
Learning Reliability Models
of Grid Resource Supplying

Cyril Briquet and Pierre-Arnoul de Marneffe

Department of Electrical Engineering & Computer Science, University of Liège,
Montefiore Institute, B37, B-4000 Liège, Belgium
email: {C.Briquet,PA.deMarneffe}@ulg.ac.be

Abstract

Resource exchange between Grid participants is at the core of Grid com-
puting. Distributed bartering is a distributed and moneyless method
of resource exchange. Recent work related to distributed bartering has
mainly dealt with resource supplying. However, Grid participants still
face an unstable resource environment due to the partial and intermit-
tent nature of the exchanged resources. The problem considered in this
paper is the unreliability of resource supplying. Though it cannot be
totally avoided, a proactive stance may lower its impact in the long
run. We propose to explore the reduction of performance variability
by improving resource consumption. The goal is to enable Grid par-
ticipants to identify and avoid unreliable resource suppliers by learning
reliability models of resource supplying. A Machine Learning problem
is defined and the generated models are applied to select more reliable
resources in the hope of improving resource consumption.

1 Introduction

Transient exchange of resources within Virtual Organizations is a key feature
of Grid computing [1]. Grid participants naturally require incentives to exchange
resources with one another. In this context, so-called market-based methods and
the Grid economy [2] constitute an important and promising approach. The Grid
economy views access to resources (e.g. computing time) as a commodity that
can be bought and sold on a resource market. Its main objective is to attain a
market equilibrium between resource supply and resource demand.

Fundamental issues related to the decision making aspects of resource ex-
change have not fully been explored [1, 3]. Most market-based methods seek
to reach market equilibrium. However, they yet have to investigate possible be-
haviours when an optimal price level has been reached. More research is thus
needed. For example, in a market with perfect atomicity, quality of service
(e.g. reliability and predictability) could potentially help to differentiate multi-
ple suppliers all offering comparable resources at, or near, some optimal price.
Indeed, Schopf & al. pointed out that Grid users “want not only fast execution
times from their applications, but predictable behaviour, and would be willing
to sacrifice some performance in order to have reliable run times” [4]. Taking



into account factors that cannot easily be fitted into resource pricing is, in our
opinion as well, a promising idea for future research on resource negotiation.

Most Grid market-based resource exchange methods so far studied, even de-
centralized ones, rely on some kind of central bank or global currency manage-
ment organization [5]. We recognize the importance of this approach, especially
in Application Service Provider scenarios. At the same time, we argue that there
are many noncommercial exchange of resources that are penalized by this depen-
dence upon a central component. Some examples include, but are not limited to:
academic departments, subsidiaries of a global corporation, home users willing
to pool their resources. Unlike participants in commercial exchange of resources,
where sellers and buyers are clearly separated, these Grid participants may act
both as resource suppliers (i.e. sellers) and resource consumers (i.e. buyers).

Such Grid participants do not seek immediate financial profit from the sup-
plying of their own resources. Their main objective is to offer good service to
their own users, meaning computing jobs under classical constraints (temporal
deadlines, makespan, utilization). To reach this goal, they may want to consume
resources from other participants when their own resources cannot handle their
job load. They may not be willing or able to pay money for this consumption.
They may however be willing to supply their own resources when they don’t use
them. In this sense, there is no absolute necessity for money-based transactions.
We argue that both the overhead induced by a centralized banking component
and the unwillingness to pay money call for distributed, moneyless exchange of
resources. Such a form of commerce or resource exchange may be referred to [2]
as distributed bartering.

Distributed bartering middlewares are beginning to emerge but their decision-
making aspects have not yet been fully explored. In this paper, we propose to
extend a successful middleware, OurGrid [6], with learning capabilities to al-
low Grid participants to consume more reliable resources. Improved resource
consumption will in turn lead to a better servicing of computing requests.

The rest of the paper is structured as follows: Section 2 offers references to
related work, Section 3 presents the Network of Favors model on which OurGrid
relies for resource exchange, Section 4 defines the Machine Learning problem
applied to generate reliability models and Section 5 concludes and discusses
future work.

2 Related Work

A set of Grid participants exchanging resources with one another may create
a cooperative environment [2], but we contend that they may also generate
a market-based, competitive environment. In fact, there is no reason for any
exchange of resource to be restricted to a cycle-stealing model such as the well-
known Folding@home [7] project. In this context, most Grid participants simply
donate resources. In other situations, Grid participants will have to be motivated
[2, 5] to contribute resources and may want to compete to consume the best (or
most appropriate) resource.



Resource negotiation may be performed with different levels of dynamicity:
(1) equal priority (identical resource supplying to/consumption from all Grid
participants), (2) statically assigned priority (out of band contract between Grid
participants), (3) dynamically negotiated priority (explicit or implicit contract
between Grid participants). Requirements for scalability and autonomicity call
for most dynamic resource negotiation.

Bartering is a form of dynamic, implicit resource negotiation that has recently
been gaining more attention. We define bartering as a distributed, moneyless
form of resource exchange, which may be competitive. All proposed bartering
architectures are not fully distributed. For example, the Faucets middleware
[8] is a centralized, zero-sum cluster bartering architecture which relies upon a
database located on a central server. Credit is granted to the computing peers to
consume resources. A bidding system allows the peers to compete for resource
consumption.

Some authors [9] restrict the definition of bartering as a supplying of resource
immediately followed by a reciprocal supplying. Our understanding of bartering
is closer to their concept of community pattern, which however relates to a local
- rather than a global - computing environment.

OurGrid [6], with a focus on a global computing environment, matches pretty
well our understanding of bartering. It is a P2P system based on the so-called
Network of Favors model. Peers exchange resources with one another and keep
their own accounting [10] of resource supplying and consumption. They do-
nate (supply) computational resources (= make favors) in the hope of reciprocal
behavior on behalf of the resource consumers.

Another interesting P2P architecture [11], built on the SHARP system [12]
(secure highly available resource peering), envisions a “bartering economy as
providing the basis for decentralized growth”. Resource discovery and creation of
a secure P2P overlay are thoroughly considered. A simple Tit-for-Tat strategy
incites resource exchange. It must be noted that the establishment of trust is ex-
plicit and requires the deployment of the SHARP system, which is not lightweight.
A very interesting fact about this P2P architecture is that bartering is seen as a
first step of the evolution of a Grid economy towards currency-based commerce
involving the most reliable peers.

GridIS [13] is yet another incentive-based P2P resource exchange system
which seeks to optimise job scheduling. It provides incentives to the Grid par-
ticipants to continue consuming/supplying resources but its focus is mainly on
supplier decision making. Resource suppliers may be configured to adopt an
aggressive (more potential rewards) or conservative (less risk) job acceptation
policy. With respect to job acceptation policy, GridIS may be related to another
effort [14] towards better Grid scheduling. This system proposes a resource ex-
change market with a focus on job acceptation/admission control policy. The
idea is to balance risk and reward by considering the opportunity cost of accept-
ing new jobs.

An important issue that is beyond the scope of this paper is resource discovery
(more precisely, the matchmaking of resource supply and consumption in the



bartering system). This aspect of bartering systems (which has been coined
the “double coincidence of wants”) has been recently studied [15] within a Grid
context from a theoretical and graph theory perspective. Most of the bartering
middlewares actually being P2P systems (OurGrid, SHARP-based architecture,
. . .), they take care of resource discovery by creating overlay networks of peers.

Finally, classical Machine Learning (ML) algorithms (k-NN, Decision Trees,
. . .) have successfully been used in Grid resource management systems [3]. For
example, instance-based learning algorithms have been applied to generate per-
formance estimators based on task input parameters [16] in the well-known Punch
middleware. In a more recent work, reinforcement learning algorithms have been
applied to generate performance estimators [17], with a focus on resource con-
sumption. In the latter case, reliability of resource supplying is not taken into
account for consumption and a simple FCFS resource supplying policy is used.

3 Network of Favors Model

As stated in the previous section, OurGrid [6] is a P2P system based on the
so-called Network of Favors model. The peers (Grid participants) supply their
non-busy resources (= make favors) to each other in the hope of future reciprocal
behaviour on the behalf of the resource consumers.

Each peer acts as both a supplier and a consumer of resources and maintains
its own private bookkeeping of exchanged resources (i.e. accounting of the given
and received favors). To avoid ID-changing attacks, the favor balances of each
peer are always nonnegative. The main goal of favor accounting is to prioritize
resource supply in case of conflicting supply requests: priority in supplying is
given to the peers who have contributed the most resources in the past. It should
be noted that two accounting models [10] are currently considered: (1) a simple,
time-based accounting model (biased towards slower resources), where a favor
equals the supply time of the given resource and (2) a more robust accounting
model, which weighs the supply time with the estimated relative computing
power between consumer and supplier.

Whatever the selected accounting model, there is a known problem of possi-
bly asymmetrical accounting. Under certain circumstances, the supplier updates
its favor balance while the consumer does not. Over time, biased accounting will
result in degraded resource exchange as there will be a skewed perception of reci-
procity.

This divergence of accounting will occur in case of task execution failure.
Task failure may happen for multiple reasons: (1) supplied resource preemption
for local use, (2) supplied resource failure, (3) temporary departure of supplier
from the Grid, . . . In these situations, the supplier estimates (rightly so) that
it has supplied a resource and lost its use for some time before task execution
is cancelled. At the same time, the consumer estimates (again rightly so) that
the failed task execution has not been of any benefit. Task execution failures
obviously degrade performance.

There is explicitly no assumption of QoS or performance guarantees in OurGrid.



However, task replication techniques are proposed to sustain some level of per-
formance. That requires a higher level of resource consumption. An interesting
observation [18] is that “adding capacity and reducing variability are, in some
sense, interchangeable options”. We thereby propose to explore variability reduc-
tion as a complementary approach to improve performance stability in bartering
middlewares, particularly OurGrid.

4 Towards Better Resource Consumption

The core of the considered resource accounting problem is a lack of reliability
in resource supplying. Resource unreliability leads to task incompleteness, which
causes asymmetrical accounting and delays the delivery of value to resource
consumers. The Network of Favors is a satisfactory model, mainly concentrating
on resource supplying. However, we argue that accounting for completed work is
not enough. The quality of resource supplying should be taken into consideration
and modelled so that peers avoid as much as possible to contract with unreliable
peers. In other words, even if there is no assumption of QoS, we want to establish
a way for peers to preferably contract with other peers that will give them
uninterrupted service. This would support the idea of encoding the negotiated
quality of experience [1]. We propose to extend the resource exchange model
and reduce variability in task execution by better consuming resources. The
goal is threefold: (1) to define resource unreliability, (2) to allow each peer to
identify unreliable resources/peers and (3) to make each peer choose (when there
is a choice) to consume the most reliable resource (which of course depends on
the perspective of each peer). The requirements of avoiding explicit negotiation
schemes and centralized organization are taken into account by taking advantage
of the independence of peers in the P2P system.

The context of a P2P system with independent peers and without trust
frames the available management data to what can be independently observed
by the peers. The most important information is the outcome of remote task
execution: successful, cancelled, rejected. It should be noted that we do not
distinguish between task failure and task preemption. Another important infor-
mation is the time spent between task submission and outcome. This information
is important when the task completes successfully (= execution time) as well as
when it does not (= failure time).

The negotiation state of a (consumer) peer when submitting a given task is
also available: favor balance with every other peer, total resource consumption
and supplying with every other peer, success ratio (task execution success count
divided by task submission count) of each individual peer. A short temporal
window representing recent history may be generated for each of these attributes:
resource consumption or supplying time, success ratio, . . . for the last X task
submissions to/execution for every other peer. The mean favor balance, the
mean consumption or supplying time, . . . during the last X task submissions
to/execution for every other peer may also be computed. The global state of
the peer network may also be taken into account by computing means of some



of these variables across all peers (mean recent success ratio, . . .). This would
allow to estimate the global load of the peer network and distinguish abnormal
task execution failure from more regularly unreliable supplying behaviour.

Of course, task-related information such as input parameters and static per-
formance benchmarks may also be used, when available.

All this data may be stored by each peer in a database, with a vector of
attributes stored for each task. For a given peer, let
• pi = another peer
• tj = a task to execute remotely
• a(o) = vector of attributes of task tj run on pi

where o (an object of the database) represents a task tj executed on the peer
pi and a(o) the vector storing all related data. The database objects may be
represented as lines and the attributes as columns.

a0(o1) a1(o1) a2(o1) . . . aN−1(o1) c(o1) y(o1)
a0(o2) a1(o2) a2(o2) . . . aN−1(o2) c(o2) y(o2)
a0(o3) a1(o3) a2(o3) . . . aN−1(o3) c(o3) y(o3)

. . .

How should we define and identify unreliability from this data ? We want to
predict the outcome of a task submitted to a given peer and its execution time
when the outcome is successful. We may define c(.) as the reliability classification
function from the perspective of the consumer peer and y(.) as the runtime
regression function. They both are functions of the objects of the database (i.e
a task), which is adequately projected to exclude the function output from the
vectors of attributes. For a given peer, let
• c(a(o)) = { successful, cancelled, rejected }
• y(a(o)) = task execution time

We define the identification of unreliable resource supplying as a Machine
Learning problem:
• given a finite set of examples (a(o), c(a(o))), find a decision model d(a(o)) as

close as possible to c(a(o)).
We may then define an estimator of execution performance, also as a Machine
Learning problem:
• given a finite set of examples (a(o), y(a(o))), find a regression model r(a(o))

as close as possible to y(a(o)).
As the reliability of peers evolves over time, the models must be periodically
refreshed or rebuilt.

To generate the decision and regression models, we propose to use classical
ML algorithms. With regards to the use of ML algorithms in resource manage-
ment, what distinguishes our work from past research is the combination of (1)
using distributed bartering, (2) taking into account the supplying reliability and
(3) using data collected only from independent observation rather than from a



resource monitoring system (local or system-wide). Moreover, the Grid environ-
ment considered in this paper is much more dynamic than previously considered
cluster environments.

We then propose that each peer prioritizes other peers based on their reliabil-
ity first and then given their expected performance. The coupling of reliability
and performance estimation effectively enables a peer to consume resources from
the peers perceived as the most reliable. This makes peers avoid consumption
of fast but unreliable resources, which would probably fail during task execution
and therefore lead to delays due to task re-execution.

Besides, the absence of assumption of QoS precludes the enforcement of hard
scheduling deadlines. However, with our proposal it is possible to estimate if such
a deadline will be met if a given task is executed on a given peer.

5 Conclusions & Future Work

This paper has thoroughly presented Grid resource exchange based on dis-
tributed bartering, which we define as a distributed, moneyless form of resource
exchange. The state of the art has been presented along with a known problem
yet to be solved, the asymmetry of resource accounting. This problem is the
result of supplying unreliability, in other words, the failure of task execution by
supplied resources.

Most resource exchange related work has focused on resource supplying. In
particular, prioritizing resource supplying has been considered from various per-
spectives. Our work focuses on resource consumption and its prioritizing. Re-
lated work shows that using Machine Learning algorithms to generate perfor-
mance estimators is a valid idea. We have therefore proposed to use ML algo-
rithms to generate reliability models of resource supplying. These models may
then be used to prioritize resource consumption so as to avoid peers who show
good performance but lack supplying reliability.

To conclude, our proposal of using ML algorithms to improve resource ex-
change combines several interesting features: distributed bartering, the consider-
ation of supplying reliability to improve consumption and the use of management
data collected without support of a resource monitoring system.

In our future work, we will explore the performance and precision of dif-
ferent combinations of learning algorithms and attribute vectors. We will also
investigate further application of reliability modelling. In particular, it would
be interesting for peers to build models of their own supplying reliability and
consumption patterns. This would thereby allow us to study the linking of
consumption and supplying models and perhaps eventually lead to improved
resource exchange performance.

Acknowledgements. We want to thank Krzysztof Rzadca for his support and
for pointing out excellent references. We also want to thank Sébastien Jodogne
for his support and insights. Finally, we want to thank Claire Kopacz and
Elisabeth Spilman for the linguistic review.



References

1. I. Foster, N.R. Jennings & C. Kesselman, Brain Meets Brawn: Why Grids and
Agents Need Each Other, Proc. Int. Conference on Autonomous Agents and
Multi-Agent Systems, New York, USA, 2004.

2. R. Buyya, D. Abramson & S. Venugopal, The Grid Economy, Proc. of the IEEE,
Special Issue on Grid Computing, 93 (3), New York, USA, 2005.

3. C. Briquet & P.-A. de Marneffe, Grid Resource Negotiation: Survey with A
Machine Learning Perspective, Proc. Parallel and Distributed Computing and
Networks, Innsbruck, Austria, 2006. To appear.

4. J.M. Schopf & B. Nitzberg. Grids: The Top Ten Questions. Scientific Program-
ming Journal, 2002.

5. R. Buyya, Economic-based Distributed Resource Management and Scheduling for
Grid Computing, PhD Thesis, Monash University, Melbourne, Australia, 2002.

6. N. Andrade, W. Cirne & F. Brasileiro. OurGrid: An Approach to Easily Assem-
ble Grids with Equitable Resource Sharing. Proc. 9th Workshop on Job Schedul-
ing Strategies for Parallel Processing, Seattle, USA, 2003.

7. Folding@home project. http://folding.stanford.edu/
8. L.V. Kale, S. Kumar, J. DeSouza, M. Potnuru & S. Bandhakavi, Faucets: Effi-

cient Resource Allocation on the Computational Grid, Proc. International Con-
ference on Parallel Processing, Montreal, Canada, 2004.

9. P. Obreiter & J. Nimis, A Taxonomy of Incentive Patterns - the Design Space of
Incentives for Cooperation, Proc. International Workshop on Agents and Peer-
to-Peer Computing, Melbourne, Australia, 2003.

10. R. Santos, A. Andrade, F. Brasileiro, W. Cirne & N. Andrade, Accurate Au-
tonomous Accounting in Peer-to-Peer Grids, Proc. 3rd Int. Workshop on Mid-
dleware for Grid Computing, Grenoble, France, 2005.

11. B.N. Chun, Y. Fu & A. Vahdat, Bootstrapping a Distributed Computational
Economy with Peer-to-Peer Bartering, Proc. Workshop on Economics of Peer-
toPeer Systems, Berkeley, 2003.

12. Y. Fu, J. Chase, B. Chun, S. Schwab & A. Vahdat, SHARP: An Architecture for
Secure Resource Peering, Proc. ACM Symposium on Operating Systems Princi-
ples, New York, USA, 2003.

13. L. Xiao, Y. Zhu, L.M. Ni & Z. Xu, GridIS: an Incentive-based Grid Scheduling,
Proc. Int. Parallel and Distributed Processing Symposium, Denver, 2005.

14. D. Irwin, J. Chase & L. Grit, Balancing Risk and Reward in a Market-based Task
Service, Proc. Int. Symposium on High Performance Distributed Computing,
HPDC-13, Honolulu, USA, 2004.

15. C. Ozturan, Resource Bartering in Grids, Proc. Concurrent Information Pro-
cessing And Computing, Sinaia, Romania, 2003.

16. N.H. Kapadia, J.A.B. Fortes & C.E. Brodley, Predictive Application-
Performance Modeling in a Computational Grid Environment, Proc. 8th IEEE
Int. Symposium on High Performance Distributed Computing, Redondo Beach,
California, USA, 1999.

17. A. Galstyan, K. Czajkowski & K. Lerman, Resource Allocation in the Grid
Using Reinforcement Learning, Proc. Int. Conference on Autonomous Agents
and Multi-Agent Systems, New York, USA, 2004.

18. R. Leus, The generation of stable project plans, PhD Thesis, Catholic University
of Leuven, Leuven, Belgium, 2003.


