
Structuring All-Pairs as a MapReduce Application
Cyril Briquet, Stéfan Sinclair and the With Criminal Intent Research Group

CSMM Department, McMaster University, Hamilton, ON
cyril.briquet@acm.org, sgs@mcmaster.ca

Abstract—All-Pairs consists of applying a computation to all
pairs of data pieces from a couple of data sets. Computing All-
Pairs at scale, despite its apparent simplicity, is challenging,
mainly because of the massive amounts of data to handle. In
this poster paper, we describe how to structure All-Pairs as
a MapReduce application, which permits arbitrarily high task
parallelism. This involves separating data designation from data
transfer, transferring and handling input data efficiently by re-
lying on a distributed data transfer mechanism complementarily
to the MapReduce model, and guaranteeing a total order on
the generated output data. An interesting insight is that one
of two main touted strengths of MapReduce - its ability to
efficiently handle large input data - is not the key factor for
All-Pairs. However, the other main strength, i.e. the ability of
individual compute nodes to handle large amounts of data using
an external memory mechanism, of course is absolutely required
to operate at scale. We illustrate our proposed structuring with an
application scenario consisting of estimating document similarity
in an historical collection of judicial records.

Keywords-All-Pairs; Cloud; Cluster; MapReduce;

I. INTRODUCTION

The All-Pairs computing abstraction [1] consists of applying
a given computation to all pairs of data pieces that can be
generated from a couple of data sets. All-Pairs is relevant
to many application domains including bioinformatics, data
mining [2] and, as the application scenario illustrating this
poster paper, estimation of document similarity [3] in an
historical collection of judicial records [4].

Despite its apparent simplicity, computing one large in-
stance of the All-Pairs problem in an undedicated environment,
such as a general-purpose compute cluster, is challenging.
Indeed, if not handled suitably, transfer of input data and
output data constitute performance bottlenecks, both at the
node-level and the cluster-level.

In this poster paper, we describe how to structure All-Pairs
as a MapReduce [5] application. Relying on the MapReduce
model enables to leverage the reliability and scaling guarantees
it offers. Namely: the reexecution mechanism guarantees even-
tual task completion; the out-of-core [6] merge mechanism
guarantees that no individual compute node is overloaded by
large amounts of data; and the scheduling mechanism enables
to leverage large amounts of compute nodes.

Our proposed structuring of All-Pairs as a MapReduce
application is comprised of the following: firstly, separating
data designation from data transfer; secondly, transferring
and handling input data efficiently; thirdly, guaranteeing a
total order on the generated output data. MapReduce is often
lauded for its ability to efficiently handle large input data.

Interestingly, one insight derived from our research project is
that computing All-Pairs at scale does not necessarily require
this ability. Indeed, by separating data designation from data
transfer, the input data, i.e. the key/value pairs of the so-
called map phase, remain modest in size while most of the
data is transferred as side data, i.e. so-called dictionary data.
Distributed data transfer mechanisms that can be used to
transfer this side data, complementarily to the MapReduce
model, include BitTorrent [7], HDFS [8], Lustre [9].

The rest of this poster paper is structured as follows:
Section II defines the All-Pairs problem, Section III provides
a brief summary of the MapReduce model, Section IV intro-
duces our application scenario, and Section V describes how
we propose to structure All-Pairs as a MapReduce application,
given our application scenario.

II. THE ALL-PAIRS PROBLEM

The All-Pairs computing abstraction [1] basically consists
of applying a given computation, say function F, to all pairs
of data pieces from a couple of data sets, say A and B, in
order to yield a result matrix, say M [2]:

All-Pairs(set A, set B, function F) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M,
such that M[i,j] = F(A[i],B[j])

Despite its apparent simplicity, computing All-Pairs at scale
is challenging [2]. One challenge is the overload of individual
compute nodes; it can be prevented by relying on an external
memory mechanism [6]. Other challenges reside in making
available almost all of the input data to each compute node,
and the lack of scalability of centralized data transfers; both
are typically addressed [2] by limiting task parallelism.

III. MAPREDUCE MODEL

MapReduce [5] is a programming model that facilitates
automatically running distributed applications on clusters of
commodity computers. “Users specify a map function that
processes a key/value pair to generate a set of intermediate
key/value pairs, and a reduce function that merges all inter-
mediate values associated with the same intermediate key [5].
There are thus two phases in the MapReduce model: the so-
called map phase and reduce phase.

A middleware based on the MapReduce model transparently
partitions and transfers input data, schedules the execution of
multiple instances of the map and reduce functions, transfers



intermediate data and output data, and handles failures of
compute nodes by rescheduling computations. Input or inter-
mediate data subsets too large to fit within the memory of an
individual compute node are handled by relying on an external
memory mechanism [6].

IV. APPLICATION SCENARIO

Our application scenario consists of estimating document
similarity [3] in an historical collection of judicial records,
the Old Bailey corpus [4]. The corpus comprises a set of
200,000 XML documents. Each record is the lemmatized text
extracted from a TEI-encoded XML document. The objective
is to solve the All-Pairs problem for the Old Bailey corpus,
evaluating each of the 40 billion pairs of records (related
MapReduce works are designed to prune as many evaluations
as possible [10]) using the Normalized Compressed Distance
(NCD) [11]. The whole corpus of 200,000 TEI-encoded XML
documents is 1.7 GB in size and the set of lemmatized textual
records is only one tenth of that. There is thus little raw input
data to transfer comparatively to the problem size.

The All-Pairs problem is offered as a tool of the Voyeur
Tools [3] cloud-based text analytics platform. Voyeur Tools
processes bursts of user requests on undedicated HPC clusters.
The compute environment of Voyeur Tools is an HPC cluster
based on 8-core CPUs with access to a high performance
distributed file system (Lustre [9]). The All-Pairs tool is
expected to be publicly released by the end of 2010.

Voyeur Tools relies on Apache Hadoop [8], a popular open
source middleware based on the MapReduce model. Typical
Hadoop deployments rely on the HDFS distributed file system
to transfer and store input data and gather output data. Hadoop
compute nodes can also access additional file systems, whether
local or distributed, if available.

V. ALL-PAIRS AS A MAPREDUCE APPLICATION

A. Data designation vs. data transfer

Based on our application scenario, the input data is com-
prised of one set of textual records, each associated with a
unique identifier (r-id, for short). A record and its r-id weigh
4 kB on average. The total size of the 40 billion pairs of
records would be 320 terabytes without any optimization.
We propose to abstract data designation from data transfer.
The textual contents of all records are gathered into one file,
referred to as the so-called dictionary data. An index, using
r-ids as keys and byte offsets as values, enables to locate
textual records. By adding one level of indirection, the size of
the input data transferred as a dictionary file is significantly
reduced (∼800 MB, that is 0.004% of the size of raw data).

Pairs of r-ids transferred as input data are grouped into
several files, the so-called input splits, with enough r-ids
per split to keep the overhead low while ensuring high task
parallelism and low fault-recovery cost.

B. Input data transfer and handling

The pairs of r-ids are transferred by the MapReduce mid-
dleware. The dictionary (see above) must be replicated to

compute nodes, with HDFS [8] (typically 3 replicas, more as
needed) or Lustre [9] (data blocks are replicated on demand).
BitTorrent [7] could also be used.

To compute the NCD of a pair of records (see above),
the compressed sizes of both individual records of a pair, as
well as their concatenation, are required. Each compute node
maintains an in-memory hierarchical cache of record textual
contents and their compressed sizes, in order to minimize the
computations and file system reads.

C. Total order on output data

The computed output data resulting from the evaluation
of record pairs are gathered and sorted into output shards
(the so-called reducers) by the MapReduce middleware. Each
record pair is preassigned (before running the MapReduce
application) to a specific output shard. To maintain a total
order of record pairs over all output shards, the output of a
record pair is comprised of the preassigned output shard, the
leftwise r-id and the computed NCD value.

D. Specific Limitations and Future Work

The implementation of our proposed structuring of All-Pairs
as a MapReduce application could be exposed as an API so
that it can be considered as a true computing abstraction [2].
Additional experimental results will be required to confirm the
promising early results and help tune the design parameters.
Early results show that computing All-Pairs for 20% of the
records currently requires 40 minutes: ∼20 min. to generate
the dictionary data, ∼20 min. to run the MapReduce applica-
tion using 28 nodes (8-core CPUs) with 2 map slots per core
and 2 reduce slots per node.

ACKNOWLEDGMENTS

This work was made possible by Digging into Data (www.
diggingintodata.org) and by the facilities of the Shared Hierar-
chical Academic Research Computing Network (SHARCNET:
www.sharcnet.ca) and Compute/Calcul Canada.

REFERENCES

[1] C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn, “All-Pairs: An Abstrac-
tion for Data-Intensive Computing,” in Poster Proc. Grid Computing
conference, 2007.

[2] ——, “All-Pairs: An Abstraction for Data-Intensive Cloud Computing,”
in Proc. IPDPS, Miami, FL, 2008.

[3] “Voyeur Tools.” [Online]. Available: http://voyeurtools.org/
[4] “The Proceedings of the Old Bailey, 1674-1913.” [Online]. Available:

http://www.oldbaileyonline.org/
[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Proc. OSDI, San Francisco, CA, USA, 2004.
[6] J. S. Vitter, “External Memory Algorithms and Data Structures: Dealing

with Massive Data,” in ACM Computing Surveys, 2001, vol. 33, no. 2.
[7] C. Briquet, X. Dalem, S. Jodogne, and P.-A. de Marneffe, “Scheduling

Data-Intensive Bags of Tasks in P2P Grids with BitTorrent-enabled Data
Distribution,” in Proc. UPGRADE-CN’07, HPDC Workshops, Monterey
Bay, CA, USA, June 2007.

[8] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.
[9] “Lustre.” [Online]. Available: http://www.lustre.org/

[10] G. De Francisci Morales, C. Lucchese, and R. Baraglia, “Scaling Out
All pairs Similarity Search with MapReduce,” in Proc. SIGIR, Geneva,
Switzerland, July 2010.

[11] R. Cilibrasi and P. Vitnyi, “Clustering by Compression,” in IEEE Trans.
Information Theory, 2005, vol. 51, no. 4.


