pairs does not require MapReduce to handle lots of data, only lots of computations 

http://voyeurtools.org/
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