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Abstract

P2P Grid computing seeks the convergence of Grid and P2P technologies. De-
ploying a P2P Grid middleware on a set of computers enables an organization to
automatically barter computing time with other Internet-connected organizations.
Such P2P exchanges of computing time enable individual Peers, i.e. organizations,
to transparently aggregate large amounts of computational power with minimal
infrastructure requirements or administrative cost.

Challenges arise from the requirement for scalability and robustness. Individual
worker nodes are unreliable, as P2P Grids operate on unmanaged desktop com-
puters. A specificity of P2P Grids is that each Peer can reclaim at any time the
computational power of worker nodes supplied to other Peers, leading to bursts of
execution preemption. These are the major contributions of our dissertation:

• Firstly, we propose a new P2P Grid architecture, the Lightweight Bartering
Grid (LBG). Through systematic cooperation between Grid nodes, the reli-
ability of execution of computational requests is greater than the sum of the
reliabilities of worker nodes.

• Secondly, we propose a highly scalable data transfer architecture. It is based
both on the BitTorrent P2P file sharing protocol and on the removal of the
temporal cost of downloading redundant copies of input data files.

• Thirdly, besides a middleware implementation of LBG, we also provide an
implementation of a discrete-event simulator. Its originality resides in the
weaving of the simulator code into the bartering code of the middleware,
which is made possible through the virtualization of Grid nodes. This enables
reproducible testing and accurate performance evaluation of the bartering
policies because the Peers of a simulated Grid make the same bartering
decisions as Peers deployed on real computers.

The LBG architecture exhibits the following remarkable features:

• The scheduling model supports the queueing of external requests and the ar-
chitecture enables a flexible study of bartering policies.

• The architecture is open, flexible, lightweight and facilitates software engineer-
ing. It enables the easy development, testing, evaluation and deployment of
combinations of scheduling policies.

• The architecture is fully P2P.



Résumé

Le domaine du calcul en grille pair-à-pair (P2P) a pour but la convergence entre
les technologies de calcul en grille et d’organisation P2P. Déployer un middleware
de grille P2P sur un réseau d’ordinateurs permet à une organisation d’échanger au-
tomatiquement du temps de calcul avec d’autres organisations basées sur Internet.
De tels échanges P2P de temps de calcul offrent à chaque pair, i.e. organisation, la
possibilité d’agréger de manière transparente une grande puissance de calcul, sans
lourdeur administrative ou d’infrastructure.

Les impératifs de robustesse et de résistance aux facteurs d’échelle posent plusieurs
défis. Les noeuds de calcul sont peu fiables, étant donné que les grilles P2P sont
déployées sur des PC de bureau ou domestiques. Une spécificité des grilles P2P est
que chaque pair peut récupérer à tout instant l’usage de ses noeuds de calcul qui
sont prêtés à d’autres pairs, ce qui conduit à des rafales de préemption d’exécution.
Les contributions les plus significatives de notre thèse sont les suivantes:

• Premièrement, nous proposons une nouvelle architecture de grille P2P, la grille
de troc légère, Lightweight Bartering Grid (LBG). Grâce à une coopération
systématique entre les noeuds de la grille, la fiabilité d’exécution des requêtes
de calcul est plus grande que la somme des fiabilités des noeuds de calcul.

• Deuxièmement, nous proposons une architecture de transferts de données ex-
trêmement résistante aux facteurs d’échelle. Elle est basée sur le protocole
de transfert de fichiers BitTorrent et sur la suppression du coût temporel des
transferts de copies redondantes de fichiers de données.

• Troisièmement, en plus de fournir une implémentation de LBG sous forme de
middleware, nous fournissons également une implémentation sous forme d’un
simulateur à événements discrets. L’originalité de celui-ci provient d’un fin
tissage du code de simulation sur celui du middleware, qui est rendu possible
par la virtualisation des noeuds de la grille. Cela permet de réaliser des
tests reproductibles ainsi que des évaluations de performance précises des
politiques de troc, étant donné que les pairs d’une grille simulée prennent les
mêmes décisions de troc que des pairs déployés sur des ordinateurs réels.



v

L’architecture LBG a les caractéristiques remarquables suivantes:

• Le modèle d’ordonnancement supporte la mise en file d’attente des requêtes
externes et l’architecture permet une étude flexible des politiques de troc.

• L’architecture est ouverte, flexible, légère et facilite l’ingénierie logicielle. Elle
permet un développement, une évaluation et un déploiement aisés de com-
binaisons de politiques d’ordonnancement.

• L’architecture est complètement P2P.
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Chapter 1

Introduction

Trust is a peculiar resource which is increased,
rather than depleted, through use.

- suggested by Diego Gambetta

1.1 A Brief History of Grid Computing

This dissertation takes its root in the distributed computing domain. The concept
of distributed computing exists since the deployment of high speed networks in the
1970s [276]. Large-scale distributed computing has emerged with the Information
Wide-Area Year [110] (I-Way). Temporary links between 11 research centers were
established just before and during the Supercomputing ’95 conference, which was
an occasion to demonstrate an experimental software prototype used to harness
new amounts of computing power. In the continuity of metacomputing [152] re-
search, this successful early experiment in large-scale distributed computing has
led to funding from the Defense Advanced Research Projects Agency (DARPA).
This research work produced the Globus Toolkit software [159], the first Grid mid-
dleware.1

With large amounts of computational power increasingly available from large clus-
ter farms and, increasingly, from a myriad of computers at the edge of the Internet,
aggregating computational resources at large-scale both within and between ad-
ministrative domains has become a possibility within reach.

Globus was first released in 1997 and the term Grid appeared at a seminar at the
Argonne National Laboratory. The term Grid was selected as an analogy to the
electrical power grid because the vision of Grid computing [161] is that of a com-
puting utility service that transparently provides computing power everywhere. In
1998, Foster and Kesselman published the first edition of what is considered as the

1 Middleware = Software “communication layer that allows applications to interact across
hardware and network environments.” [122]
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reference book of the domain of Grid computing: The Grid: Blueprint for a New
Computing Infrastructure, followed by a second edition in 2004 [149].

1.1.1 What is the Grid?

Grid computing is a form of distributed processing. Grid computing is about
“coordinated resource sharing and problem solving in dynamic, multi-institutional
collaborations.” [221] An important motivation for Grid computing is to run large-
scale applications: “Grid computing typically involves using many resources [. . .] to
solve a single, large problem that could not be performed on any one resource.” [221]

A Grid may be defined as “a number of computers linked together via the Internet
so that their combined power may be harnessed to work on difficult problems” [236],
but this is not sufficient. Foster has informally proposed the following list of
criteria [151] to determine if a distributed system is a Grid:

1. Decentralized coordination of resources from multiple administrative do-
mains;

2. Use of standard, open, general-purpose protocols and interfaces;

3. Delivery of nontrivial quality of service, e.g. the reliability offered by a Grid
is greater than the sum of the reliabilities of Grid resources.

The Grid is the (currently nonexistent) global interconnection of all the world
Grids running on the Internet with standard, open and general-purpose protocols
and interfaces like, for example, those proposed by the Open Grid Forum [231]. It
can be compared to the Internet, that interconnects all the world networks.

The main goal of distributed computing is to help Grid participants to cope with
peaks in their request environment by enabling them to dynamically consume
(e.g. through bartering, borrowing, buying, . . .) the resources of other participants.
The removal of a centralized point of control is essentially what distinguishes Grid
computing from classic distributed computing.

An additional goal of Grid computing is to help Grid participants to cope with the
instability of the resource environment. A Grid is expected to provide higher levels
of availability, reliability, autonomicity [27],. . . than the sum of its resources. It
should be able to tolerate individual resource failures by dynamically negotiating
resource sharing arrangements with other participants.
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1.1.2 Expectations on Resource Sharing

Resource Sharing as a Performance Enabler

Resource sharing allows Peers to cope with variability in the submitted computa-
tional requests and in the availability [119] of Resources from other Peers. The
response time of a computational request is the total time elapsed between the
submission of a computational request to a Peer and its completion. Resource
sharing can potentially speed up the response time of computational requests or
solve large problems that cannot be solved with one’s own Resources only.

Synchronized consumption by a given Peer of multiple Resources belonging to
other Peers (i.e. nontrivial QoS in Foster’s well known 3-point checklist [151]) may
dramatically accelerate computations by temporally aggregating a great number
of external Resources, leading to substantial reductions in response times of com-
putational requests.

Resource sharing can enable to shorten the computing time required to pro-
cess requests by aligning the available computing power with the peaks of
computational requests.

Resource Sharing as a Reliability Enabler

The request environment of a Peer is set by User Agents, but its Resource environ-
ment can be stabilized: Resource sharing can provide reliability in the completion
of execution either through consumption of computing time from Peers estimated
to be reliable, or through redundant2 consumption of computing time.

Automated Resource Sharing in a Non-dedicated Environment

In the recent years, in the wake of the early concept of Network of Worksta-
tions [37], so-called Volunteer Grid computing [11, 72] and Desktop Grid comput-
ing [230, 139] have emerged as possible, and relevant, answers to the need to gather
computational power in large amounts without having to support the prohibitively
high costs typically associated with supercomputers or clusters.

This need has become, in the current computing environment, a need to run ar-
bitrary computations on a set of inexpensive, not-necessarily-reliable, Internet-
connected computers. . . beyond the boundaries of organizations (such as illustrated
on Figure 1.1). With Grid Volunteer computing and Desktop Grid computing, it

2Redundant consumption, e.g. through task replication [86, 308], requires extra work time.
It is not considered in this dissertation.
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Figure 1.1: Transparent resource sharing beyond the boundaries of organizations.

can be argued that the benefits of the gathering of computational power go to a
small set of selected organizations. However, this does not fulfill the requirement
to enable Resource sharing between organizations.

The flocking mechanism of the Condor middleware [91] meets, to a certain ex-
tent, this new need. However, to the best of our current knowledge, there is no
enforcement of reciprocity between organizations (i.e. pools in Condor lingo). Fur-
thermore, a Condor deployment requires some involvement of the human system
administrators and users: Not only the peering relationships must be manually
configured, but some knowledge of the configuration of one another’s deployment
is required. Even though advances brought distributed management of resource
sharing to the Condor middleware, it is far from being fully automated.

This lack of automation calls for the use of a scalable resource sharing mechanism
to automate large-scale deployments (say, thousands of organizations and even
more worker nodes) from both the human system administrators and users’ per-
spective. Indeed, although it an be useful in some specific contexts to be able to
detail very specific requirements when deploying a system or submitting compu-
tational requests to this system, most human users typically want to use a simple
submission interface that do not require any special knowledge of the underlying
computing system.

1.1.3 Towards Scalable Resource Sharing Mechanisms

Historically, resource sharing arrangements were centrally coordinated3, with a
central component playing an arbitration role. However, a centralized organization

3Unicore [299], UC Grid [298], XtremWeb [318], Koala [190], Condor [91] and MOAB [219] are
examples of Grid middlewares that support centrally coordinated resource sharing.
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introduces a single point of failure and is not intrinsically scalable for a very large
system size.

Resource sharing mechanisms have thus evolved towards decentralized coordina-
tion4 where software agents autonomously (from one another, and from human
administrators) act on behalf of Grid participants, e.g. evaluate the reliability of
the supplying behavior of one another [148, 58] to make scheduling decisions. A
decentralized organization offers high fault-tolerance, scalability and autonomicity
but maintaining fairness in resource sharing is more challenging.

With either a totally stable resource environment or instantaneous and perfect in-
formation about it, centralized coordination could generate better overall utility.
On the other hand, it is unlikely to achieve the same level of scalability and fault-
tolerance as fully decentralized coordination.

Two distributed and fully automated mechanisms for the sharing of Grid resources
between multiple organizations have been proposed, with practical relevance, in
the recent years:

• The so-called Grid economy [67, 41, 68, 66, 297] and market-based methods are
semi-centralized as they assume the presence of a central banking component
(needed to enforce the control of the monetary mass).

• Bartering [13, 266, 265, 82, 59] consists of non-monetary exchanges of comput-
ing time. It can be organized in a fully decentralized fashion.

1.1.4 P2P Grid Computing

The very recent Peer-to-Peer (P2P) Grid computing [233, 13, 84, 286] subdomain
is essentially founded on a fully decentralized organization of resource sharing that
is based on bartering, i.e. pure exchange, of computing time.

Grids and P2P systems have “emerged in the past few years, both claiming to ad-
dress the problem of organizing large-scale computational societies.” [147] P2P has
been defined by Foster and Iamnitchi as a “class of applications that takes advan-
tage of resources [. . .] available at the edge of the Internet.” A P2P network can be
defined as a network of edge computers (called Peers) exchanging resources (files,
computing time, . . .) without central control or management. P2P networks and
applications may be conceptually as old as the Internet itself [289] but they have
become well-known with the widespread use of popular file sharing applications.

4gLite [158], the Globus Toolkit [159], GridBus [164], SimGrid [278], Condor [91] and MOAB [219]
are examples of Grid middlewares that support individually coordinated resource sharing.
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The first P2P network rose to existence in June 1999 following the initial public
release of Napster [222], which can retrospectively be characterized as a P2P file
sharing application (of MP3-encoded music files) with centralized Peer discovery.

Combining Grid and P2P technologies has the potential to lead to the develop-
ment of large-scale computational Grids based on edge resources (i.e. common
desktop PC) with built-in fault-tolerance. In a P2P Grid, each Peer:

• Can act both as consumer of computing time supplied by other Peers,
and as supplier of computing time to other Peers;

• Autonomously makes its own resource sharing decisions;

• Cooperates5 with other Peers by exchanging computing time but, as
an autonomous entity, seeks to achieve its own objectives.

From this perspective, P2P Grid computing, which seeks the convergence of
Grid and Peer-to-Peer technologies, could be defined as computational resource
sharing in Grids organized into P2P networks. A P2P Grid is defined
as a transient Virtual Organization [150] (see Appendix D.1.2) that emerges in
a bottom-up fashion, out of exchanges of computing time between participants
(i.e. Peers) connected together through a P2P network. In this dissertation, 2-
levels P2P Grids are considered, i.e. each Peer (first level) manages a set of worker
nodes (second level). Moreover, the considered worker nodes are edge computers,
i.e. heterogeneous, low cost, possibly unreliable, standard computers.

The partial and intermittent nature of resources is also a defining feature
of a P2P Grid. Indeed, because of the fully decentralized nature of a P2P Grid,
the resources involved are typically “partial and intermittent” [119], i.e. often ex-
hibiting degraded performance and intermittent availability.

The informational opacity between Peers is another defining feature of a P2P
Grid. Indeed, the amount and contents of control messages emitted and received
by Peers should be minimal for two reasons:

• The full decentralization precludes Peers to exchange a lot of metadata, because
the architecture should remain scalable.

• The full decentralization also precludes Peers to consider the metadata received
from other Peers as trustworthy: Indeed, we hypothesize that there is enough
trust between Peers to enable their cooperation, but not enough to fully trust
one another’s behavior.

5Cooperation in P2P Grids should be understood as emergent cooperation, i.e. there is no
explicit shared goal, in Doran et al.’s typology [124].
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P2P Grid computing is very recent. If a milestone had to be selected, a good
choice would be a paper by Foster and Iamnitchi [147] published in 2003 that
discussed and called for the convergence between the domains of Grid computing
and Peer-to-Peer technologies.

1.2 Dissertation Statement

Human users of computing systems are increasingly interested in running an ever
larger number of computational tasks. A challenge of high practical interest con-
sists of composing a user-friendly Grid that automates every operation
required to complete sets of independent6 computational tasks (so-called
Bags of Tasks). This implies the opportunistic use of additional resources as
they become available, the graceful recovery of operation as some resources
become unavailable and the automatic placement and transfer of data
files.

The goal is to hide the complexity of the Grid behind a simple submission
interface so that human users only have to wait for the results of their computa-
tional tasks to be automatically retrieved from the Grid. Furthermore, from the
point of view of a typical human user, the wait time should be as short
as possible, even if there is no QoS guarantee; a useful metric that should be
minimized is thus the mean Bag of Tasks response time (MBRT). An additional
requirement is to respect the natural tendency of human activities to be
structured into separate organizations. This calls for a set of distributed
mechanisms to enable the sharing of computational time between separate orga-
nizations.

Our dissertation addresses this challenge.

• We claim that bartering is a mechanism that allows software agents, called
Peers, to share in an autonomous and scalable way the resources of the human
organizations they represent. Such mechanism promotes the opportunistic
use of resources supplied by other Peers but comes at the price of a lack of
control over these resources and of transparency of other Peer’s operations.

• Task execution failures are common events due to preemption, as Peers can re-
claim for their own use the computational power they have supplied to other
Peers. To mask failures, we claim that Peers can be organized around queues
of tasks, so that preempted tasks do not necessarily have to be cancelled.
We propose a scheduling model that structures the scheduler of each Peer
into policy decision points, enabling to control the scheduling process.

6Examples of intended use cases are provided in Section 2.4.
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•Another issue is the massive size and amount of data files to be transferred across
the Grid (so-called data deluge). The massive amount of data can appear
even for one small file because the same file processed by multiple tasks of a
Bag of Tasks may have to be replicated to several worker nodes. In practice,
indeed, the data files often present repetitive patterns. For example, some
human users will want to repeatedly process the same set of files over time,
while other human users will want to process the same set of files in a variety
of ways. We claim that a fully decentralized data transfer architecture, based
on BitTorrent and designed to take advantage of the repetitive patterns in
sets of data files can address these requirements. It is also designed so that
worker nodes can collaborate beyond Peer boundaries to enable scalable data
transfers.

These proposals are realized through the Lightweight Bartering Grid (LBG) archi-
tecture [55], a fully decentralized P2P Grid architecture to build 2-level Grids
organized in a Peer-to-Peer fashion, where each Peer controls a set of
worker nodes (so-called Resources) and is totally independent from - and opaque
to - other Peers. A middleware implementation of LBG that can run arbitrary ap-
plications coded in Java has been produced. Furthermore, it has been shown that
it can run tightly-coupled sets of tasks that require co-allocation, which are not
typically run on a P2P Grid. Finally, we also claim that accurate and repro-
ducible simulation can and should be used as a software engineering
tool to build P2P Grids. Finding efficient combinations of scheduling policies
is challenging because of the massive number of possible combinations that are
made possible by the open nature of the scheduling model. To debug and evaluate
in a reproducible way a massive number of combinations of scheduling policies, we
propose to weave a discrete-event simulator into the code of a virtualized
version of the middleware.

1.3 Our Contributions to the P2P Grids Domain

Our work is mainly focused on the collective (top) layer of the Grid architec-
ture [150]. The state of the-art P2P Grid middleware, OurGrid [233, 84, 286], has
solved several important issues, notably protection against free-riding and accu-
rate accounting of exchanged computing time. However, given the recency of the
domain of P2P Grids, many research issues are still open.

An initial observation is that the supplying side of bartering has been well stud-
ied, while the consumption side has received less attention. With OurGrid, a Peer
splits between its users the computing time consumed from other Peers (see Ap-
pendix 2.5.3).
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Therefore, OurGrid’s scheduling model does not allow a Peer to adaptively select
the Peers from which to consume computing time; it also does not support queue-
ing of computational requests from other Peers.

The benefits of queueing support for computational requests of other Peers are:

• Scheduling can be either online or batch-mode;

• A preempted computational request of another Peer (e.g. following the crash of
a worker node) can be requeued and subsequently rescheduled a few moments
later, instead of being cancelled and sent back to the other Peer;

• The input data files of the preempted and subsequently rescheduled computa-
tional request may still be available, while they would probably have been
unavailable had it been cancelled and scheduled to another supplier Peer.

Peers in any P2P Grid act in their own interest, which leads them to cooper-
ate through the bartering of computing time. We hypothesize that cooperation
is beneficial at several other levels in a P2P Grid architecture. We have identi-
fied several areas of a P2P Grid architecture where our contributions would be
original, timely and valuable: scheduling policies, software engineering and data
transfers. Moreover, although the selected Grid application model targets sets
of independent computational requests, we have been able to demonstrate how
heavily-communicating applications can be run on a P2P Grid.

1.3.1 Cooperation between Robust Scheduling Policies

Guaranteeing the robust execution of computational requests is absolutely critical
in the unreliable computing environment of P2P Grids. Beyond execution failures
due to worker failures, preemption of the execution of external computational re-
quests is a major and frequent cause of failure in P2P Grids. Indeed, some Peers
may choose to preempt the execution of external computational requests in order
to reclaim for their own, immediate use of the computational power of their worker
nodes.

Regarding the robustness of execution, we would rather use the more general term
fault-management rather than fault-tolerance to cover fault-tolerance itself, as well
as fault-avoidance and fault-prevention. We combine several original as well as
existing fault-management mechanisms.

We first propose to support two middleware-level fault-tolerance mechanisms that
enable a P2P Grid to continue operating in presence of faults: reexecution, and
control of computational requests. The former is a widespread mechanism that
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consists of reexecuting failed requests until they successfully complete. Control of
computational requests consists of preempting computational requests that take an
unusually long time to complete. We also propose a variant of existing middleware-
level fault-avoidance mechanisms: ranking and blacklisting of suppliers of comput-
ing time. We then introduce a new middleware-level fault-prevention mechanism
that is complementary to the proposed fault-avoidance mechanism: adaptive pre-
emption. It consists of adaptively deciding whether to requeue or not a preempted
computational request (in order to prevent it from experiencing long queueing de-
lays), and whether or not to give the computational request a short grace period
during which it can try to complete its execution before being preempted.

Finally, we introduce a variant of an existing application-level fault-tolerance mech-
anism that enables a robust and scalable execution of heavily-communicating - thus
tightly interdependent - computational requests. This is of high practical interest
because this type of application is not expected to run on P2P Grids, as it re-
quires the continuous, i.e. without interruption, co-allocation of a large number of
resources.

These fault-management mechanisms operate independently from one another and
it is their cooperation that provides a robust execution of computational requests.
An important benefit of our approach is that runtime estimates of the computa-
tional requests are not required; this has however the side effect of limiting the
information available to the scheduling policies.

1.3.2 Cooperation between Software Implementations

There are two consequences to the distributed and unreliable nature of a P2P
environment: Implementing P2P Grid middleware is difficult and evaluating the
performance of new scheduling policies is difficult.

As P2P Grid software is distributed and asynchronous in nature, as well as in-
tended to run in unstable environments that are hard to reproduce, it is challeng-
ing to test and debug. Apart from a few rare experience reports [52], the software
engineering of P2P Grids has received little attention so far.

Performance evaluation is typically done with discrete-event system simulation, in
order to reduce the time span of the evaluation. The LBG architecture, that is
implemented as a middleware, might thus also be implemented as a simulator sepa-
rate from the middleware. However, a drawback is that the differences between the
middleware implementation and the simulator implementation inevitably decrease
the accuracy of the simulation measured as a the distance between simulated and
real values of performance metrics, e.g. completion time of computational requests.
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Instead, we propose to virtualize Grid nodes, in the sense of virtualizing their im-
plementation, not in the sense of running them in a Virtual Machine. The code
of a discrete-event simulator is weaved into the code of the virtualized middleware
at boundaries between Grid nodes and their environment. Most of the code of the
middleware is reused in the simulator implementation, which we refer to as code
once, deploy twice. This enables the execution of a whole P2P Grid in a control-
lable and reproducible way on a single computer, thus allowing full observation
and facilitating the testing and debugging of the common code, notably schedul-
ing policies. Moreover, Peers of a simulated P2P Grid make the same bartering
decisions as when deployed on real computers, leading to high simulation accuracy.

Only the contemporarily proposed GRAS component [253] of the SimGrid [78, 278]
middleware introduces a mechanism of similar nature. Both approaches are in-
tended as tools to facilitate software engineering but differ in some of their use
cases and features. GRAS/SimGrid is designed to be generic (bottom-up ap-
proach) while the LBG simulator is specifically tailored to the LBG middleware
(top-down approach). The LBG simulator offers a simulation description language
in which the configuration of Peer policies can be easily expressed. This tight inte-
gration enables to rapidly evaluate new combinations of scheduling policies [59, 63].
The simulation of multithreaded code (of the LBG middleware) constituted a re-
quirement of the LBG simulator, while it is only recently [78] that support for it
was added to GRAS/SimGrid through the SimIX component. Had we started our
research in 2008, GRAS/SimGrid would have constituted a good starting point to
enable the virtualization and simulation of LBG.

1.3.3 Cooperation Between P2P Technologies

Data transfers of large input data files can constitute a major bottleneck [19], de-
laying the completion of computational requests. The data transfer mechanisms
commonly used are centralized, thus not scalable and leading to an unbalanced
network load over Grid nodes. Existing mechanisms to reduce data transfers are
based on data reuse, and do not simultaneously enable data reuse and parallelism
of the execution of multiple computational requests.

We introduce a scalable data transfer architecture based on a transparent increase
of the number of download sources. The architecture is intended to spread the load
caused by data transfers, across the P2P Grid. Grid nodes are equipped with data
caches and data transfer (download) as well as data sharing (upload) softwares.

To enable execution parallelism for computational requests with some redundancy
in their required input data files, we propose to use a P2P data transfer mechanism
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to transfer data, specifically the BitTorrent P2P file sharing protocol. BitTorrent
is intrinsically more scalable than direct data transfer mechanisms, e.g. FTP.

We propose to use a combination of novel and existing data-aware scheduling poli-
cies to support the data transfer architecture. The combination of BitTorrent and
these scheduling policies ensures an efficient download of uncached data: Every
input data file must obviously be downloaded at least once into the P2P Grid, but
our algorithms are designed to reduce the cost of downloading identical - i.e. re-
dundant - copies of input data files, be they needed simultaneously or over time.

1.4 Overview of the Dissertation

Figure 1.2 illustrates the structure of this dissertation as well as the dependencies
between the chapters. The review of the state of the art and the related work
devoted to specific areas of P2P Grids is distributed among the relevant chapters.

Figure 1.2: Structure of the dissertation.

Chapter 2 introduces our proposed P2P Grid architecture, the Lightweight Barter-
ing Grid, the middleware implementation of which is also discussed. Basic concepts
in the domain of P2P Grids are defined and the state of the art in resource sharing
methods and P2P Grid software is reviewed.

Chapter 3 discusses tools to facilitate the software engineering of P2P Grid soft-
ware. It explains how to virtualize Grid nodes and implement a discrete-event
P2P Grid simulator that also instantiates our proposed P2P Grid architecture.

Chapter 4 discusses guidelines for bartering policies, notably taking into account
the reliability of supplier Peers.
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Chapter 5 introduces a scalable data transfer architecture, and proposes to com-
bine P2P Grid and P2P file sharing technologies.

Chapter 6 reviews applications that, non-expectedly, can be structured as sets of
independent computational Tasks to be run on P2P Grids.

Chapter 7 puts the contributions of this dissertation into perspective.

Beyond these main chapters, several appendices complete this dissertation.

Appendix A describes the application and service interfaces of the Lightweight
Bartering Grid architecture.

Appendix B defines the job description language that is used to submit Bags of
Tasks to Peers. It also defines the simulation description language.

Appendix C provides complementary notes on Peer middleware internals and im-
plementation notes.

Appendix D provides complementary notes on Virtual Organizations.

Appendix E provides complementary notes on resource negotiation and standard
Grid protocols.

Appendix F provides a general summary of future work.



Chapter 2

Lightweight Bartering Grid
Architecture

Take what you need, give what you don’t need.

The middleware implementation of the Lightweight Bartering Grid architecture pro-
vides a software that can autonomously share computing time between separate
organizations in a totally decentralized way, respecting the hypothesis of informa-
tional opacity between Peers. The middleware relies on a bartering mechanism
based on the existing Network of Favors (NoF) model to do so. The reclaiming
of computational power by a Peer for its own use, i.e. preemption, considerably
increases the unreliability of an already unreliable environment. The flow of com-
putational requests through a Peer is organized around the management of queues
of computational requests, as well as several fault-management mechanisms. To
mitigate the impact of preemption, an original feature of the associated scheduling
model is to support the queueing of external computational requests. This enables
to completely mask Task execution failures to the other Peers that submitted
them.

Basic concepts of P2P Grids are provided in Sections 2.1-2.2. Each type of Grid
nodes (Peer, Resource, User Agent, Search Engine) is introduced in Section 2.1.
Basic mechanisms of a P2P Grid are introduced in Section 2.2. The state of the art
in Resource sharing that is relevant to P2P Grids is then presented in Section 2.3.
A classification of Grid application types is given in Section 2.4. In Section 2.5,
a classification of lightweight Grids is proposed and the state-of-the-art P2P Grid
middlewares are subsequently reviewed.

Our proposed P2P Grid architecture, Lightweight Bartering Grid [59] (LBG), en-
ables to build 2-levels1 P2P Grids based on bartering2 where Peers autonomously

12-levels = each Peer (1st level) manages a set of worker nodes (2nd level).
2Bartering in LBG = non-monetary Resource sharing mechanism that can be organized in a
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act and model their environment. The LBG architecture is described in Sec-
tions 2.6-2.9; its middleware implementation is also commented.

Software gridification, i.e. how to enable a software application to run on the Grid,
is first briefly considered. The Grid application model of LBG is introduced in
Section 2.6, The LBG middleware is fully implemented [55] in Java and targets
Grid applications that are also implemented in Java.

Computer gridification is then considered. Making the computational power of
a (worker node) computer available to the Grid is the purpose of the LBG Re-
source middleware, described in Section 2.7. Completing computational requests
submitted by users and bartering computing time through the sharing of the com-
putational power of worker nodes are the purposes of the LBG Peer middleware,
described in Section 2.9. The communication protocol used to transmit control
messages between Grid nodes is also described, in Section 2.8.

2.1 Grid Nodes

The term Grid node is introduced to name any networked computer that is inside
or at the edge of a Grid: User Agents, Peers, Resources and Search Engines. This
term is introduced to easily designate all the computers connected to a Grid and
to facilitate the discussion of network communications within, and at the edge of,
a Grid. Figure 2.1 introduces the symbols that are used to visually represent Grid
nodes and their storage capacity in the remainder of this dissertation.

The definitions of Resource, Peer and User Agent that are given in this section
do not exclude the situation where one given computer simultaneously runs more
than one type and/or instance of Grid middleware3. For instance, a User Agent, a
Peer and a pair of Resources could be deployed on the same multi-core computer,
while additional Resources are deployed on other computers. Figure 2.2 represents
a typical P2P Grid composed of 4 sites, with multiple Grid nodes interacting to-
gether: 2 User Agents, 4 Peers and 8 Resources.

2.1.1 Resources

There exist many types of resources: computational devices (desktop PC, super-
computer, laptop), storage devices, networking devices, mobile devices (e.g. smart
phone, PDA, . . .), sensors, . . . The scope of our research encompasses typical office

fully decentralized fashion, as introduced in Section 1.1.3, and as discussed in Section 2.3.2.
3 These cases are supported, but are not further covered in order to keep the text readable.
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Resource Peer User Agent Search Engine data cache

Figure 2.1: Symbols representing Grid nodes, and their storage capacity.

Figure 2.2: P2P Grid.

or home computers connected to the Internet - so-called edge computers. There-
fore, the term Resource designates heterogeneous, low cost, possibly unreliable,
standard computers with standard Internet connectivity, with some storage ca-
pacity and a Java Virtual Machine (J2SE 5.0 [178]) available.

The Resource middleware is the software that makes a computer part of a Grid.
In the following, the context will make it clear whether the term Resource refers
to the Resource middleware or to the computer itself.

2.1.2 Peers

A site is a set of heterogeneous (in terms of hardware and software) Resources
(possibly of small size, i.e. consisting of 1 or even 0 Resource 4) of an administra-
tively independent organization. Several sites are independent from one another.
The administrators of a site group the Resources under their control to aggregate
computational power for the human users of the site. The Resources of a site are
all within the same administrative control. Local management of the Resources of
a site is controlled by the human site administrators.

4Special case of a Peer with 0 Resource: see Section D.3.5.



2.1. Grid Nodes 17

The following concept of the Peer-to-Peer domain is introduced to refer to the
computer and associated Grid middleware controlling a given site on behalf of its
human administrators. A Peer is a standard networked computer (i.e. similar in
capacity to a Resource) of a site, designated to control the Resources of a site.

There is one and only one Peer associated to each site. It acts on behalf of the site
administrators, i.e. it autonomously uses and shares the Resources of a site. The
purpose of a Peer is to complete as fast as possible the computational requests
submitted by the human users of a site.

The Peer middleware is the software - organized as a software agent - that enables
a computer to control the Resources of the site. In the following, the context will
make it clear whether the term Peer refers to the Peer middleware that runs on
the computer, or only to the computer itself.

We now point out a difference in our proposed definitions from commonly available
definitions. A Grid Resource Management System (RMS) has sometimes been de-
fined as “the subsystem of a Grid that identifies requirements, matches resources
to applications, allocates, schedules, monitors Grid resources over time in order
to run Grid applications as efficiently as possible.” [221] Our definition of a Peer
matches this definition. But, in our view, the term RMS refers only to the spe-
cialized software component of a Peer that manages Resources (i.e. control and
handling of every communication with the Resources) along other Peer software
components that handle other operations (e.g. scheduling, queueing, . . .).

2.1.3 User Agents

The term User Agent refers to the standard networked computer that is used by
human users of a site to interact with the Peer of the site, e.g. submitting compu-
tational requests, retrieving computed results.

The User Agent middleware is the software that enables a human user to interact
with a Peer. It is essentially an interface to submit computational requests to the
P2P Grid. In the following, the context will make it clear whether the term User
Agent refers to the User Agent middleware that runs on the computer, or only to
the computer itself. Human users are referred to as such (prefixed with “human”,
with lower case u).
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2.1.4 Search Engine

Peer discovery is the mechanism enabling the Peers of a P2P network, in particular
of a P2P Grid, to become aware of other Peers. The LBG architecture relies on
existing results for the Peer discovery mechanism, as it has been widely studied in
the P2P domain.

A Search Engine keeps track of the Peers that are online. Each Peer proactively
registers itself with a Search Engine, typically as it comes online, to eventually
become visible to others. Peers can connect to a Search Engine to download the
location data of other Peers. To ensure the freshness of its database, the Search
Engine periodically checks that registered Peers are still online. In response to
a Peer discovery request, a Search Engine provides location data of an arbitrary
number of randomly selected Peers, as well as a timestamp. This timestamp can
be used in the next Peer discovery request to ask only for Peers that were regis-
tered afterwards; Peer clocks thus do not need to be synchronized as only the time
of the Search Engine is involved [99]. This mechanism based on Search Engines is
similar to the Rendezvous Point [327] mechanism, with out-of-Grid deployment.
Rendezvous Point has been shown to be more efficient under high load than pure
propagation-based mechanisms.

Peer discovery is discussed essentially in Sections 2.8 and 2.9.5, with complemen-
tary information provided in Appendix D.2. One can therefore safely assume that,
in this dissertation, the term Grid node does not encompass Search Engines.

2.1.5 Data Caches

The term data cache refers to the storage component of an internal Grid node. In
the following, the context will make it clear whether the term data cache refers
to the hardware capacity5 considered alone or together with the middleware-level
software components that make it controllable by a Grid node.

2.2 LBG Architecture Overview

The goal of LBG is to enable Peers to autonomously and reliably run sets
of independent computational tasks submitted by human users. The User
Agent is introduced as a submission interface to the Peer; it completely hides
the complexity of the P2P Grid to the human users.

5OS-level file system and physical storage device.
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To process computational requests submitted by User Agents, a Peer has 2 options
(see Figure 2.3):

• to schedule and run computational requests on its own Resources;

• to submit computational requests to other Peers, that accept to supply
some computing time of some of their Resources.

The second option of consuming computing time from other Peers is par-
ticularly interesting at peak, when a given Peer has no available Resources to
run concurrently all the computational requests submitted by User Agents.

Figure 2.3: Scheduling to one’s own Resource vs. scheduling to another Peer.

The terms consumer and supplier (also illustrated on Figure 2.3) refer to the roles
(dynamically) assumed by Peers sharing Resources. A consumer Peer is a Peer
consuming computing time of a Resource of another Peer. A supplier Peer is a
Peer supplying computing time of one of its Resources to another Peer. Every
Peer can act both as a consumer and as a supplier of computing time. Periods
of consumption and supplying of a given Peer are typically alternating but may
overlap under certain circumstances.

The responsibility of a Resource is to execute computational tasks. A
Peer can schedule (steps 3 and 7 of Figure 2.6) and preempt (step 5 of Figure 2.6)
the execution of a computational task to any of the Resources under its control.
The execution of a computational task on a Resource is sandboxed (as will be
illustrated on Figure 2.12 in Section 2.7.4) so that the computational task cannot
compromise or interfere with the computer host.

If computational tasks remain to be scheduled and none of its Resources
is available, a Peer can request the supplying of computing time from
other Peers. Potential supplier Peers are located using a Search Engine.

The role of the Search Engine is to provide location information of other Peers
(as illustrated on Figure 2.4). Using this information, the Peer can contact the
located Peers to negotiate the supplying of computing time from their Resources
(as illustrated on Figure 2.5, which occurs between step 1 and step 2 of Figure 2.6).
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Figure 2.4: Example of two Search Engines, thus two P2P Grids.

The purpose of the negotiation process is to prevent consumer Peers to
submit computational tasks where they would face long waiting times.
The contacted Peers can reply with consumption grants. The negotiation needs
not be complex and does not involve counter-bids. The decision of the contacted
Peers to accept to supply computational power is based on the availability of their
own Resources.

Figure 2.5: Example of negotiation.

Upon successful negotiation, the Peer can then schedule computational
tasks to the supplier Peers that have sent the consumption grants (step 2 of
Figure 2.6). The supplier Peers will first filter the submitted compu-
tational tasks before actually accepting their submission. Negotiation (i.e. the
initial request) and filtering (of the actual submission of computational tasks) are
kept separate. Thanks to this separation, negotiation is non-binding, which
precludes any requirement for stateful negotiations. As negotiation is non-
binding, computational tasks submitted to a supplier Peer (which thus has previ-
ously sent consumption grants) may be rejected. This is not an issue as the Peer
repeatedly negotiates with other Peers as long as computational tasks remain to
be completed.
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Figure 2.6: Example of preemption/cancellation of Task execution.

When Resources are available and all of its computational tasks are
scheduled (either to Resources under its control or to other Peers), a Peer sched-
ules to its Resources the computational tasks submitted by other Peers
(step 3 of Figure 2.6).

If new computational tasks are submitted by its User Agents (step 4 of
Figure 2.6), a Peer can consider to reclaim the computational power of
those of its Resources that are supplied to other Peers. In practice, this
translates into the preemption of the execution of computational tasks submitted
by other Peers (as illustrated on Figure 2.6). Execution failures of compu-
tational tasks are thus a common occurrence in a P2P Grid, as they can
originate from preemption of execution, in addition to Resource failure.

After the preemption of a computational task submitted by a consumer Peer,
a Peer can decide to cancel the computational task, i.e. to notify the con-
sumer Peer that the execution will not be completed (step 6’ of Figure 2.6). A
Peer could also decide to mask the execution failure of a computational
task to the consumer Peers by requeueing the preempted execution failure (step
6 of Figure 2.6 is not performed). Doing so removes the need for the consumer
Peer to locate another willing supplier Peer. In order to mask execution fail-
ures of computational tasks, a supplier Peer maintains a queue of the
computational tasks submitted by other Peers, similarly to the queue of
computational tasks that is maintained to mask execution failures to User Agents.
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The bartering interactions presented in Figure 2.6 can be summarized as follows:

1. a User Agent submits a BoT to a Peer

2. this Peer has no available Resource; it submits a Task to a supplier Peer

3. supplier Peer schedules the accepted Task to one of its available Resources

4. a User Agent of the supplier Peer submits a BoT

5. the supplier Peer has no available Resource; it preempts the execution of the
Task from the consumer Peer

6. the supplier either requeues the preempted Task or cancels it and send it
back, uncompleted, to the consumer Peer

7. the supplier Peer schedules its own Task to the freed Resource

Grid nodes (Peers, Resources, User Agents) communicate with one another at the
Grid-level, systematically through message-passing. Grid nodes use a simple,
middleware-specific6 messaging protocol, the Grid Node Messaging Protocol
(GNMP). Incoming messages are processed on each Grid node by a component
called service.

The behavior of Grid nodes is as asynchronous as possible. In particular,
the service operations are designed to be non-blocking, i.e. in the few instances
where a return value to an incoming GNMP message is expected, this value is
computed asynchronously7 from the ongoing operations of the Grid node.

Nonetheless, any Grid node that expects to receive a specific message from another
Grid node (such as successful completion of execution of a computational task, or
such as a negotiation message), should not block for an infinite amount of time -
even if there is no deadlock or no impact on other operations, and if only because
it wastes O.S.-level resources. As an example, network partitions may occur: The
cancellation message (step 6) on Figure 2.6 may not reach the consumer Peer (even
though the supplier Peer will attempt repeatedly to resend the message). As an-
other example, computational tasks scheduled to local Resources or to other Peers
may never complete because the Grid application has entered an infinite loop.
As another example, a computational task scheduled to another Peer may remain
queued forever, without being ever scheduled. Therefore, a timer mechanism
should enforce some (possibly arbitrarily large) limit on the time that
certain operations may take. The timer mechanism generates internal events,
which are processed by a dedicated component, the internal event processor.

6This restriction is planned to be removed in the near future.
7This require great care in the implementation.
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2.3 Related Work - How to Share Resources?

Peers exchange computing time when they have reached a mutual agreement by
which a supplied capability can be used to perform some work on behalf of the
consumers [149]. “The key concept is the ability to negotiate resource-sharing
arrangements among a set of participating parties (providers and consumers) and
then to use the resulting resource pool for some purpose.” [151]
Resource negotiation is the process by which participants reach an agreement to
share Resources. This dissertation focuses mainly on Resource sharing mecha-
nisms and also negotiation objectives, at the expense of negotiation objects and
protocols (see Appendix E). As a consequence, the negotiation protocol used to
share Resources (introduced in Section 2.9.5) needs not be complex.
In this section, the state of the art of Resource sharing mechanisms that could be
used to design P2P Grids is reviewed, while other aspects of Resource negotiation
are briefly discussed in Appendix E.

Market-based methods are first reviewed, then bartering is proposed as a simpli-
fied form of Grid economy, and reviewed. An existing bartering model, Network of
Favors, is subsequently presented. Multi-Agent Systems are then briefly reviewed
and it is explained why they are not relevant to the specific requirements of this
dissertation, despite their intrinsic quality.

2.3.1 The Grid Economy and Market-Based Methods

Resource sharing mechanisms describe how to select trading partners and agreeing
to, refusing or proposing sharing agreements. An important body research de-
voted to Resource sharing mechanisms for large-scale systems is centered around
market-based methods. Among them, the so-called computational economy or
Grid economy [67, 41, 68, 66, 297] has been shown to adequately fulfill Grid com-
puting requirements.

The idea of a Grid economy stems from the observation that some incentive must
be offered to all suppliers to sustain the interest of the Peer to engage into Re-
source sharing on a regular basis [67, 65]. It is then only natural to propose a
“Grid economy as a model for managing and handling requirements of both Grid
providers and consumers.” [65]

In a Grid economy, access to resources, e.g. computing time, is considered as a
commodity that can be bought and sold on a Resource market. A market mech-
anism can be defined as a kind of competitive equilibrium protocol that adjusts
the price of a valuable Resource given the demand for it, until demand matches
supply [67, 297] in the considered Resource market. GridBus [164] is a Grid mid-
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dleware supporting the Grid economy and implementing many advanced concepts
and market-based methods [324, 66]. The interest of market-based Resource shar-
ing is mainly twofold: to enable Peers to find the desired Resources at the lowest
cost possible and to stabilize the price of traded Resources.

With few exceptions [311], most research about the Grid economy has considered
a centralized organization, because some central banking component is required to
enforce the control of the monetary mass of the so-called Grid currency [154, 67].
Therefore, a common issue in market-based Resource sharing is that most research
making the assumption that pricing is available has “ assumed it could be supplied
by some oracle agent.” [271] The requirement of centralized component, acting as
a single point of failure, may be characterized as a weakness, and is one of the
main arguments motivating the development and use of P2P Grids, which have a
fully decentralized organization.

Grid Currency

A Grid currency is a virtual currency that may or may not be directly tied to a
real currency. Some organizations would be willing to earn real money with the
supplying of computing time [290, 9, 249], and spend real money as well in order to
handle spikes of computational requests with extra Resources supplied by a Grid.
But some organizations cannot or do not want to trade Resources for money, es-
pecially small and underfunded organizations, like small research labs [286]. So
the Grid economy is probably never going to be a comprehensive approach fitting
every need.

Resource Valuation

Another common issue is that market-based mechanisms, while efficient at stabi-
lizing a Resource market, do not yet sufficiently explain how to take into account
the valuation of the Resources by the Grid policies: Market-based mechanisms
simply suppose that if a Resource is important for a Peer, its Peer will demand
much of it. This problem can certainly be related to the definition of negotiation
objectives presented in this section. Indeed, each Peer may seek to maximize its
own utility or its benefits in a short-term perspective only, or to minimize risks
associated with the considered agreement [177].

While this approach is certainly worthy in totally unstable Resource markets, with-
out structure or repeating patterns, it does not promote the building of trust and
lasting trading relationships which could bring more benefits in the long-term.
Many Grid stakeholders would certainly benefit from advances in the study of
long-term trading relationships, including departments of the same university or
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subsidiaries of the same global corporation, as their Resource markets will, over
time, exhibit trading behavior patterns that can be taken advantage of.

Most market-based methods seek to reach market equilibrium. The decisions are
guided mostly by price, but typically not by other variables that are difficult to
embed directly into a price. For instance, in a market with perfect atomicity, qual-
ity of service (e.g. reliability, predictability) could potentially help to differentiate
multiple suppliers all offering comparable resources at, or very near, some optimal
price. This issue is much more than a subtle refinement. It is a core issue: Schopf
et al. pointed out that human users of a Grid “want not only fast execution times
from their applications, but predictable behavior, and would be willing to sacrifice
some performance in order to have reliable run times.” [272] Taking into account
factors that cannot easily be embedded into a price is, in our opinion as well, a
promising idea when negotiating access to Resources.

2.3.2 Bartering as a Simplified Form of Grid Economy

As seen in the previous paragraphs, not all Peers seek immediate financial profit
from the supplying of computing time. The main objective of many Peers is to
offer good service to their own User Agents, i.e. computational requests, under
classic constraints (temporal deadlines, response time, utilization). To reach this
objective, they are eager to consume Resources from other Peers when their own
Resources cannot handle their computational load. But they may not be willing or
able to pay real money for this consumption. They may however be eager to supply
their own resources when they don’t use them. In this sense, there is no absolute
requirement for currency-based transactions, be it real money or a virtual currency.

Orthogonally, the dependence of a system on a central component, in this case a
central bank, introduces a single point of failure, as well as some degradation of
performance when the system has to deployed at a large scale.

Both these arguments (the observation that a currency-based organiza-
tion is not mandatory, and the drawbacks of a centralized organization)
are compatible with a lightweight form of commerce that consists of dis-
tributed, non-monetary sharing: bartering [67]. It can be defined as “ex-
changing (goods or services) for other goods or services without using money.” [236]
In the context of Grid computing, it can be defined as a form of decentralized, non-
monetary exchange of computing time [13, 82, 59].

For the purpose of this dissertation, bartering is thus defined as a non-
monetary Resource sharing mechanism that can be organized in a fully
decentralized fashion. In practice, bartering has been shown in related
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works [86, 266, 265] to enable highly scalable, fully accounted and fair
sharing of computing time between Peers.

Delayed vs. Immediate Reciprocity

Requiring immediate reciprocity might lead to issues in the bootstrapping of Re-
source sharing among Peers [82]. Moreover, there is no cost [13] for idle Peers
(i.e. online Peers that have no waiting requests of their own) to supply comput-
ing time in excess - to make a gift [263] - of the quantity of Resources these
have supplied in the past (i.e. take what you need, give what you don’t need). As
computing time both not needed and not supplied is wasted, it is actually in the
long-term interest of idle Peers to increase their reputation by supplying comput-
ing time to any Peer.

The definition of bartering is sometimes restricted to a consumption of computing
time immediately followed by a reciprocal supplying. Our understanding of bar-
tering is closer to Obreiter et al.’s concept of community pattern8 [228] except that,
in their view, it relates to a local - rather than global - computing environment.

With delayed bartering, free riding is allowed so as to enable Peers to establish
their reputation. A priority mechanism can however prevent any impact from free
riders by serving local requests first, and only then external requests, in order of
decreasing reputation of the requester. Such a priority mechanism is described in
Section 2.3.4.

Supposing the availability and use of a priority mechanism to mitigate free rid-
ing (which will be discussed in the following subsections), Peers that barter
computing time should not limit their supplying to reciprocal amounts.
Therefore, Peers can and should spend as much time they can into sup-
plying computing time to other Peers. This generates as much consumption
potential as possible for the suppliers, as well as this promotes high system uti-
lization.

Bootstrapping the Grid Economy

Bartering has also been proposed as a mechanism to bootstrap the Grid economy,
in order to break the initial lack of trust between Peers. Such a perspective implies
that market-based methods always depend on bartering to start the system.

8“A community is a group of entities whose incentives for cooperation are based on the trust
gained by providing services to other entities of the community.”
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An interesting P2P Grid middleware [82], built on the SHARP (Secure Highly Available
Resource Peering) system, envisions a “bartering economy as providing the basis for
decentralized growth.” [154] Resource discovery and creation of a secure P2P overlay
are thoroughly considered. A simple Tit-for-Tat policy incites Resource sharing. It
must be noted that the establishment of trust is explicit and requires the deployment
of the SHARP system, which cannot be considered lightweight at all.

An interesting observation that can be made about SHARP is that bartering is pre-
sented as a mandatory first step in the evolution of a Grid economy towards currency-
based commerce involving the most reliable Peers only.

Service Level Agreements

With a fully decentralized organization of bartering, it would prove difficult to
enforce penalties resulting from the breach of contracts, beyond refusing to supply
Resources to consumers that do not reciprocate past supplying. Studying the use
of so-called Service Level Agreements [96, 323] (SLA) is therefore not a priority in
this dissertation.

Centralized Bartering

Not all proposed bartering mechanisms are fully decentralized, thus not all are
relevant to our research work.

The Faucets middleware [138, 186] is a centralized, zero-sum cluster bartering archi-
tecture which relies upon a database located on a central server. Credit is granted
to the computing Peers to consume Resources. A bidding system allows the Peers to
compete for consumption of computing time.

As another example of bartering (not related to Grid computing, though), a bartering
mechanism proposed for health care management [1] involves a centralized component
and, furthermore, targets synchronized Resource sharing (i.e. there are system-wide co-
ordination events of the sharing of the considered Resources). Both of these attributes
(central component, system-wide coordination) make this bartering mechanism not
relevant to our research work.

Existing Bartering-based Grids

OurGrid [233, 84, 286], a free-to-join P2P Grid with a focus on a global computing
environment, matches pretty well our understanding of bartering. It is based on the
so-called Network of Favors model [13]. Peers exchange computing time with one
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another: They supply access to computational Resources (i.e. to make favors, in Our-
Grid terms) in the hope of reciprocal behavior on behalf of the consumers. Each Peer
keeps its own accounting [266, 265] of consumption and supplying of computing time,
enabling a fully distributed architecture. The Network of Favors model and accounting
of bartering are thoroughly described in the next section.

GridIS [317] is yet another incentive-based P2P Grid middleware which seeks to op-
timize the scheduling of computational requests. It provides incentives to the Grid
participants to continue consuming and supplying computing time. Similarly to Our-
Grid, the focus is mainly on supplier policies, without much attention given to consumer
policies. Suppliers may be configured to adopt an aggressive (potentially bigger com-
pensation) or conservative (less risk) request filtering policy.

The request filtering policy of GridIS is somewhat related to Irwin et al.’s work [177]
on Grid scheduling in a Grid where Resource sharing is market-based. This system
proposes a Resource sharing market with a focus on request filtering policy. The idea
is to balance risk and reward by considering the opportunity cost of accepting new jobs.

2.3.3 Expectations and Free Riding in Bartering Systems

If a Peer does not own enough Resources to complete the computational requests
of its User Agents without having an infinitely growing requests queue, it system-
atically consumes more Resources than it can supply. Such a behavior where
there is little to no reciprocity in the exchanges is called free riding,
as illustrated on Figure 2.7. It is a widespread issue in P2P networks to which
bartering is not intrinsically immune.

We first discuss what can be expected of a bartering system, then examine the
free riding issue.

Work Time Invariance

The work time of a Peer for a request is the total amount of time spent to pro-
cess the request. What is often forgotten is the fact that consumer Peers should
compensate the work time of supplier Peers, so that these remain interested in
supplying computing time.

For instance, a Peer may actually spend only a small fraction of its work time
on its own requests, a large amount of work time on requests from other Peers,
and still be better-off, i.e. achieving faster response times and higher utilization.
Resource sharing can thus be seen as a way of shortening response time,
but certainly not as a way of decreasing work time (see Figure 2.8).
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Figure 2.7: Reciprocating vs. free riding.

Over a period of 24 hours, 2 Peers with a fixed nominal power have a (temporally complementary)
peak of local requests, i.e. expected work time using their nominal power only, of 8 hours. With
bartering, both Peers achieve a response time of 4 hours only; their work time remaining 8 hours.

Figure 2.8: Bartering can reduce the response times; work times are invariant.

Computational Power Invariance

When sharing Resources, a Peer should make consumption and supplying
decisions so that its total computational power remains invariant over
time. The total computational power decreases if the Peer loses access to some
Resources (it cannot do anything about it) or discards some Resources (but this
is not typical). The total computational power increases if the Peer consumes
computing time but does not supply it back. For example, a finite time span can
be assumed. When a Peer consumes computing time from another Peer of simi-
lar power, it should not try to process twice as many requests in this time span.
Rather, it should process the same amount of computational requests - that are
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thus completed twice as fast (under optimal conditions) - and then supply back
the consumed computing time.

Prevalence of Free Riding

Honesty of other Peers cannot be simply expected, despite what has sometimes
been suggested (“service acquisition implies guarantee of service” [149]). On the
contrary, free riding tends to become prevalent in P2P networks whenever no
mechanism enforces fairness; incentive mechanisms encouraging cooperation be-
tween Peers thus need to be built directly into the P2P networks [141].

The nature of P2P leads to bottom-up formation of Virtual Organizations (see Ap-
pendix D). As a side effect, Peers often exchange computing time with other Peers
they had never dealt with before. P2P thus exhibits the dark side of allowing
dishonest Peers to exchange computing time with honest Peers. Peers with naive
or simplistic exchange behaviors would exhibit supplying patterns that could be
taken advantage of by dishonest Peers.

Unintentional Free Riding

A Peer consuming computing time from other Peers spends less work time on its
own computational requests. It gains idle time that would have been spent as work
time for its own computational requests if it had not consumed time from other
Peers. This gained idle time should be invested as work time for other Peers; not
supplying it is actually free riding. Acquiring more hardware is the only way to
increase the nominal computing power of a Peer.

2.3.4 Network of Favors Model

The Network of Favors [13] (NoF) bartering model is the mechanism used in the
OurGrid [233, 84, 286] middleware. It has been proposed by Andrade et al. to
enable Peers to maintain, in a fully decentralized fashion, their own private book-
keeping of computing time exchanged with other Peers. It is helpful to Peers as it
provides the basis to make supplying decisions.

Additionally, the NoF bartering model can mitigate the impact of free
riders. It is thus a solid basis for the building of a P2P Grid.
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consumer: debts towards top supplier += consumed computing time

consumer: debts towards bottom supplier += consumed computing time

top supplier: debts towards consumer -= supplied computing time

bottom supplier: debts towards consumer -= supplied computing time

Figure 2.9: Network of Favors accounting.

Decentralized Measurement of Resource Sharing

Following the NoF model, a consumer Peer can autonomously estimate its debt
towards a supplier Peer. This debt consists of the computational power that the
supplier has spent9 to compute computational requests of the consumer Peer. A
supplier Peer can also autonomously estimate the amount of computational power
supplied to a consumer Peer.

The NoF model is based on the concept of favor. A favor is defined as an estima-
tion of the computational power exchanged between two Peers. A consumer Peer
and a supplier Peer may have a different estimation of the Favor the supplier has
supplied to the consumer.

Each Peer involved in a Network of Favors maintains a separate favor balance for
each Peer it has exchanged computing time with, as illustrated on Figure 2.9. A
favor balance maintained by a given Peer P1 about another Peer P2 is a nonneg-
ative favors count representing the current amount of the Resource (or computing
time) debt the given Peer P1 should compensate to the other Peer P2.

Each time a Resource has been consumed by a given Peer from a supplier Peer,
the given Peer increases the favor balance maintained for this supplier Peer. In
other words, this given Peer acknowledges the beneficial behavior of the supplier
Peer by taking note of an increase in its debt toward the supplier. Reciprocally,
each time a Resource has been supplied by a given Peer to a consumer Peer, the
given Peer decreases the favor balance maintained for this consumer Peer. In other
words, this supplier Peer decreases its debt towards the consumer Peer.

9It is the Resources of the Peer that actually spend time completing computational requests.
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Following these two simple rules, each Peer is able to measure the debts to/of
other Peers by relying only on metadata it has directly collected and not at all on
metadata communicated by a third-party Peer or a Grid-level monitoring service.
Effective measurement of Resource sharing, i.e. estimation of debts of computing
time, can thus be made in a totally decentralized fashion, with an efficiency that
has been demonstrated to increase [14] with the size of the P2P Grid.

Fair Supplying

The purpose of maintaining favor balances is to rank Peers, in order to determine
to which Peer to supply an idle Resource, whenever there are no waiting local
requests. Priority of supplying by a given Peer is given to Peers with the high-
est Favors balance, i.e. towards which the supplier has accumulated the highest
amount of debt.

A very important design choice is that consumers are ranked only when a supplier
Peer cannot fulfill both all its own computational needs and all the Supplying Re-
quests of the consumers. It means that, instead of remaining idle, a Peer increases
the debts of other Peers by supplying computing time. This supplying-by-default
policy allows to bootstrap the Grid by automatically establishing an initial amount
of trust, allowing new Peers which have never supplied Resources to use the idle
Resources of the other Peers.

The penalty associated to this policy is however low. Free riders have a very low
priority and obtain access to Resources from a given Peer only when no better
ranked Peer has asked to consume Resources from the given Peer. Furthermore,
as every Peer always use its Resources for its own needs, no free rider could directly
disrupt the operations of a given Peer.

As mentioned, a favor balance is always nonnegative so as to avoid ID-changing
attacks. By attributing the same debt, i.e. 0 favor, both to Peers that have yet
to supply any Resource (which could therefore be free riders), and to those Peers
that have already been completely compensated for Resources they have previ-
ously supplied, a consumer Peer discourages free riders as it denies any advantage
for a malicious Peer to enter into a free ride/change-ID cycle.

Each Peer can preempt or cancel the execution of computational requests on sup-
plied Resources to avoid that unusually long executions of computational requests
from other Peers cause delay to its own computational requests. The consumer
Peers that submitted the preempted or cancelled computational requests perceive
the given supplier Peer as slow or unreliable. This may reduce their willingness to
exchange computing time in the future.
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Robustness of Decentralized Measurement of Resource Sharing

An important issue is how to accurately account the amount of consumption and
supplying of computing time. In other words, how to accurately estimate favors.

Several accounting policies have been proposed by Santos et al. [266, 265]. The
policy that has been found to be the most accurate is called Relative Power. The
main advantage of the Relative Power policy is that it is robust to free riders that
may be tempted to Supply artificially slow Resources.

Following the Relative Power policy, a supplied Favor is the amount of time the
given Peer has supplied a Resource to a consumer Peer. A consumed Favor is the
amount of time the given Peer has benefited from a Resource of a supplier Peer,
weighted by the relative performance of the supplier Peer. To compute the rela-
tive performance of the supplier Peer, several policies are possible. In OurGrid,
each Peer uses its own performance as baseline: The mean response time of the
supplier Peer (over all computational requests computed by the supplier Peer) is
divided by the mean response time of the given Peer (over all computational re-
quests computed by the given Peer). This estimation may be improved using Task
benchmarking, but at a cost.

Working Assumptions

As described in the previous subsections, the existing Network of Favors
(NoF) bartering model essentially solves free riding. As NoF is used in
the LBG architecture, free riding is not studied as such in this dissertation. It is
important to note that this simplifies the presentation of other important issues;
it does not avoid to address an important issue, because free riding in a P2P Grid
has already been addressed in related works. Nonetheless, the evaluation of LBG’s
implementation of NoF and its tolerance to free riding should be evaluated as part
of future work.

In the remainder of the text, Peers are thus supposed to be controlling enough Re-
sources to serve their User Agents, except if noted otherwise. In practice, it means
that they are supposed, over time, to be able to reciprocate their consumption of
computing time. More formally, Peers are assumed to be stable systems [36]: The
arrival rate of jobs submitted to a given Peer is on average less than or equal to
its job completion rate.

A consequence is that Peers not controlling any Resource - thus unable to com-
pensate suppliers - are not considered; such Peers using external, i.e. out-of-Grid,
compensation to consume Resources are briefly discussed in Appendix D.3.5.
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2.3.5 Multi-Agent Systems

The Multi-Agent Systems (MAS) paradigm naturally comes to mind when con-
sidering how to share Resources. It is now finally examined why we feel this
mechanism cannot be used in the context of this dissertation.

A reciprocity mechanism based on the MAS paradigm has been proposed with a focus
on mitigating collusion between malicious Peers [34]. Like the OurGrid Network of Fa-
vors model, decisions are based on past interactions. However, as opposed to OurGrid,
“newcomers are not helped until their reputation is above a threshold for at least one
resource type.” Moreover, an additional mechanism is proposed to mitigate collusion
between malicious Peers: Peers that trust one another regularly exchange their own
view of the reputation of other Peers.

Another reciprocity mechanism based on the MAS paradigm uses reputation referral
capabilities [129]. Variants of such a mechanism based on reputation referral can also
separate reputation and accuracy [32].

Despite their intrinsic quality and success to tackle very challenging issues, these
mechanisms are based on the explicit sharing of information between agents. Con-
sequently, they cannot be used in the context of this dissertation, because of the hy-
pothesis of informational opacity between Peers that is introduced in Section 1.1.4.

2.4 Grid Application Types

The computational requests submitted by User Agents to Peers are Grid applica-
tions, each composed of a set of Grid Tasks. In LBG, a Grid Task (simply: a
Task) is defined as a computational task that processes input data files
and that produces output data files.

To determine what type of sets of Tasks can be run on a P2P Grid, we propose
to classify Grid applications according to their communication patterns,
i.e. inter-Task data dependencies. Figure 2.10 illustrates our proposed clas-
sification into Bag of Tasks, Workflow, Iterative Stencil. Nodes on Figure 2.10
represent Tasks (gray = start/finish Tasks, white = regular Tasks) and edges rep-
resent data dependencies. Although this classification by no means intends to be
exhaustive, it can probably express the inter-Task data dependencies of most com-
putations of practical relevance.
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(a) Bag of Tasks (b) Workflow (c) Iterative Stencil

Figure 2.10: Grid application types.

2.4.1 Bag of Tasks Applications

An application that can be structured as a set of independent computational Tasks
is called a Bag of Tasks [13, 84] (BoT). Each Task usually requires some input
data and produces some output data. No data is exchanged between Tasks, but
multiple Tasks of a Bag of Tasks may depend on - i.e. process - identical input
data files. Bags of Tasks constitute typical P2P Grid applications.

BoTs constitute an important class of applications, covering domains such as: bioin-
formatics [113], cellular microphysiology [76], computer vision [184], data mining [267,
184], discrete optimization [293], geographical information systems (GIS) [54, 171, 22],
medical image processing (tomography) [280], parameter sweeps10 [2], pattern match-
ing [273], protein folding [143] and docking [123], Search Engine crawling and index-
ing [107, 108].

Data-Intensive Bags of Tasks [267, 113, 76, 184, 257] constitute a subclass of the
Bags of Tasks applications, where the amount of processed data is large, leading
to data transfer times that are long compared to computing times.

These applications have also been called PHD (Processors of Huge Data [267]).
With increasing capacities of data acquisition, most of Grid applications from typ-
ical BoT domains are often Data-Intensive BoTs.

2.4.2 Workflow Applications

An application that can be structured as a set of dependent computational Tasks
is called a Workflow application [326]. Workflow Tasks are often, but not always,
connected with a so-called Directed Acyclic Graph (DAG).

10A parameter sweep designates a BoT where the Grid application and input data files of all
Tasks are identical, with only the parameters being different. It has a high relevance in practice.
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Typical domains of Workflow applications include [149]: astronomy (e.g. pulsar search),
bioinformatics (e.g. basic local alignment search tool - BLAST), high energy physics
(HEP), medical image processing (functional magnetic resonance imaging - fMRI).

Workflow applications are harder to run than Bags of Tasks because the required
data management is more complex as output data files of some Tasks are also used
as input data files of other Tasks. Workflow applications are also harder to run
on P2P Grids [125] than on classic, top-down Grids because the Resources are not
as reliable. Consequently, P2P Grid research has been mainly dedicated to Bag of
Tasks applications.

2.4.3 Iterative Stencil Applications

An application that can be structured as a set of periodically recomputed de-
pendent computational Tasks is called an Iterative Stencil application [187]: “A
stencil [application] updates every point in a regular grid with a weighted subset of
its neighbors”, as if a stencil were figuratively applied [187].

In an Iterative Stencil application, there are communications between running
Tasks. In a Workflow application, there are communications between completed
and unstarted Tasks. Workflows are typically modelled using a directed acyclic
graph: As an Iterative Stencil typically involves cycles in the communication graph,
it cannot be modelled as a Workflow.

Typical domains of Iterative Stencil applications include [187, 114]: computational fluid
dynamics, electromagnetics, geometric modeling, image processing, partial differential
equations solving.

Iterative Stencil applications are inherently hard to compute, even in stable en-
vironments. Computing them on a P2P Grid is a real challenge, although this
specific combination has been examined in very recent research [125, 115, 116].

2.5 Related Work - Lightweight Grids

The concept of Lightweight Grid is first discussed. A review of state-of-the-art
P2P Grid middlewares is then proposed. Finally, a comparison of LBG and Our-
Grid (the most closely related P2P Grid middleware) is provided.
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Expected requirements and features Actual support in the
Lightweight Bartering Grid architecture

1. Lightweight and generic YES (lightweight)
YES (generic: any Java application)
NO (generic: nonstandard protocol)

2. Static and dynamic metadata YES
3. Dynamic deployment PARTIALLY
of components (some support implemented

but not integrated)
4. Reconfiguration and adaptivity YES
5. Support for both client/server YES
and P2P Resource sharing (as the concepts of Peer/Resource are

separated, a P2P Grid can be
deployed as a Desktop Grid)

6. On-demand, provider-centric YES
service provision (Peers provide service

for User Agents, other Peers)
7. Minimal but sufficient PARTIALLY
security model (protection against

application-level attacks
but lacks authentication, encryption)

8. Binding and coordination YES
(provision, utilization and coordination
are fully decentralized in a P2P Grid)

9. Additional services NO
10. Distributed management PARTIALLY

(centralized implementation
of Peer discovery)

Table 2.1: Lightweight Grid - expected requirements, features vs. actual support.

2.5.1 Classification of Lightweight Grids

A lightweight Grid [286] is a Grid that either does not expose standard interfaces
or does not completely support standardized features. Grid standards (see Ap-
pendix E.2) are only beginning to emerge. Their proposed features are numerous
and primarily intended for more controlled environments that P2P networks. It
is thus a reasonable choice to build a lightweight Grid. Our proposed architecture
meets most requirements and supports most features that have been identified by
Badia et al. [33] as worthwhile for a lightweight Grid (see Table 2.1).

Several specialized lightweight Grid architectures - so-called Desktop Grids, Volun-
teer Grids and P2P Grids - have emerged in the last few years. These lightweight
Grid architectures are now discussed so as to contrast P2P Grids with Desktop
Grids and Volunteer Grids. Finally, existing P2P Grid middlewares are reviewed.
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Desktop Grids

A Grid architecture sharing undedicated Resources, that has generated increasing
interest in corporate environments, is Desktop Grid Computing [230, 139]. There
are differences in the existing definitions of Desktop Grid, but also some common
patterns:

• the sites belong to the same real-world organization rather than to individual
users scattered on the Internet;

• there is a small number of sites, mainly composed of desktop PC.

It can certainly be argued that Desktop Grids are not really Grids because they are
unmanaged clusters spanning only one site. However, usage of the term Desktop
Grid has been steadily increasing in the recent years.

BOINC [51], DG-ADAJ [230], ProActive [251] are middlewares that support the Desk-
top Grid architecture. So-called Cycle Stealing projects like Condor [255] might also
be considered as Desktop Grids. XtremWeb [318] also supports the Desktop Grid ar-
chitecture.

Volunteer Grids

A Grid architecture sharing absolutely unreliable Resources that has attracted con-
siderable attention in the last few years has been named Internet Computing [72]
or, more figuratively, Volunteer Computing [11]. Several sites (usually a huge num-
ber) supply Resources, to a limited number of sites (usually one). Resources are
managed by a centralized RMS.

SETI@home [273], Folding@home [143] and Docking@home [123] are middlewares that
support the Volunteer Grid architecture. Cycle Stealing projects like Condor [255] can
also be considered as Volunteer Grids.

Interestingly, BOINC [51] and XtremWeb [318] both support the Desktop Grid and Vol-
unteer Grid architectures, and, as indicated in a previous paragraph, XtremWeb [318]
also supports a lightweight form of the centralized Resource sharing (see Section 1.1.3).

P2P Grids

P2P Grid Computing is a very recent Grid architecture. We have defined it
as computational Resource sharing in Grids organized into P2P networks (see
Section 1.1.4). The shared Resources are edge computers, which are at best mod-
erately reliable. Two key concepts are:
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• each site is considered as both a supplier and a consumer of computing time;

• sites are organized into P2P networks, which requires that automatic Peer dis-
covery is available.

Peer discovery is independent from the Peers themselves: It may be either fully
distributed or centralized, even though it can be argued that full decentralization
is required to have a true P2P network. Automatic Peer discovery is a very im-
portant issue, but is beyond the scope of this dissertation. Complementary notes
are available in Appendix D.2.

An important embodiment of P2P Grid computing has been originally proposed in
Brazil and has resulted in the development of the OurGrid middleware [233, 13, 84, 286]
to serve the needs of small research labs lacking the funding to fulfill ever-increasing
computing needs. The OurGrid middleware has been successfully put into large-scale
production since December 2004 [52] to run a large variety of applications. The more
recent Zorilla middleware [125], developed in the Netherlands, and the Lightweight
Bartering Grid middleware [59], presented in this dissertation, are also middlewares
that support the P2P Grid architecture.

2.5.2 P2P Grid Middlewares

Several existing P2P Grid middlewares, as well as one relevant Grid middleware,
are now reviewed (the list is sorted in alphabetical order of middleware name).
LBG is also included for comparison purposes.

Most of the reviewed middlewares are initial implementations and only one has
been deployed to large-scale production: OurGrid [233, 84, 286], which has already
achieved great success [52].

AssessGrid

AssessGrid [24, 25, 307] is a Grid middleware. It cannot be considered as a P2P Grid
middleware because consumption of computing time is not reciprocated with supplying
of computing time, but instead with out-of-Grid compensations (see Appendix D.3.5),
i.e. real money. Moreover, it is not clear whether Peer discovery is fully automated.

We selected AssessGrid for inclusion in this list of P2P Grid middlewares because some
of its concepts are very relevant to the development of P2P Grids. In particular, As-
sessGrid proposes that Resource brokers, acting as intermediaries between the User
Agents and supplier-only Peers, learn the reliability of Peers. This is similar to what we
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have proposed in previous research [60] (see Section 2.3). In this view, lessons learned
from the AssessGrid project are likely to be relevant to future P2P Grid research.

The focus is on fault-tolerance, reliability, risk management and user-level decision mak-
ing tools. AssessGrid leverages lots of source code from existing projects. CCS [90],
programmed in a mix of C, C++ and Perl, is used as a basis for Peers. GridSphere [166],
programmed in Java, is deployed to fulfill the role of User Agents. The programming
of new code is in Java. Writing Grid applications, in any language, is easy. Although
most negotiation and scheduling work is performed automatically, the scheduling and
sharing decisions must ultimately be done manually by human users through the Grid
User middleware.

AssessGrid is under development at a number of European universities and firms, with
a strong participation from University of Paderborn, Germany.

DGET

DGET [172, 173, 174] is a P2P Grid middleware where each Peer acts as a Resource.
The Peer and Resource concepts are merged.

The focus is on extreme scalability, fault-tolerance, ease of use and rich API. Com-
putational requests written in Java can be submitted to the P2P Grid. A Java GUI
enables to control a Peer. Writing Grid applications, in Java, is easy. No bartering
mechanism is proposed.

DGET is developed at University College Dublin, Ireland.

JNGI

JNGI [300, 183] is a P2P Grid middleware with 2 levels. The concepts of Peer and
Resources are clearly separated, although both Peers and Resources are Peers in JNGI,
with so-called Task Dispatcher Peers corresponding to Peers and Worker Peers corre-
sponding to Resources.

The focus is on Peer discovery service (using JXTA), fault-tolerance, self-organization
(bottom-up VO formation). Writing Grid applications, in Java, requires to use low-
level API calls. No bartering mechanism is proposed.

JNGI is a Free and Open Source software mainly developed at Sun Microsystems.
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LBG

Lightweight Bartering Grid [55, 57, 63, 62, 56, 59] (LBG) is the P2P Grid middleware
developed for the research presented in this dissertation. The concepts of Peer and Re-
sources are clearly separated and correspond to those presented in the previous sections.

The focus is on fault-tolerance, autonomy, data transfers and software engineering.
Computational requests written in Java can be submitted to the P2P Grid. Writing
Grid applications, in any language, is easy. The deployment of the Grid by a human
administrator is easy. The advanced bartering model proposed by OurGrid (see below)
is used. Everything is fully automated in LBG, enabling human users to submit and
forget computational requests to the User Agent middleware, and later retrieve com-
pleted results.

LBG is a Free and Open Source software developed at University of Liège.

OurGrid

OurGrid [233, 84, 286, 13, 52, 53, 266, 265, 267, 98] is a free-to-join peer-to-peer grid
that has been in production since December 2004 [233]. The concepts of Peer and Re-
sources are clearly separated and correspond to those presented in the previous sections.

The focus is on fault-tolerance, autonomy and ease of deployment and programming.
Computational requests written in Java or in any other language can be submitted to
the P2P Grid. Writing Grid applications, in any language, is easy. The deployment of
the Grid by a human administrator is easy. A deployment downside is that User Agents
require O.S.-level access to Resources. An advanced bartering model is proposed. Ev-
erything is fully automated in OurGrid, enabling human users to submit and forget
computational requests to the User Agent middleware, and later retrieve completed
results.

OurGrid is a Free and Open Source software developed mainly at Federal University of
Campina Grande, Brazil and HP.

P2P Disco

P2P Disco [196, 28] is a P2P Grid middleware with 1 level.

The focus is security and the design is driven by the specific requirements of a specific
neural network application based on the NeuroSearch algorithm. It is currently used
more as a Desktop Grid than a P2P Grid. Computational request written in Java can
be submitted. Writing Grid applications is easy, but deploying them is difficult. There



2.5. Related Work - Lightweight Grids 42

is no support for dynamic code uploading, so the Grid applications must be deployed
out-of-Grid (see Appendix D.3.5) before they can be submitted. This is done to aug-
ment security.

Moreover, middleware-level IP filtering is performed, which is not yet widespread in
Grid middlewares in general. There is no support for data transfers and only applica-
tion parameters are transmitted to Resources.

P2P Disco is developed at University of Jyväskylä, Finland.

P2P-MPI

P2P-MPI [258] is a P2P Grid middleware with 1 level.

The focus is the execution of MPI applications in an unreliable environment, i.e. edge
Resources. A fault-tolerant scheduler mitigates the unreliability of P2P Grid Resources.
Another important feature is portability, as P2P-MPI supports MPJ, is developed in
Java and enables to run Java applications. Peer discovery relies on JXTA.

P2P-MPI is developed at University of Strasbourg, France.

smartGRID

smartGRID [291] is a P2P Grid middleware with 2 levels, i.e. a Peer manages several
Resources. Its variant smartGRID2 is a P2P Grid with 1 level, i.e. the Peer and Re-
source concepts are merged.

The focus is on use of web services, self-organization (bottom-up VO formation),
adaptability to heterogeneous networks, flood scheduling. Writing Grid applications,
in Java, requires to use low-level API calls. The flood scheduling process is inspired
by neural networks and modelled with Colored Petri Nets. No bartering mechanism is
offered, though.

smartGRID was developed at University of Wollongong, Australia.

Zorilla

Zorilla [125] is also a P2P Grid middleware where each Peer acts as a Resource, and
the Peer and Resource concepts are merged.
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The focus is on the scheduling of workflow applications requiring co-allocation [275, 6,
168], extreme scalability, flood scheduling, fault-tolerance. Writing Grid applications,
in any language, is easy. The negotiation process initiated by a Peer that wants to
consume Resources is performed by flooding/gossiping with Peers in the neighborhood.

Zorilla is developed at VU University of Amsterdam, the Netherlands.

Other Grid Middlewares

Other Grid Middlewares might have been included in this review.

SimGrid [278, 209, 77, 75] is a very advanced and flexible Grid middleware and simu-
lator. It is possible [175], that it may be used as a basis to build a P2P Grid.

MOAB [219] is a commercial Grid middleware, self-described as a P2P Grid middle-
ware. However, it does not offer a Peer discovery service.

Summary of Features in Existing P2P Grid Middlewares

The main features of the reviewed P2P Grid middlewares are now summarized.
Table 2.2 lists architectural and scheduling features. Table 2.3 gives negotiation-
related features. Table 2.4 gives security features.

The middlewares can be classified according to the number of control levels: 2-
levels P2P Grids where the concepts of Peer/Resource are separated, and 1-level
P2P Grids where each Peer controls only one Resource (itself). We hypothesize
that, in the long term, 2-levels P2P Grid will become the norm because they
greatly facilitate the work of human site administrators.

The bartering mechanism of most reviewed P2P Grid middlewares is actually very
basic, even implicit (i.e. all incoming requests are accepted). Nearly all negotia-
tion mechanisms are very basic, i.e. either a request/response scheme or a request
flooding mechanism. Only AssessGrid, LBG and OurGrid can mitigate free riding
(Table 2.4).

AssessGrid supports SLAs and reservations. However, AssessGrid is not fully au-
tomated (it relies on human users to define acceptable levels of risks) and is based
on the Grid economy.

Despite not offering SLA support, LBG and OurGrid are the only re-
viewed P2P Grid middlewares that (similarly AssessGrid, which is not
a P2P Grid middleware) can enable decentralized large-scale Resource
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sharing between separate organizations. Only LBG and AssessGrid support
the queueing of external requests.

Besides AssessGrid, LBG and OurGrid, only P2P-MPI is capable of matchmaking;
the other middlewares only support eager scheduling or flooding. Task replication
is supported by JNGI, OurGrid and P2P-MPI. Results validation mechanisms
typically rely on Task replication. Results validation, a feature typically found in
Volunteer Grids, is not supported by any of the reviewed middlewares. Resource
protection and secure communications are each supported by about half the re-
viewed middlewares.

Table 2.5 gives data features. It appears that data-awareness and decentralized
data caching, despite their huge impact on performance, are not systematically
supported. LBG is the only reviewed middleware with support for P2P data
transfers.

Table 2.6 gives technology features. The supported application model is mostly
the Bag of Tasks. Interestingly, P2P-MPI supports both Workflows and Iterative
Stencils.

Nearly all reviewed middlewares support only Java as the programming language
to develop Grid applications.

All reviewed P2P Grid middlewares have been developed in Java (AssessGrid, al-
though partially relying on legacy code, is also developed in Java). We hypothesize
that this unanimous choice of Java originates in Java’s excellent support for mul-
tithreaded and network programming, portability, permissive license and built-in
sandboxing mechanism (the virtualization of code execution may provide - if prop-
erly configured - a supplementary layer of protection very useful to any Internet-
facing software).

Future Grid standards will propose a language-neutral set of interfaces, maybe
based on web services, making less important the issue of selecting a technology
to develop middlewares.

To conclude this review, it is worth noting that half of the reviewed P2P Grid
middlewares are publicly available, with their source code released under a Free
and Open Source license.
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Levels Scheduling Queueing Task
support∗ replication

AssessGrid 2 matchmaking yes no
DGET 1 flooding no no
JNGI 2 eager scheduling no yes
LBG 2 matchmaking yes not yet

OurGrid 2 matchmaking no yes
P2P Disco 1 flooding no no
P2P-MPI 1 matchmaking no yes

smartGRID 1 or 2 eager scheduling no no
Zorilla 1 flooding no no

∗ for external Tasks

Table 2.2: Architectural and scheduling features of P2P Grid middlewares.

Bartering Negotiation Reservations Checkpointing
AssessGrid no SLA yes yes

DGET no flooding no yes
JNGI no no no no
LBG NoF request no no

OurGrid NoF request no no
P2P Disco no flooding no no
P2P-MPI no request no no

smartGRID no request no yes
Zorilla no flooding no no

Table 2.3: Negotiation features of P2P Grid middlewares.

Mitigation of Resource Results Secure
free riding protection validation communications

AssessGrid yes no no yes
DGET no yes no yes
JNGI no no no optional
LBG yes yes not yet not yet

OurGrid yes yes no optional
P2P Disco no no no no
P2P-MPI no no no no

smartGRID no no no no
Zorilla no yes no no

Table 2.4: Security features of P2P Grid middlewares.
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Data transfers Data caching Data-awareness Code transfer
AssessGrid centralized decentralized yes yes

DGET centralized no no yes
JNGI centralized centralized no yes
LBG P2P decentralized yes yes

OurGrid centralized (de)centralized optional yes
P2P Disco centralized no no no
P2P-MPI centralized no no yes

smartGRID centralized decentralized yes yes
Zorilla centralized no no yes

Table 2.5: Data features of P2P Grid middlewares.

App model App language Technology In production License
AssessGrid Workflow any Java, CCS no n/a

DGET BoT Java Java no n/a
JNGI BoT Java Java, JXTA possibly JXTA
LBG BoT Java Java for LaBoGrid GPL

OurGrid BoT Java, any Java, RMI Brazilian Grid GPL
P2P Disco BoT Java Java, Chedar for U. Jyväskylä n/a
P2P-MPI Workflow Java Java, JXTA possibly GPL

Iter. Stencil
smartGRID BoT Java, .Net Java, web svc no n/a

Zorilla IS Java, any Java, Bamboo no BSD

Table 2.6: Technology features of P2P Grid middlewares.

2.5.3 Comparison of LBG and OurGrid

Following this review of P2P Grid middlewares, it appears that LBG and OurGrid
are the only reviewed P2P Grid middlewares that (like AssessGrid, which is not a
P2P Grid) can enable decentralized large-scale Resource sharing between separate
organizations Indeed, they are 2-level P2P Grids based on the Network of Favors
model. As they use bartering, they do not have to rely on a centralized banking
component (like AssessGrid) but they cannot (currently?) support SLAs (unlike
AssessGrid).

Scheduling The scheduling model of LBG is more advanced that that of Our-
Grid, as it is structured around Policy Decision Points (PDPs) and supports queue-
ing of external Tasks. The PDP-based model enables to easily plug new policies
and thus constitutes a mechanism to systematically explore a large number of
scheduling strategies. With the support for queueing of external Tasks, failures
of execution of external Tasks can be hidden to consumer Peers. The support for
queueing of external Tasks, opens the possibility to support batch scheduling and
possibly, in the long term, planning and reservations as well.
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Architecture In LBG, each Peer includes components for queueing, scheduling
and negotiation. The User Agent middleware submits BoTs to the Peer at its site,
then waits for the Peer to send completed results of each Task. The separation
between the User Agents and the Peer to which they submit BoTs effectively
separates the submission interface from the core Grid software. In OurGrid [233,
84, 286], negotiation is performed by each Peer, but scheduling is performed by
each User Agent and there is no queue for external Tasks. This is different from
LBG, where each User Agent essentially submits BoTs and is not involved in
scheduling.

Software Engineering Furthermore, LBG and OurGrid are the only reviewed
P2P Grid middlewares for which a discrete-event system simulator has been built.
The simulator code of LBG, as discussed in Chapter 3, is deeply integrated with
the middleware code, which enables reproducible testing.

Data Transfers Finally, only LBG supports P2P decentralized data transfers.
At the implementation level, it is worth noting that OurGrid requires Users Agents
to have O.S.-level access to Resources in order to transfer files across the P2P Grid.
LBG relies only on its embedded data servers to transfer files.

2.6 Grid Application Model

Now that the state of the art in Resource sharing and existing P2P Grid middle-
wares has been reviewed, we describe the Lightweight Bartering Grid architecture,
starting with its Grid application model in this section, then pursuing with the
Resource middleware, Grid nodes messaging protocol and Peer middleware in the
following sections.

The Grid Application model of LBG, is the Bag of Tasks (BoT). In this
section, a taxonomy of Tasks and BoTs is first given to facilitate the reading of
the remainder of the dissertation. Grid application programming is then discussed.

2.6.1 Taxonomy of Tasks

The owner Peer of a Task is defined as the Peer to which the Task has been sub-
mitted by one of its User Agents. The runner Peer of a Task is defined as the Peer
which actually runs (on one of its Resources) the Task. The owner of a Task may
negotiate the use of computational power from another Peer. In this case, it may
submit the Task to this other Peer, which becomes the runner of the Task.



2.6. Grid Application Model 48

Tasks can be classified into Local Tasks, Consumption Tasks and Supplying Tasks
according to both their owner Peer and runner Peer:

• A Local Task is a Task run11 on one Resource of its owner Peer, which is
therefore also its runner Peer.

• A Consumption Task is a Task that has been submitted by its owner to another
Peer, as perceived by its owner. A Consumption Task is completed on the
behalf of the owner Peer which consumes one Resource from the runner Peer.

• A Supplying Task is a Task that has been submitted by its owner to another
Peer, as perceived by the runner Peer. A Supplying Task is completed by
the runner Peer which supplies one Resource to the owner Peer.

A Consumption Task queued on a given Peer is owned by this Peer and run by
a Resource supplied by another Peer. A Supplying Task queued on a given Peer
is run by one of the Resources of the given Peer. To summarize, a given Task
submitted by its owner to another Peer is labelled a Consumption Task by its
owner and is labelled a Supplying Task by its runner Peer.

Initially, all the Tasks owned by a Peer are implicitly Local Tasks, until
some of them are submitted to other Peers, at which point they are
considered as Consumption Tasks by the owner and as Supplying Tasks
by the runners. Figure 2.11 illustrates the three Task types.

With the proposed classification, the term designating each Task type totally de-
termines the status (runner, owner) of a Peer that queues a given Task at some
point in time. It is useful because the status of a Peer relative to a Task evolves
with the movements of this Task around the P2P Grid.

2.6.2 Taxonomy of Bags of Tasks

Bags of Tasks submitted by User Agents, then Bags of Tasks submitted by other
Peers, are examined.

11The Resource middleware is running at OS-level on a computer. A Grid Task is running at
Grid-level on the Resource middleware. At some point, a Grid Task is obviously executed as
threads or processes of the OS of the computer where the Grid Resource is running. Explicit
distinctions between computational tasks that are local to the computer where they are running
(e.g. a word processor, an e-mail client, . . .), and Grid tasks that are not local to the computer,
could be made. However, such considerations are strictly limited to Section 2.7, as the interac-
tions, on a given computer, between a Grid Task and non-Grid, OS-level “tasks” are outside the
scope of this dissertation. All Tasks mentioned in this dissertation can safely be assumed to be
Grid Tasks.
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(a) without bartering

(b) with bartering

Figure 2.11: Tasks types (a) without bartering (b) with bartering.

Local BoT

Tasks, when submitted to a Peer, are always grouped into a Bag of Tasks (see
Section 2.4). Bags of one single Task may still be submitted, though. A Local
BoT (or Local job) is defined as a job composed of one Bag of Tasks that is sub-
mitted to a given Peer by one of its User Agents. The goal of a Peer is to achieve
for each Local BoT the lowest BoT response time, which is the time between the
submission of the BoT and the completion of all of its Tasks.

Each Task of a Local BoT is labelled either as a Local Task or as a Consumption
Task, depending on the fact that it is being executed on its owner Peer or on
another Peer. By default, all Tasks are Local Tasks, as explained in the previous
paragraphs.

In this dissertation, there is only one class of priority among User Agents of a given
Peer. Local BoTs submitted by multiple User Agents of a given Peer are queued
and processed following a FIFO policy. That does not, however, preclude the
concurrent execution of multiple Local BoTs when enough Resources are available
(this is similar to FCFS-Share without replication [18] or S-BoT [176]).

Supplying BoT

Tasks are submitted to other Peers one by one. Each time a Task is submitted to
a given Peer, this Peer creates an artificial job whose Bag of Tasks is actually a
Bag of one Task. Such a job is called a Supplying BoT (or Supplying job), as its
only Task is a Supplying Task (from the perspective of this runner Peer, and this
Task is a Consumption Task from the perspective of its owner Peer).
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Consequently, a Task submitted by a Peer to another Peer is represented twice
in the system: once as a Consumption Task on its owner Peer, and once as a
Supplying Task on its runner Peer.

Given the selected Grid application model and definitions of jobs, the terms BoT
and job are used interchangeably in the context of this dissertation.

BoT Response Time

The BoT response time is the total time elapsed between the submission of a BoT
to a Peer and the completion of all its Tasks. The mean BoT response time is
thus the mean of response times of several BoTs.

2.6.3 Grid Application Programming

Tasks that can be submitted to LBG must currently be programmed in the Java
language (J2SE 5.0 [178]). Java has excellent support for multithreaded and net-
work programming, provides robust security mechanisms and is highly portable.

The requirement of programming Tasks in Java is a completely arbitrary choice12.
The requirement for programming in Java depends essentially on one component
of the LBG architecture: the Resource’s runner VM (Section 2.7.4). With future
work, support for Tasks programmed in other languages can definitely be added
to LBG.

Any arbitrary Java application can easily be made ready to run on LBG
provided that some limited management information is written by the application
developer. The gridification of an application consists in wrapping it into a Local
BoT. In turn, this Local BoT can be submitted to a Peer using an instance of the
User Agent middleware.

I/O operations are restricted, essentially in the sense that input data files are made
available to the Task and that access to the local file system is severely restricted
(for a complete list, see Section 2.7.4).

A Grid application is a Bag of Tasks that can be composed of one or more Tasks.
A simple Grid application can thus be a Bag of only 1 Task. The binary code
of one Task is a set of Java classes packed into a Java archive (.jar file). The
input parameters, input data files and binary code (.jar file) of each Task of

12 This choice is motivated in the short discussion given at the end of Section 2.5.2.
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a BoT must be declared in a job description file (see Appendix B.1) by the ap-
plication developer. The job description file is given to the User Agent middleware.

Importantly, no estimation of Task completion time is required of the
Grid application developer when writing the job description file. As this man-
agement information is notoriously hard to obtain [205] and often very unreliable
when provided, the decision was made to not use it.

The Grid application developer must designate (in the job description file) a main
class for each Task, where its entry point can be found. The designated main class
of each Task must implement a simple interface, the GridApplication interface (see
Table A.1 in Appendix A), including the compute() method which is the entry
point of the Task. The requirement to implement the GridApplication interface en-
ables the Resource middleware to automatically make available the input data files
(that are transferred automatically by the Grid middleware) and input parameters
to the Task. Through the GridApplication interface, the Resource middleware can
then run the Task and, finally, retrieve any output data upon successful comple-
tion of Task execution.

2.7 Resource Middleware

The Resource is the basic building block of a Grid. The Resource middleware,
required to make the computational power of a given computer available to the
Grid, is described in this section.

A Resource has two main responsibilities, Task execution and data management,
which are discussed. The life cycle of a Resource is then described.

2.7.1 Task Execution

Resources supply computational power to execute work units at the Task level.
When a Task is scheduled to a Resource, the following sequence takes place:

1. The Java archive containing the code of the Grid application (see Sec-
tion 2.6.3) and the input parameters, if any, are uploaded to the Resource;

2. Input data files - if any and if they are not already stored in the Resource
data cache - are downloaded by the Resource, using separate threads so as
not to block other operations like the reception of control messages sent by
the owner Peer;
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3. The Grid application embedded in the Task is run in a separate Java Virtual
Machine (Java VM) controlled by a helper thread of the Resource [99];

4. Data results that were computed by the Task are uploaded to the owner
Peer (currently inline with the Task itself, although this limitation will be
removed in the near future).

Data results are then forwarded from the owner Peer to the consumer Peer if the
Resource was supplied to process a Supplying Task.

LBG supports dynamic code uploading . It means that the binary code of a Task
is uploaded to the Resource where it is executed. In practice, this precludes the
need for out-of-Grid access, which is a huge benefit not available in all existing
middlewares. For instance, OurGrid requires that Grid users have an O.S.-level
access to worker nodes via ssh (LBG only requires Grid system administrators to
have an O.S.-level access).

2.7.2 Task Preemption and Cancellation

A Peer can preempt or cancel, at any time, any Task running on any of its Re-
sources. Task preemption from a Resource is defined as halting the execution of
the Task currently running, with subsequent requeueing by the Peer. A preempted
Task may be rescheduled and completed on another Resource of the owner Peer.

Task cancellation from a Resource is defined as halting the execution of the Task
currently running, without subsequent requeueing. A cancelled Task cannot be
completed by any Resource of the owner Peer. If a Supplying Task is cancelled,
it may still be completed, either by the consumer, by another supplier Peer, or
even by the supplier Peer on which it was cancelled, provided that it is submitted
again. In case of a Supplying Task, a cancellation decision may come from either
the supplier Peer or the consumer Peer, e.g. because Task execution has timed out.

As there is no middleware-level checkpointing support in the current spec-
ification of LBG, the Task execution state and any intermediate results are lost
upon Task preemption/cancellation. This causes a loss of computing time as
well as other undesirable consequences that are discussed in Chapter 4. However,
an application-level P2P-aware P2P checkpointing mechanism will be introduced
in Section 6.2.

A Resource can also preempt or cancel the Task which is currently running. In
case of an imminent, predictable failure or when an administrator brings it offline,
a Resource preempts the currently running Task, if any. It then tries to contact its
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owner Peer to communicate that the Task has been preempted, in order to main-
tain the consistency of Peer state. As will be seen in the following (Section 2.9.6),
the Peer cannot rely only upon the Resource-initiated preemption mechanism to
maintain consistency, but it is nonetheless helpful in practice.

2.7.3 Resource Life Cycle

Resource Registration Each Peer tracks the state of the Resources it man-
ages (see Section 2.7.6) so that it can identify idle Resources and busy Resources.
Resources must thus be registered with their owner Peer before they can be used.
Resource registration in Desktop Grids or mainstream Grids is typically Peer-
initiated due to a centralized site-level deployment model that is not adapted to a
P2P Grid. Resource registration is thus Resource-initiated in our proposed P2P
Grid architecture13, similarly to Volunteer Grids. When a Resource comes online,
it registers itself with its owner Peer.

Resource Selection and Matchmaking Resource selection is performed by
the scheduler of the Peer middleware. Hardware features, such as a limit on the
amount of RAM and a limit on the storage space available, can be described in
a Resource configuration file. However, matchmaking based on hardware features
(see Appendix D.2) is currently not supported by the LBG middleware. In practice,
it can certainly be implemented as a filtering step during Resource selection.

Resource-level Task Queueing As our work focuses mainly on the higher
layer of the Grid architecture (i.e. collective layer [150], also called management
layer) rather than on lower-level layers which are concerned with communication
and execution mechanisms, local, i.e. Resource-level, schedulers are not available.
More importantly, Tasks should never be queued on Resources because of the
intrinsic unreliability of P2P Grid environments.

Resource-level Task Execution Concurrency A Resource is always either
idle or busy: A Resource can run at most one Task at any time. A Peer
cannot run a Task on a busy Resource, but it can cancel a Task running on a busy
Resource. The current scheduling model (that will be introduced in Section 2.9.4)
would have to be extended to support the concurrent execution of multiple Tasks
on a Resource. Adding support for the concurrent execution of multiple Tasks by
a Resource introduces different concerns for multi-core CPU and single-core CPU:

13In practice, deployment scripts are also provided with the LBG middleware so that site
administrators can deploy multiple Resources of their site.
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• For computers based on multi-core CPU, it can be hypothesized that there
is enough RAM to accommodate the processing of one computational task
on each CPU. A simple, widespread technique to support concurrent Task
execution on Resources based on multi-core CPU is to run multiple instances
of the Resource middleware, one on each core. This is already possible with
the current implementation of LBG, because it does not conflict with the
current scheduling model. True multi-core support or support for parallel
computers can also be integrated directly into the Resource middleware of a
P2P Grid [94, 106], although this would not be trivial to integrate with the
Peer middleware.

• For computers based on single-core CPU, the situation is different. It might
not be efficient to run multiple Tasks concurrently because Resources of a
P2P Grid might not have enough available RAM to process concurrently two
or more computational tasks. The effect of two or more Tasks competing
for RAM space can quickly lead to thrashing, which would be disastrous for
performance. Supplementary research is required in Peer scheduling mod-
els that integrate multi-slots Resources, as well as in out of core algorithms
designed to incrementally load data into RAM. Moreover, support from the
operating system should be available to dynamically probe useful manage-
ment information such as system load, available memory, . . . In a nutshell,
supporting the concurrent execution of multiple Tasks on Resources based on
a single-core CPU is currently precluded by the quantity of RAM available
on edge computers.

2.7.4 Resource Protection

The dynamic code uploading mechanism in LBG follows the on demand code up-
loading paradigm, a form of weak code mobility [73, 301]. Weak code mobility
means that only the application code is transferred, not its state. Strong code
mobility requires both code and state to be transferred. As an example, the Con-
dor middleware [91] and Fortino et al.’s mobile agents paradigm [144] both exhibit
strong code mobility. Weak code mobility could be substituted with strong code
mobility if middleware-level checkpointing support were added to the LBG mid-
dleware. However, it must be remarked that the requirements, in terms of storage
space, of strong code mobility might not be met by every Resource in a P2P Grid.

With on demand code uploading, there is no need to deploy Grid applications in
advance. Grid application deployment is totally independent from human users,
Grid administrators and application developers. However, supplementary security
measures are required to protect Resources from malicious Tasks.
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Figure 2.12: The controller VM launches and controls a runner VM for each Task.

Several security measures are taken:

• Each Task is actually executed in a Java Virtual Machine (VM) that is dynam-
ically launched14 (runner VM) and thus is distinct from the VM running the
Resource middleware (controller VM), as illustrated on Figure 2.12;

• The controller VM configures the runner VM to enforce a security policy [111]
so that Task execution is sandboxed, e.g. access to local file systems, devices,
environment variables, system properties and VM class loader are severely
restricted;

• The runner VM is launched with an available amount of RAM that is set by
the Resource human administrator when the Resource is deployed;

• As a Task may need to write to and subsequently read some temporary files, a
playpen [85] directory is provided;

• Task control, i.e. Task preemption/cancellation after a timer has expired, is
implemented in the Peer middleware (and will be discussed in Section 2.9.6).

Other security measures should also be taken as the development of other tech-
nologies allows:

• As, on one hand, BitTorrent and FTP software components (see Section 2.7.5,
Chapter 5) - and maybe also Grid application themselves (see Section 6.2) -
heavily depend on Internet access and as, on the other hand, issues related to
Grid-aware filtering of network connections constitute a very recent research
domain, network connections are currently not filtered by the runner VM.

14This design choice offers better security than if the Grid application were run in a thread
of the same VM because the runner VM is running in a different context than the controller
VM. This is a typical choice, also followed by OurGrid with the SWAN mechanism [79]; SWAN
depends on an O.S.-level VM rather than on a Java VM. The temporal overhead of launching a
Java VM is negligible as most Grid applications run longer than a few seconds.
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•On-the-fly verification of code properties [88, 223] and security of execution [212,
213], i.e. protection of a Task against the Resource that runs it, are not sup-
ported but would definitely need to be further investigated.

2.7.5 Resource Data Management

The Resource Data Manager is the component responsible for managing the input
data of queued Tasks [56, 57]. Each Resource Data Manager is equipped with
a data cache, which is the software component managing data storage. It is also
equipped with BitTorrent and FTP software components to manage data transfers.

Basically, the Resource Data Manager purpose is to download input data files
from its owner Peer or from other Resources, store and share them with other
Resources processing Tasks depending on them. It is discussed in Section 5.2.2, as
data-related operations are largely independent of other operations.

2.7.6 Resource Management System (Peer Middleware)

The Resource Management System (RMS) - that is a component residing in the
Peer middleware, not in the Resource middleware - is responsible for the control
and management of the state of the Resources, from the Peer perspective:

• Resource registration: Resources register themselves with their owner Peer
when they come online (see Section 2.7.3);

• Resource selection: selection of an idle Resource following a ranking-based or
random policy, so that the Peer scheduler (see Section 2.9.4) can match it
with a given Local or Supplying Task;

• Resource preemption/cancellation: selection of a busy Resource in order to
preempt or cancel the execution of one running Task (see Section 2.7.3).

On each of these operations15, the Peer RMS updates the Resource status and
data cache contents (see Section 5.2.2) in its internal Resource database.

15No lower-level mechanism of continuous verification of the Resource liveness, i.e. so-called
heartbeat mechanism, is currently implemented, although it could certainly be done.
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Figure 2.13: Handle/Service pattern.

2.8 Grid Node Messaging Protocol

A simple messaging protocol has been designed to enable message passing between
the Grid nodes (Peer ↔ Peer, Peer ↔ Resource, Peer ↔ User Agent). The cur-
rent implementation of the Grid Node Messaging Protocol (GNMP) is based on
serialized Java objects transmitted over non-persistent TCP connections.

The requirement of having Grid nodes support a Java-based implementation is
a completely arbitrary choice16. The requirement for implementing Grid nodes
in Java before they can be deployed as part of an LBG-based P2P Grid will be
removed in future work that will lead to a technology-neutral definition of GNMP.

Handle/Service Pattern

The protocol follows the handle/service pattern (see Figure 2.13). A service of a
Grid node is a processor of messages sent by other Grid nodes. A service may or
may not transmit back a return value (a reply) to its sender. Each Grid node is
equipped with one or more service components, one for each type of Grid nodes to
communicate with. To promote a fully asynchronous behavior, communications
between Peers should remain unidirectional, i.e. not require replies.

Each service is able to generate handles, that are Java objects encapsulating the
necessary logic and data to communicate with the service. To contact a service on
the Grid, a Grid node uses a handle. Initially, when coming online, a Resource or a
User Agent can download a handle directly from the Peer that it seeks to contact.
A Peer can download handles of other Peers from a Search Engine. To do so, the
only needed data are IP address and TCP port of the service, that is implemented
as a TCP server socket. All the subsequent communications messages sent to a
particular target Grid node are initiated through the obtained handle.

16 This choice is motivated in the short discussion given at the end of Section 2.5.2.
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A message is a serialized Java object [178, 49] storing the data necessary to invoke
a method of a service, i.e. a method name, and method parameters types and
values. Upon reception of a message by a service, the Java objects are deserialized
and dynamically cast to the appropriate type. The service then calls the process-
ing method, which may send back a Java object as a reply.

Grid Nodes Services

Figure 2.14: Handles/Services types.

There are five implemented service types (see Figure 2.14), each able to process
messages from a given type of node to another given type of node:

• each Peer runs three services (see also Figure 2.15), enabling it to be contacted
by its User Agents (User Agent Peer Handle/Service), its Resources (Internal
Peer Handle/Service) and other Peers (External Peer Handle/Service);

• each User Agent runs a service enabling it to be contacted by the Peer it uses
(User Agent Handle/Service), e.g. to upload results of a completed BoT;

• each Resource runs a service enabling it to be contacted by the Peer that owns
it (Resource Handle/Service), e.g. to run a Task.

In Appendix A, Tables A.3, A.2 and A.4 (see Appendix A) summarize the op-
erations supported by Resources, User Agents and Peers, respectively. To allow
multithreaded processing of incoming GNMP messages, each service thread is aug-
mented with a pool of helper threads.

Related Control Protocols

The proposed control protocol is simple but also sufficient to support the experi-
ments performed for this dissertation. To deploy the LBG middleware across mul-
tiple organizations, communications authentication, and thus encryption, should
be supported by GNMP (this is purely an implementation issue, as the design of
GNMP can perfectly support them). Existing messaging protocols that can be
used instead of GNMP include the following.
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Java Remote Method Invocation [180] (RMI) could be used, but our proposed light-
weight protocol is easier to deploy (it does not need an RMI registry). The recent
XMPP-based [136, 137] JIC [211], and ICE [167], support important security features
such as communications authentication and encryption. The Web Services Resource
Framework (WS-RF) [231, 26], announced as a successor to OGSI [229], could also
also probably be used. However, protocols based on web services are only beginning
to exhibit decent performance.

2.9 Peer Middleware

In LBG, Peers use their Resources to run Tasks and Peers barter computing time
at the Task level17 so that other Peers also run their Tasks. The goal of Peers, as
explained, is to complete Bags of Tasks as fast as possible. The challenge in de-
signing the Peer middleware resides in controlling the flow of Tasks across the P2P
Grid so that the impact of several disruptive issues - such as asynchronous com-
munications, Peer and Resource unreliability, queueing delays, overly long Task
executions, and last but not least Task preemption and cancellation - is mitigated.

Examples of typical interactions between Grid nodes are first provided to help un-
derstand the basic operation of a Peer. A bartering model, a scheduling model and
a negotiation model are then proposed. Several issues, such as negotiation control,
Task control, concurrency management are then discussed. Data management is
also briefly discussed.

2.9.1 Typical Interactions

A Peer can be modelled as a system receiving and processing computational re-
quests. As defined in Section 1.1.4, each Peer acts in its own interest, i.e. complete
Tasks submitted by its User Agents, but may cooperate with other Peers, i.e. com-
plete Tasks submitted by other Peers or submit its own Tasks to other Peers, by
exchanging computing time.

Typical Interactions (without bartering)

A Peer receives computational requests, i.e. Local BoTs, from User Agents. It
schedules Tasks of these Local BoTs to the Resources it controls. When a Resource
completes a Task, it uploads the output data to its owner Peer, which forwards it to
the appropriate User Agent. The Peer then updates its internal state. Figure 2.11a

17A computational request sent by a consumer to a supplier is a Task, not a Grid application.
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(p. 49) illustrates typical interactions involving no bartering. When the execution
of a Task is preempted by the Resource on which it is running or by the Peer, the
Peer also updates its internal state. When one of its Resources becomes available,
the Peer can schedule queued Tasks.

Typical Interactions (with bartering)

During peaks of computational requests, a Peer can also schedule Tasks to other
Peers as Consumption Tasks. A supplier Peer can accept to queue a Supplying
Task sent by a consumer Peer. When a Peer can schedule Tasks to its Resources,
it first schedules Local Tasks then Supplying Tasks. When a Resource completes
a Supplying Task, it uploads the output data to its owner Peer, which forwards it
to the consumer Peer. In turn, the consumer Peer forwards it to the appropriate
User Agent. Both the supplier and the consumer Peer update their internal state.
Figure 2.11b (p. 49) illustrates typical interactions involving bartering. When the
execution of a running Task is preempted by the Resource on which it is running,
the supplier Peer or the consumer Peer, both Peers also update their internal state.

2.9.2 Peer Service

As explained in Section 2.8, interactions between Grid nodes - e.g. a Peer with an-
other Grid node - are carried through the Grid Node Messaging Protocol. GNMP
messages are considered by a Peer as external events to process. There are three
classes of external events, one for each possible type of sender Grid node.

External events generated by User Agents:

• submission of a Local BoT,

• query of the status of a Local BoT,

• (User-initiated) cancellation of Local BoT.

External events generated by Resources:

• upload of results of a completed Local or Supplying Task,

• (Resource-initiated) preemption of a Local or Supplying Task,

• Resource registration/deregistration.

External events generated by (other) Peers:

• submission of a Supplying Task,
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Figure 2.15: External events service model.

• upload of results from a completed Consumption Task,

• (Peer-initiated) cancellation of a Task (any type),

• supplying request (see Section 2.9.5),

• consumption grant (see Section 2.9.5).

The Peer service is the component of the Peer middleware processing external
events. It is illustrated on Figure 2.15. Three Peer service subcomponents - cor-
responding to the three external events classes - are represented within a frame
symbolizing the Peer service. External event classes are represented as sets of ar-
rows connected to the corresponding Peer service subcomponent. Each individual
arrow symbolizes one external event type within the relevant class. A complete
listing of the Peer service interface is provided in Appendix A.2, which also pro-
vides the interfaces to the User Agent service and to the Resource service.

2.9.3 Bartering Model

Queueing support for Supplying BoTs as well as an explicitly defined bartering
model constitute original contributions over existing bartering models.

BoTs Queues

The Queue Manager is the Peer component responsible for the queueing of Local
and Supplying BoTs (i.e. Bags of Tasks, see Section 2.6). It maintains two queues
from which Tasks can be selected for scheduling: one for Local BoTs and the other
for Supplying BoTs. Local BoTs are queued into the Local BoTs queue. Accepted
Supplying BoTs are queued into the Supplying BoTs queue.
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The Tasks from each Local BoT can be partitioned into three disjoint sets (see
Figure 2.16). There is at least one set nonempty at all times, as every Task of a
BoT is always in one of three states: waiting, scheduled or completed.

The Local BoTs queue is composed of three sets: submitted, waiting and sched-
uled BoTs. All submitted Local BoTs are accepted, as the purpose of a Peer is to
serve User Agents. A waiting Local BoT does not have any Task scheduled, while
some of Tasks of a scheduled Local BoT are scheduled. A Local BoT is returned
to the User Agent that submitted it once all its Tasks are completed or it has been
cancelled (by the User Agent). Figure 2.17 illustrates the Local BoTs queue.

Some Tasks of Local BoTs may be scheduled to other Peers as Consumption Tasks.
In this case, a Task being scheduled has the meaning that the Consumption Task
has indeed been scheduled to a supplier Peer, but may be queued in the sup-
plier’s Supplying BoTs queue, without being actually scheduled (yet) to one of the
supplier’s Resources. Another distinction between Local Tasks and Consumption
Tasks is that the former may be either preempted or cancelled, while the latter
may only be cancelled (by their consumer Peer).

The Supplying BoTs queue is composed of three sets: submitted BoTs, waiting
BoTs, scheduled BoTs. Accepted supplying BoTs are moved to the set of waiting
BoTs; those that are rejected are returned to the consumer Peer that submitted
them. A waiting Supplying BoT does not have its only Task (see Section 2.6)
currently scheduled, while a scheduled Supplying BoT has its only Task currently
scheduled. A Supplying BoT is returned to the consumer Peer that submitted it
once its Task has been completed or it has been cancelled (either by the supplier
Peer or the consumer Peer). Figure 2.18 illustrates the Supplying BoTs queue.

Bartering States

The bartering state of a Peer can be modelled with the states of its two BoTs
queues. Each state is symbolized by a couple of integers (l, s) which represent
the length of the Local BoTs queue and the Supplying BoTs queue, respectively.
To guide the discussion of bartering, a simple 4-states model is illustrated on
Figure 2.19. The transitions between states occur following conditions that are
controlled (plain lines) or that cannot be controlled (dashed lines) by the Peer.

Initially, a Peer starts in the (0, 0) state. It can accept all incoming Supplying
Tasks. If Local Tasks are submitted to the Peer, it switches to the (many, few)
state. If Supplying Tasks are submitted to the Peer, it switches to the (few,many)
state.
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Figure 2.16: States of Tasks of an accepted BoT (i.e. a BoT which is either in the
set of waiting BoTs or in set of BoTs with scheduled Tasks).

Figure 2.17: Queue of Local BoTs (in a Peer, + interactions with User Agents).

Figure 2.18: Queue of Supplying BoTs (in a Peer, + interactions with consumers);
each Supplying BoT is composed of exactly 1 Task.
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Figure 2.19: Peer bartering states (in function of the length of BoTs queues).

When switching to the (many, few) state from the initial state, a Peer may ini-
tially have enough Resources to schedule all the queued Local and Supplying Tasks.
But other Peers may submit many Supplying Tasks. If these are not filtered, the
Peer switches to the (many,many) state.

In the (many, few) state, a Peer seeks to complete the Local Tasks first, before
any of the few Supplying Tasks that could be present (if the Peer was previously
in the (many,many) state). Indeed, the purpose of the Peer is to achieve short
response times of Local Tasks (see Section 2.1.2). If not enough of its own Re-
sources are available, a Peer should both seek to consume computing time from
other Peers and deny other Peers to consume its own computing time. This may
help to shorten the transition back to the (0, 0) state.

It is undesirable for a Peer to be in the (many,many) state in the sense that
an extended period of queueing of Supplying Tasks contributes to long response
times. The Peer is therefore going to be perceived as a slow supplier by other
Peers. The Peer can try to complete all Tasks as fast as possible:

1. It first can use the computing time of its Resources;

2. It can then preempt running Supplying Tasks (thus increasing even more the
response times of Supplying Tasks) to free some of its busy Resources and
use their computing time;

3. Finally, it can try to consume computing time from other Peers.

This will eventually make the Peer switch to the (few,many) state. The Peer
can also cancel rather than preempt the Supplying Tasks (either only the running
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Supplying Tasks or also the waiting Supplying Tasks). But in this case, the Peer
is perceived as unreliable by the consumer Peers.

In the (few,many) state, a Peer seeks to complete the few queued Local Tasks
first, and supplies most of its computing time to Supplying Tasks. Maybe counter-
intuitively, it is desirable for a Peer to be in this state, in the sense that it builds
a consumption potential with other Peers. In this state, a Peer can accept many
Supplying Tasks up to a limit, so as to not impact their response times. If Local
Tasks are submitted, the Peer switches to the (many,many) state. When there
are no more queued Tasks, the Peer returns to the initial state.

2.9.4 Scheduling Model

Task scheduling consists in matching queued Tasks and available Resources (or
supplier Peers), which typically involves a Task selection policy and a Resource
(or consumer Peer) selection policy. Policies of interest are those that ensure short
MBRTs under most circumstances.

The Scheduler is the Peer component responsible for the selection and matching of
Tasks and Resources. It relies on the RMS (Section 2.7.6) and the Queue Manager
(Section 2.9.3).

Scheduling Policy Decision Points

We propose a formal scheduling model based on control points where scheduling
decisions are taken to influence the flow of Tasks through the Peer [312]. This
constitutes an original contribution over existing scheduling models in P2P Grids.

In each Peer, there are basically two queues of computational requests: the Lo-
cal BoTs queue and the Supplying BoTs queue. BoTs flow through a Peer from
Users/other Peers and to Resources/other Peers, depending upon Tasks types (see
Section 2.6.1).

Policy-based decisions are made at five control points, called the scheduling policy
decision points (scheduling PDP). Figure 2.20 illustrates the PDPs that control
the flow of Tasks flowing through the queues of a Peer. Figures 2.21- 2.23 highlight
for which fault-management mechanisms the PDPs are intended.

The scheduling PDPs are:

1. Local Tasks scheduling: Matches Local Tasks and Resources;

2. Consumption Tasks scheduling: Matches Local Tasks and supplier Peers,
and schedules the former to the latter, as Consumption Tasks;
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Figure 2.20: Scheduling model.

Figure 2.21: Scheduling model (fault-prevention mechanisms).

3. Supplying Tasks filtering: Filters submitted Supplying Tasks18;

4. Supplying Tasks scheduling: Matches Supplying Tasks and Resources, i.e. sup-
plies computing time to consumer Peers;

5. Supplying Tasks preemption: Preempts Supplying Tasks from Resources so
as to instantly recover a full computational power.

Scheduling policies are proposed for each policy decision point, in Chapter 4.

18 As bartering is conducted at the Task level (see Section 2.6), Supplying BoTs are always
composed of exactly one Supplying Task.
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Figure 2.22: Scheduling model (fault-avoidance mechanisms).

The Supplying Tasks filtering policy is activated immediately upon reception of a
submitted Supplying BoT. This filtering prevents the Peer to be flooded by too
many simultaneous submissions of Supplying Tasks. It also protects the Peer from
middleware-level Denial of Service attacks by malicious Peers.

The three Tasks scheduling policies perform the scheduling of the three Tasks types
(see Section 2.6.1). They are activated following the various external events pro-
cessed by the Peer service (see Section 2.9.2), such as submission of a Local BoT,
completion of a Supplying Task, availability of additional Resources, . . . They may
also be activated following internal events, such as time-outs, as will be explained
in Section 2.9.6. A complete mapping of events to scheduling policies is available
in Appendix C.2.

Local Tasks are scheduled first to the Peer’s own Resources because failure of local
Resources is likely than preemption of Consumption Tasks by the supplier Peers.
BoT selection at the queue-level is FIFO, Task selection at the BoT-level is FIFO
or ranking-based, Resource selection is random or ranking-based.

Local Tasks are scheduled before, and possibly instead of Supplying Tasks, be-
cause of the objective a Peer, which is to complete as soon as possible its own
BoTs. If a preemption policy is activated, Supplying Tasks are preempted so as
to immediately schedule a maximum of Local Tasks.

Even after preemption, there are often not enough Resources to schedule all wait-
ing Local Tasks. If possible, these are then scheduled as Consumption Tasks to
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Figure 2.23: Scheduling model (fault-tolerance mechanisms).

other Peers with FIFO BoT selection at the queue-level, FIFO or ranking-based
Task selection at the BoT-level, random or ranking-based consumer Peer selection.

If some Resources are still available after all the Local Tasks have been scheduled,
waiting Supplying Tasks are scheduled with FIFO or ranking-based BoT selection
at the queue-level (there is only one Task Supplying Task in each Supplying BoT),
random or ranking-based Resource selection.

If there are not enough available Resources to schedule Supplying Tasks, some of
them remain in the Supplying BoTs queue until scheduling is next triggered. In
LBG, a Peer does not subcontract Supplying Tasks to other Peers, which means
that Supplying Tasks are not forwarded to other Peers as (fake) Consumption
Tasks.

In LBG, forwarding of Supplying Tasks may indeed lead to pathological situations
such as cyclic bartering. It would also increase the complexity and reduce the
robustness of the bartering and scheduling models. For example, in the situation
where an intermediate Peer in a bartering chain suddenly would unexpectedly go
offline, communication would be lost between endpoints, resulting in a cascade of
Task execution failures. Such a situation would often occur in practice because
bartering operations are long-running as opposed to, say, the transmission of a
single TCP packet. We thus leave subcontracting and Task forwarding aside.

The works of Beaumont et al. [38] and Kreaseck et al. [199] are based on a scheduling
model that supports Task forwarding and that is also based on the PDPs to control the
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flow of Tasks. However, their work, although relevant and full of insights that would
be worthwhile to consider in the context of this dissertation, cannot be applied to P2P
Grids because it is situated in the context of hierarchically organized Grids, with strong
assumptions of trust between Peers (as opposed to the hypothesis of informational
opacity between Peers in LBG).

Reexecution of failed Tasks is a classic fault-tolerance mechanism [71, 37, 21] that
is provided in the LBG architecture. Tasks requeued following Task execution
failure are always19 reexecuted until they are eventually completed.

Task replication [86, 308] consists in having each Peer schedule multiple replicas
of Local Tasks, either to its own Resources or to suppliers Peers as Consumption
Tasks. It clearly brings fault-tolerance but at a cost. It is currently not supported
in the LBG architecture.

Finally, our proposed scheduling model compares to the scheduling model of Our-
Grid as follows. In OurGrid, there is no Supplying Tasks filtering PDP as there is
no Supplying Tasks queue. For the same reason, the Supplying Tasks scheduling
and preemption PDPs are very basic. Furthermore, there is no possibility to plug
new policies into PDPs in OurGrid, as there is no explicitly defined PDP in the
OurGrid scheduling model.

2.9.5 Negotiation Model

We suggest that each consumer Peer should first probe the availability of supplier
Peers before submitting Consumption Tasks. Indeed, although a supplier Peer
with few available Resources may directly reject the submission of a Consumption
Task, it may also accept it and queue it. In the latter case, the submitted Task
may therefore wait a long time before being actually scheduled.

To avoid as much as possible the submission of Consumption Tasks to busy Peers,
a simple (i.e. not involving counter-bids) negotiation protocol is introduced. Con-
sumers send supplying requests to suppliers (as a number of Tasks to submit). As
a reply, suppliers may send consumption grants (as a number of currently available
Resources) to signal the availability of Resources. Consumption grants represent
the state of the Resources of a Peer, at negotiation time. Upon reception of con-
sumption grants, a consumer selects to which supplier to submit Consumption
Tasks.

19As a practical measure, a limit could be set to cancel BoTs with Tasks that repeatedly never
complete, for example due to bugs. This is also discussed in Section 2.9.6.
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Negotiation is a memoryless process. Both the submission of supplying requests
and the evaluation of consumption grants have an informative, non-binding pur-
pose. They thus can be activated at will. Negotiation is both intentionally simple
and optional. As no estimates of Tasks runtimes are required of Grid applica-
tion developers (see Section 2.6.3) and as Peers do not have direct access to one
another’s metadata, the negotiation object is a number of Tasks to submit. Nego-
tiation is optional because a P2P Grid can operate without it (with the support
of a timer-based Task control mechanism, as will be explained in Section 2.9.6),
and because we want to keep it lightweight (see Section 2.5). These reasons also
motivate the choice to not support an advanced reservations mechanism [281].

Negotiation Protocol

The Negotiator is the Peer component responsible for the emission and evaluation
of supplying requests and consumption grants. Each time a Peer needs access to
external Resources, its Negotiator sends to other Peers one supplying request for s
Resources. The Peers that were interrogated may reply with a consumption grant
which is a number c of currently available Resources, with 0 < c ≤ s. A Peer eval-
uating supplying requests distributes as most as many consumption grants as there
are available Resources, i.e. c ≤ a. This implies that if a > 0 then 0 < c ≤min(a, s).

More recent information is also likely to be more relevant. Thus if multiple supply-
ing requests from a given Peer are received before all pending supplying requests
are evaluated, only the most recent supplying request is taken into account, while
the previous ones are discarded. The same holds for consumption grants. As
supplying requests and consumption grants provide a summarized representation
from the state of a Peer, more recent information is also likely to be more relevant.

Peers do not forward supplying requests or consumption grants for the same rea-
sons that they do not forward Tasks (see Section 2.9.4). Moreover, such forwarding
would require a secure protocol like SHARP [82] to avoid malicious interference.

Figure 2.24 illustrates a typical bartering sequence between two Peers, with nego-
tiation. The arrows between the two Peers symbolize GNMP messages communi-
cating external events (see Appendix C.2).

Negotiation Policy Decision Points

The control points where negotiation decisions influencing the flow of Tasks through
the Peer are now determined.
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requestSupplying()

Consumer Supplier

Consumer Supplier

evalSupplyingRequests()

Consumer

grantConsumption()

Supplier

Consumer Supplier

evalConsumptionGrants()

Consumer Supplier

submitSupplyingTask()

Consumer Supplier

uploadBySupplyingCompletedTask()

Figure 2.24: Typical bartering sequence between two Peers, with negotiation.

Figure 2.25: Negotiation model.
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Policy-based decisions are made at three control points, called the negotiation
policy decision points (negotiation PDP). They are symbolized on Figure 2.25:

1. Emission of supplying requests: Sends supplying requests to other Peers so
as to locate suppliers with available Resources;

2. Evaluation of supplying requests: Evaluates received supplying requests, and
may reply with the emission of consumption grants;

3. Evaluation of consumption grants: Evaluates received consumption grants;
actually is the Consumption Tasks scheduling PDP (see Section 2.9.4).

A complete mapping of events to negotiation policies is available in Appendix C.2.

Negotiation Policies

Emission of Supplying Requests Only one policy is currently implemented
for the emission of supplying requests. When the Peer cannot schedule a number
of Local Tasks, it sends a supplying request for this number of Tasks to potential
suppliers. To obtain Peer handles of potential suppliers, the Negotiator of the
Peer relies on the Grid-level Peer discovery mechanism that is discussed in Ap-
pendix D.2.

Before emitting supplying requests, a Peer has first to obtain handles from other
Peers (see Section 2.8). The Peer relies on a component - the Search Engine
client - that regularly downloads lists of Peers handles from one Search Engine
(see Section 2.1.4). It tries and ensures the continuous availability of a specified
number20 of Peer handles. In the current implementation [99], the Search Engine
client connects to only one Search Engine. Moreover, multiple Search Engines do
not exchange Peer handles with one another. These two restrictions - which can
easily be removed as part of future work - give rise to P2P Grids where Peers are
not aware of Peers registered in other Grids. This may or may not be desirable;
See Appendix D.2 for a longer discussion.

Evaluation of Supplying Requests Four policies are currently implemented:
no emission of consumption grants, unlimited emission of consumption grants,
random-based bounded emission, and bounded emission to Favors-ranked poten-
tial consumers.

Two policies distribute as many consumption grants as there are Resources avail-
able. With random-based bounded emission, the available consumption grants

20Typically 40 in the current implementation, but insights from related research in P2P net-
works would be relevant here.
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are distributed randomly among the potential consumers. With bounded emission
based on favors ranking (see Section 2.3.4) of potential consumers, the available
consumption grants are distributed among potential consumers in decreasing order
of favor balance. This is similar to OurGrid’s default policy [233, 13, 84].

The unlimited policy always sends as many consumption grants as were requested;
this policy is implemented for performance comparisons only. Finally, one policy
has no effect, meaning that no consumption grants are ever sent.

2.9.6 Internal Events Processor

Peer operations are typically activated following the reception of external events by
the Peer service (see Section 2.9.2). However, some Peer operations are activated
following other Peer operations or time-outs, which are called internal events.

Negotiation control operations and Task control operations, which are activated
following internal events, are now discussed. Negotiation control is concerned with
the efficiency and safety of the negotiation protocol. To avoid degradations of per-
formance caused by (apparently) never-ending Tasks, a Peer may perform Task
control operations, i.e. proactive Task preemption or cancellation.

Negotiation Control - Generation of Supplying Requests

Supplying Requests are generated when a Peer cannot schedule all Local Tasks to
its own Resources. A Peer sends supplying requests to other Peers, so as to en-
sure potential Resource availability, before submitting the scheduled Local Tasks
as Consumption Tasks. The emission of supplying requests thus occurs following
Local Tasks scheduling rather than external events (see Sections 2.9.4 and 2.9.2).

It is possible that a consumer Peer that has emitted supplying requests receives
no consumption grants in return after an extended period of time. To prevent this
issue, a timer is introduced to regularly enable the emission of supplying requests
without waiting for the next activation of the Local Tasks scheduling PDP.

The timer is reinitialized with each emission of supplying requests. After a defined
amount of time has elapsed, if Local Tasks are still unscheduled, new supplying
requests are emitted and the timer is reinitialized. Waiting a defined amount of
time before emitting new supplying requests also prevents network overloads21 due

21 Of course, a malicious Peer could attempt Denial of Service attacks on other Peers by
flooding them with control messages, but this issue is specific neither to the emission of supplying
requests nor even to P2P Grids.
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to floods of supplying requests. The timer threshold can be configured by the hu-
man Peer administrator.

Negotiation Control - Evaluation of Negotiation Events

A Peer can immediately evaluate a received supplying request or consumption
grant. However, this does not allow to compare and rank multiple Peers com-
municating negotiation events in a short time span. To accommodate network
delays or small temporal variations in emission time, evaluation of negotiation
events takes place only when the number of Peers which sent negotiation events
(of a given type) exceeds a given threshold. The quantity thresholds (one for con-
sumption grants, one for supplying requests) can be configured by the human Peer
administrator.

Supplying requests or consumption grants may be received infrequently or the
quantity thresholds may be set too high. In these cases, received supplying re-
quests or consumption grants are never evaluated. To prevent this form of dead-
lock, timers also introduced to regularly evaluate the received supplying requests
or consumption grants.

The timer for received consumption grants is reinitialized with each reception of a
first consumption grant. After a defined amount of time has elapsed, the received
consumption grants are evaluated and the timer is reinitialized. The operation of
the timer for received supplying requests is similar. The thresholds of the timers
can be configured by the human Peer administrator.

Consumption Task Control

Consumption Task control is the automatic cancellation of Consumption Tasks
that take too long to complete.

A consumer Peer schedules Consumption Tasks (i.e. submits some of its Local
Tasks) to supplier Peers because it estimates that they will be completed faster
than if they remained queued until some of its own Resources are available. How-
ever, the supplier Peer, even if absolutely reliable, may occasionally be very slow
(i.e. much slower than the consumer Peer), or accept Supplying Tasks despite hav-
ing long BoTs queues. In such cases, it may be more beneficial to the consumer
Peer to cancel some of its Consumption Tasks and schedule them locally on its
own Resources.

A time-out is defined by the human Peer administrator to enable Consumption
Task control. After the defined amount of time has elapsed since a Consumption
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Task has been submitted, the consumer Peer cancels and requeues it into its Local
BoTs queue. After one or more Consumption Tasks have timed-out, both Local
and Consumption Tasks scheduling are activated immediately to try and resched-
ule the cancelled Consumption Tasks.

Supplying Task Control

Supplying Task control is the automatic preemption of Supplying Tasks that take
too long to complete.

Cancelling Supplying Tasks that take too long to complete may be useful to protect
the Peer against middleware-level Denial of Service attacks. Indeed, the absence
of automatic verification of important properties of the code [88, 223] of submitted
Tasks (see Section 2.7.4), cancelling (seemingly) never-ending Local Tasks may be
useful.

For example, a malicious consumer Peer (or malicious User Agent of a well-behaved
consumer Peer) could submit Tasks based on code with critical defects22 such as
never-ending loops. It should be remarked that this issue can arise on a regular
basis without any malicious intention. In the case of parameter sweeps applica-
tions, where the code is shared between all Tasks, a single, critical bug in a Grid
application would be sufficient to “paralyze” a whole Peer if there were no support
for Task control.

A time-out is defined (typically a very long value) by the human Peer adminis-
trator to enable Supplying Task control. After the defined amount of time has
elapsed since a Supplying Task has been scheduled, the supplier Peer preempts
and requeues it into its Supplying BoTs queue. After one or more Supplying
Tasks have timed-out, both Local and Supplying Tasks scheduling are activated
immediately to try and reschedule the preempted Supplying Tasks, as well as any
newly queued Local Task.

A supplementary mechanism also forces the cancellation of a Supplying Task after
a fixed number of preemptions initiated by the Task control mechanism.

Local Task Control

Local Task control is the automatic preemption of Local Tasks that take too long
to complete.

22 It must be noted that the Resource middleware severely restricts access to O.S.-level re-
sources. It also limits the quantity of RAM available to the Task. See Section 2.7.4.
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The motivations raised for Supplying Task control, such as protection against code
with never-ending loops, also apply. Moreover, preempting (seemingly) never-
ending Local Tasks protects the Peer against Resources that are unexpectedly
slow, e.g. due to faulty hardware. Furthermore, the absence of a mechanism al-
lowing the human Peer administrator to select which Resources can be registered
(such as authenticated GNMP messages or a simple web-based interface) enables a
potential site-level attack: Some malicious Resource human administrators (when
different from the Peer human administrators of a site) could register with the
Peer (see Section 2.7.6) some exceedingly slow Resources, effectively slowing down
the completion times of any Task running on them.

A time-out is defined by the human Peer administrator to enable Local Task con-
trol. After the defined amount of time has elapsed since a Local Task has been
submitted, the Peer preempts and requeues it into its Local BoTs queue. After
one or more Local Tasks have timed-out, Local Tasks scheduling is activated im-
mediately to try to reschedule the preempted Consumption Tasks.

2.9.7 Concurrency Management

Peer Threading Model

As the interactions between Grid nodes are asynchronous, a Peer may interact
concurrently with multiple other Grid nodes. Internal events are also triggered
asynchronously. Moreover, concurrently running Peer components may increase
the efficiency of internal Peer operations. A Peer can thus certainly be considered
as a multithreaded, event-driven system.

Figure 2.26 illustrates the threading model of a Peer. Peer threads and their in-
terdependencies are represented. The arrows represent execution control. The
service thread receives incoming GNMP messages (see Figure 2.15 for a close-up
of the Peer service) and passes them to a pool of helper threads [99] for processing.
Internal events are periodically processed in the internal events processor thread.
The Scheduler and the Negotiator are both run in their own separate thread. A
console thread enables limited interactions with the human administrator of the
Peer, e.g. logs displaying. The embedded BitTorrent and FTP software that man-
age data transfers also run multiple threads (not illustrated).

Code Synchronization

Code synchronization in the LBG middleware, though being an implementation
issue, is briefly discussed given its high importance in practice [103, 102]. The
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Figure 2.26: Threading model of Peer middleware.

components of the Peer middleware are thread-safe. Methods are synchronized on
their respective owner object using the Java method-level synchronization mech-
anism [178, 49]. Many Peer operations are further synchronized on the RMS
(see Section 2.7.6). Indeed some Peer components - such as the Scheduler - first
evaluate the state of the Resources of the Peer, then select and finally perform
operations on some of them through the RMS. For example: List idle Resources,
select one Resource according to a given metric, then run a Task on this Resource.
Using the RMS may thus be a multi-step operation in some cases. In these cases,
the synchronization level on the RMS could be reduced to smaller code chunks,
thus increasing performance of Peer components, if a transactional mechanism at
a finer level were implemented.

Control of the Execution of Scheduling and Negotiation Policies

Multiple scheduling PDPs may be activated concurrently. Each of them can also
be activated multiple times in a short time span. Moreover, some scheduling poli-
cies may be long-running. A Scheduler controller is introduced to control their
activation and prevent deadlocks.

A Scheduler controller is defined as a possibly-time-delayed communication chan-
nel. It makes a set of control flags available to other Peer components. There
are two types of atomic operations on a set of control flags: (1) raise one or more
flags, (2) read and lower all flags. Each control flag corresponds to a request of
activation of a corresponding scheduling PDP (see Section 2.9.4). Multiple policies
may be activated at the same time by raising the appropriate flags.

When at least one flag is raised, the Scheduler controller notifies the Scheduler,
which was waiting. When awoken, the Scheduler reads the activation flags of the
controller - which resets them - and proceeds to execute the requested schedul-
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(a) (b)

Figure 2.27: (a) Scheduler and (b) Negotiator controller operations.

ing policies in its own thread. Additionally, when the Scheduler returns from a
scheduling PDP, the Scheduler controller checks its flags in case some were raised
when the Scheduler was running.

A Negotiator controller is also introduced to control the activation of negotia-
tion PDPs. Its interactions with the Negotiator are similar to those between the
Scheduler controller and the Scheduler. A summary of Scheduler and Negotiator
controllers operations is presented in Figure 2.27.

The service and internal events processor activate a scheduling or negotiation PDP
through, respectively, the Scheduler controller or Negotiator controller. In turn,
this controller activates the Scheduler thread or Negotiator thread. Importantly,
an activated scheduling or negotiation PDP is therefore not necessarily activated
immediately.

2.9.8 Peer Data Management

The Peer Data Manager, sometimes called Storage Service in the literature, is
the Peer component responsible for managing the input data of the Peer’s own23

Tasks [56, 57], i.e. Local and Consumption Tasks. Each Peer Data Manager is
equipped with a data cache to provide data storage support. Each Peer Data
Manager is equipped with BitTorrent and FTP software components to share the
input data files of Tasks submitted by User Agents: It is discussed in Chapter 5
(Section 5.2.2), as data-related operations are independent from other operations.

23 For scalability, management of input data files of Supplying Tasks is done by the consumer
Peer, never by the supplier Peer, as will be discussed in Chapter 5.
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2.10 Summary of the Contributions

In this chapter, we have proposed a new P2P Grid architecture - the Lightweight
Bartering Grid architecture [59] (LBG). The selected Grid application model
is the Bag of Tasks developed in Java. Grid nodes consist of Resources that con-
tribute computational power to the Grid, Peers that manage the sharing of Re-
sources’ computing time, and User Agents that submit computational requests.
The distinction between Peers and Resources enables to build a 2-levels P2P
Grid based on bartering. A scalable data transfer architecture for LBG is in-
troduced in Chapter 5.

An original contribution in the design of architectures for bartering-
based 2-levels P2P Grids is a scheduling model that supports queueing.
Queueing of Supplying Tasks enables batch-mode scheduling and it also enables
the possibility to reschedule preempted Supplying Tasks. Our proposed schedul-
ing model for Local Tasks, i.e. without bartering, is similar to the classic WQ-R
model [71] (WorkQueue with Restart), augmented with support for knowledge-
free (i.e. not depending on runtime estimates), ranking-based Task selection and
ranking-based Resource selection. When introducing bartering, scheduling is not
as straightforward. Our proposed scheduling model for Consumption Tasks and
Supplying Tasks depends on several policy decision points (PDPs) that enable
many combinations of policies to address various concerns, in particular data
placement. The proposed Grid Node Messaging Protocol (GNMP), used by Grid
nodes to communicate control messages, facilitates the virtualization and simula-
tion of Grid nodes, as will be discussed in Chapter 3. This, in turn, facilitates the
debugging and testing of the LBG middleware as well as the development and per-
formance evaluation of bartering policies, a few of which are proposed in Chapter 4.

Worthwhile areas of further research include the support for Task replication and
Task benchmarking in the scheduling model, as well as compliance of GNMP with
standard Grid protocols (see Appendix E.2).



Chapter 3

Software Engineering and
Simulation of P2P Grids

What is the Matrix? Control.
The Matrix is a computer-generated
dream world . . .

- Morpheus

Reproducible testing of P2P Grid middleware is extremely challenging given the dis-
tributed nature of the involved software and faults. To address this challenge, Grid
nodes are first virtualized and run in a fully controlled environment that simulates
a real computer network. Lengthy operations, such as Task execution and timers,
are then abstracted so as to enable temporally-scalable testing, i.e. compacting to
a few minutes the time to simulate a few days of operations. This abstraction
is realized through a discrete-event simulator that is weaved into the code of the
virtualized middleware. As a consequence, most of the code of the middleware and
simulator implementations is shared and reused. By enabling to run a virtualized
version of a P2P Grid on a single computer, reproducible executions become not
only possible but also temporally-scalable. Experiments are performed using the
LBG simulator.

In Chapter 2, we proposed P2P Grid software, the Lightweight Bartering Grid
architecture, with comments on the implementation of the corresponding middle-
ware (composed of the User Agent, Peer and Resource middlewares). This Grid
middleware is designed to operate in a P2P environment which, by nature, is dis-
tributed and unreliable. Debugging and evaluating the performance of software
components in such an environment is therefore challenging.

Feeding synthetic or trace workloads to bartering policies within a controlled en-
vironment is a common and useful technique for the evaluation of new bartering
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policies. Simulation of a P2P Grid can abstract the environment of Grid nodes
as well as their time-consuming operations, such as Task execution. Simulation
allows to run a whole Grid in a controlled environment, running on a single com-
puter rather than on many real computers communicating over the Internet. This
enables to reproduce and observe the behavior and interactions of Grid nodes in
a controllable and reproducible fashion.

An original contribution of our research is the first large-scale, top-down appli-
cation of the code once, deploy twice pattern [63, 59], introduced by the contem-
porarily proposed GRAS (Grid Reality And Simulation) component [253] of the
SimGrid [78, 278] middleware. We propose to virtualize Grid nodes so that the
P2P Grid middleware and the simulator of P2P Grid share most of their code,
bringing several interesting benefits. In particular, this enables the easy testing
and debugging of most of the P2P Grid middleware code (not only bartering poli-
cies) within the simulator environment.

This chapter is structured as follows. We first motivate our research by describ-
ing challenges in the performance evaluation of scheduling algorithms and in the
software engineering of P2P Grid middleware. Design objectives for the develop-
ment of a discrete-event P2P Grid simulator based on the code once, deploy twice
pattern are then given, along with expected use cases. Background information
is provided and related work is reviewed. We explain how to weave together the
simulator code, the code of simulated Grid nodes and the bartering code: Grid
nodes are virtualized so that most of their code (particularly Peer bartering code)
can be reused in a simulated environment. The proposed simulator of P2P Grid
and the simulation parameters are then described. Finally, experimental results
are presented and the contents of this chapter are summarized.

3.1 A Simulator of P2P Grid

3.1.1 Purpose and Benefits of Simulation

Performance evaluation of bartering (i.e. scheduling, negotiation,. . .) algorithms
is very difficult, if not impossible, to achieve through analytical models given
the complexity of the modelled system. As scheduling is a computationally hard
problem, most scheduling algorithms are heuristics. Their performance is usually
compared and evaluated experimentally, according to the values of metrics such
as mean BoT response time (MBRT), utilization, cancellation history, . . . It is
consequently important to be able to reproduce at will a given Grid environment
so that comparison of such algorithms is meaningful.

Simulation attempts to predict aspects of the behavior of some system by creating
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an approximate mathematical model of it [208]. The purpose of a discrete-event
system simulator is to provide a controlled environment to evaluate a system, or
some process or interactions between a set of entities. In general, simulators are
used to evaluate the performance of algorithms or optimize their parameters.

The advantage of simulation is that it suffers from none of the stated issues associ-
ated with analytical models or testbeds: It is easier to implement a simulator than
to develop analytical models (which might not even be feasible for a P2P Grid)
and using a simulator makes experiments totally controllable and reproducible.

Moreover, the temporal cost of simulation can be very small compared to the real
execution of a system because time-consuming operations, e.g. Task executions
and network transfers, are abstracted. It is thus possible to reduce real execution
times of several days down to a few minutes. A discrete-event P2P Grid simulator
is thus an efficient tool to evaluate the behavior of new bartering policies.

3.1.2 Software Engineering Challenges in P2P Grids

A P2P Grid environment is typically very dynamic and uncontrollable, making it
exceedingly difficult to reproduce even basic behavior of Grid nodes (Peers, Re-
sources, User Agents) in a controllable and reproducible manner. Additionally to
issues related to performance evaluation - which can be alleviated through simu-
lation - this introduces challenges in the software engineering of a P2P Grid.

Testing and debugging the implementation of bartering policies and associated
P2P Grid middleware is difficult because of the multiple sources of failure that
can arise in a distributed environment. A recent report [52] on the software en-
gineering of the OurGrid middleware [233, 13, 84, 286] confirms this is a major
issue that complicates the development of P2P Grids. It is thus valuable to be
able to reproduce at will the conditions that lead to an unexpected outcome or to
a failure of the P2P Grid middleware.

3.1.3 Design Objectives of a P2P Grid Simulator

To address the stated software engineering challenges in the development of P2P
Grid middleware, we propose to develop a discrete-event simulator of P2P Grid
based on the code once, deploy twice pattern. We set out two design objectives.

The first objective is to maximize the accuracy of the P2P Grid simulator. This is
an obvious requirement. However, we propose to achieve it in a way that has been
little explored in the Grid domain: by directly embedding the simulator into the
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system to simulate, rather than including components of the system - most often
simplified - into the simulator. Consequently, the same bartering policies are used
in both the middleware and the simulator.

The first objective is reformulated as embedding the code of the simulator with
the bartering code of the Lightweight Bartering Grid architecture, i.e. scheduling
and negotiation algorithms, Resource management, queueing, . . . It means that
both the middleware and the simulator use the same bartering code but some
operations, notably interactions between Grid nodes and Task execution, are ab-
stracted in the simulator. A consequence is that the simulator and middleware
can be shipped together and deployed from the same software package.

Embedding the code of a discrete-event simulator into the code of a large dis-
tributed system - especially if involving efficient management of multithreading
- can be challenging. This probably explains why, besides the SimGrid simula-
tor [78, 278], there have been very few attempts so far.

The first objective is covered in Sections 3.2, 3.3 and 3.4.

The second objective is to facilitate the definition of Grid configurations and test
new scheduling and negotiation algorithms, which is the basic capability of the
intended P2P Grid simulator. A common way to do so is to define a simulation
description language that enables the easy and accurate simulation of a P2P Grid
with a given configuration.

The second objective is covered in Section 3.5.

In a nutshell, the simulator takes a simulation description file as input, lets Grid
nodes interact and provides execution statistics as output. A diagram of the sim-
ulator is presented in Figure 3.1.

3.1.4 Expected Use Cases

Coding scheduling and negotiation algorithms once, and deploying them twice is
possible by using both simulation and virtualization as software engineering tools.
At least three distinct use cases can be envisioned for a P2P Grid simulator based
on these ideas.
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Figure 3.1: Diagram of the discrete-event simulator of P2P Grid. Simulated User
Agents, Peers and Resources, as well as the event processor, event list, environment
controller and simulation clock are all run within the main simulator thread, on a
single computer.

Performance Evaluation of Bartering Policies

The main purpose of a P2P Grid simulator is to facilitate the development and
deployment of new scheduling and negotiation algorithms. An algorithm that
is available in the simulator can be used right away in the middleware, without
any additional coding. Performance evaluation of new scheduling and negotiation
algorithms is greatly facilitated as the algorithms are executed in a controlled en-
vironment and within a time frame that is orders of magnitude faster than if they
were executed directly on real computers.

Teaching of Advanced Topics in Distributed Computing

In the same way network simulators are of interest to the teaching of advanced
courses on computer networks [294, 204], using a Grid simulator as an educa-
tive tool is of interest in higher education programs offering advanced courses of
distributed computing [220, 288] in their curriculum. Describing distributed ar-
chitectures and algorithms may be challenging because of the multiple levels of
abstraction that are involved. Letting students use a simulator to help them ac-
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quire a deep understanding of the relationships between software components, as
well as their impact on the overall distributed system, is therefore very useful. The
accuracy brought by executing the same bartering policies in the simulator as in
the middleware is thus of high interest in this context.

Implementation of P2P Grid Middleware

Following the code once, deploy twice pattern, it is not needed to build a simula-
tor of P2P Grid separately from a P2P Grid middleware. Unnecessary software
engineering efforts are avoided thanks to massive code reuse. The testing and
debugging of P2P Grid middleware are greatly facilitated because most of the
middleware code can be run in the controlled and reproducible environment of the
simulator.

3.2 Related Work

In this section, possible levels of virtualization are first discussed. Discrete-event
system simulation is shown to be an excellent trade-off, and then described. Sec-
ondly, the limited number of existing Grid simulators and emulators are reviewed.

3.2.1 Virtualization Levels

Virtualization is the injection of an abstraction layer between an application and
some Resources used by that application. It provides a logical rather than physical
view of data, computing power, storage capacity, and other resources involving the
simulation of combined, fragmented, or simplified Resources. There exists multi-
ple levels of virtualization. The following classification of virtualization levels is
inspired by Casanova et al.’s [78].

Virtual Machines and Time-Based System Simulators

At a low level, the hardware environment of the system is completely or partially
abstracted. So-called virtualization technologies operate at this level. Resources
run unmodified in a virtual machine (VM) that is controlled by a virtual machine
monitor (VMM), also called hypervisor.

This virtualization level is actually emulation. It does not require any modification
of the studied system. In practice, it can enable to easily debug network commu-
nications of a middleware. But system simulation within a VM can be very slow,
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as the system operates at most as fast as nominal runtime speed. Simulating one
hour of operation of a system within a VM takes at least one hour. Simulating
Grid operations that span many hours quickly becomes untractable.

Discrete-Event System Simulators

At a higher level, some operations of the system itself are simulated. The system
is run, and controlled, by a discrete event system simulator (see Section 3.2.2).

System simulation within a simulator can be fast to very fast, as most time-
consuming operations can be abstracted. Moreover, communication between sys-
tem components is very fast because these components are implemented to run
together, using the same memory heap. This heap usually resided in the memory
of one computer only, thus abstracting all the communication times. Simulating
one hour of operation of a system may be as fast as a few minutes or even seconds.

Mathematical Simulation

At the highest level, most operations of the system are abstracted with an analyt-
ical model. The system is controlled by a simple simulator. On one hand, system
dynamicity is difficult to take into account, and complex systems are complex to
model. On the other hand, it is very fast if a suitable model is available, which is
typically not the case for Grids.

3.2.2 Discrete-Event System Simulation

Discrete-event system simulation [36] is the modelling of a system over time through
its state and a sequence of events, with the understanding that:

• a system is loosely defined as a group of entities interacting with one another;

• the system state is a set of variables;

• a simulator event1 represents an asynchronous change in system state and is
associated with a timestamp.

There are three classic formalisms to describe the simulated system [179]: Activity
Scanning, Event Scheduling and Process Interaction.

1Simulator events are distinct from Grid nodes events introduced in Section 2.9.2, even though
they may be related to them.
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Figure 3.2: Event processor and event list (with 7 events stored at 3 timestamps).

• Activity Scanning “is a form of rule based programming, in which a rule is specified
upon the satisfaction of which a predefined set of operations is executed.” [179]

• With the Event Scheduling formalism, events are defined “at which discontinu-
ous state transitions occur” and “can cause, via scheduling, other events to
occur.” [179]

• With a Process Interaction formalism, “each process in a simulation model specifi-
cation describes its own action sequence.” [179]

Event Scheduling is the most appropriate formalism to build a simulator of P2P
Grid in the context of this dissertation because it enables to express the simulation
problem in a natural way. Furthermore, simulators based on the Event Scheduling
formalism are usually considered faster than those based on the other two for-
malisms [179]. On the downside, it can be much harder to implement.

The operations of a discrete-event system simulator based on the Event Schedul-
ing formalism (in the following: simulator, for short) are organized around the
management of an event list. The event list is the data structure that maintains
future events ordered by increasing timestamp. Events with a similar timestamp
are grouped together into an event set: See Figure 3.2, where three sets are repre-
sented. Events are inserted into an event list with respect to their timestamp.

Management of the event list is often performed with the Event Scheduling/Time
Advance algorithm [36]. Basically, the main simulator loop extracts events from
the event list, one at a time:

• The simulator sequentially extracts events at the head of the event list;

• When a simulator event is extracted from the event list, the simulator updates
the global system time to the value of the timestamp of this event;

• To process an extracted event, the event processor updates the system state and
may insert new simulator events into the event list, in correct temporal order.
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If multiple events happen at the same time, i.e. they have the same timestamp,
they are inserted into/extracted from the event list in an arbitrary, but repro-
ducible, order among other events with the same timestamp.

A simulation is started by initializing system state and system time, and also by
inserting one or more initial events into the event list. The simulator then enters
into its main loop to process events one by one.

A simulation could run forever as long as it is fed new simulator events. Typically,
criteria to stop simulation include [120]: the simulated system time has exceeded
a certain value; the number of events inserted into the system has exceeded a cer-
tain threshold; some (possibly indirect or composed) measure of system state has
reached a certain value.

Statistics on the state of the simulated system are collected regularly by the sim-
ulator, and constitute its output data.

3.2.3 Review of Existing Grid Simulators

Time-based Grid simulators and discrete-event Grid simulators are now reviewed.
An overview of the SimGrid discrete-event Grid simulator is then given, which
leads to the rationale of developing a new P2P Grid simulator.

Time-Based Grid Simulators

Firstly, time-based Grid simulators are reviewed. These are actually emulators as
the Grid middleware code to be simulated is actually run as-is in an emulated en-
vironment, the virtual machine. Their purpose is to increase the ease and accuracy
of the simulation, at the cost of a huge performance penalty. Indeed, running a
time-based Grid simulator takes nearly as much time to simulate as it would take
to actually run this software in a real environment.

OptorSim [70] is a Grid emulator that targets Grids processing massive amounts of
data and in particular dynamic data replication policies.

MicroGrid [316] is a Grid emulator that is built on top of several existing simulation
packages. It targets large-scale Grid deployments.

P2P Realm [198, 197] is a P2P emulator targeted specifically for the P2PDisco [28, 196]
P2P Grid middleware. It is oriented essentially towards network-level simulation rather
than middleware-level or application-level simulation. As it is not scalable, a true
discrete-event system simulator is under development to simulate P2P Disco.
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Discrete-Event Grid Simulators

Secondly, discrete-event Grid simulators [36] are reviewed. Their performance may
be orders of magnitude faster than emulators, as explained in Section 3.2.1. In the
following review, only the global simulation model of the simulators is given; for
more complete analysis of the simulation models, we refer the interested reader to
the excellent review provided by Casanova et al [78].

Historically, Bricks [3] has been the first Grid simulator. It was thus still oriented to-
wards centralized Resource sharing (see Section 1.1.3).

ChicSim [257, 81] is a Grid simulator built on top of Parsec [239]. It targets Grids that
process massive amounts of data and, specifically, helps to study the performance of
dynamic data replication policies.

GangSim [128] is a Grid simulator built on top of Ganglia [217]. It targets negotiation
of Service Level Agreements. It has a great focus on Grid monitoring given that it is
actually a heavily modified version of Ganglia.

A P2P Grid simulator has been released to support the Resource usage accounting
research [266, 265] of the OurGrid middleware.

GridSim [69] is a Grid simulator built on top of SimJava [169], a Java toolkit to build
simulators. It targets the simulation of the Grid economy, or market-based negotiation
and scheduling algorithms. Interestingly, it features a user interface that makes it easy
to write simulation scenarios [288]. It is currently deployed as a tool to support teach-
ing of distributed computing courses [220].

GSSim [201] is a Grid simulator built on top of GridSim. It shares with SimGrid and
our proposed Grid simulator the goal to virtualize a Grid in order to use the same code
both in the simulator and the middleware code. Like SimGrid, it targets the evaluation
of scheduling algorithms. However, code reuse is limited to the scheduling algorithms.
A related web portal [162] acts as a repository of trace workloads and scheduling al-
gorithms.

SimGrid [78, 278] is a very advanced and flexible Grid simulator and middleware. It
targets the evaluation of scheduling algorithms. Code reuse is an important design
goal. It also offers a rich API allowing developers to easily simulate, and also run as
part of a middleware, code that is built on top of SimGrid components. SimGrid is
programmed in C but Java and C++ interfaces are available. SimGrid popularity has
been steadily increasing: It has recently been used to simulate the BOINC Volunteer
Grid middleware [277].
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Simulation model Technology Project activity

Bricks discrete-event Java inactive
ChicSim discrete-event C, Parsec inactive
GangSim discrete-event C, Ganglia inactive
GridSim discrete-event Java, SimJava active
GSSim discrete-event Java, SimJava active

MicroGrid time-based C, *aSSF active
OptorSim time-based Java inactive

OurGrid sim discrete-event Java inactive
P2P Realm time-based Java, Chedar active

SimGrid discrete-event C active
+ code 1, deploy 2 + Java, C++ interfaces

Table 3.1: Key features of reviewed Grid simulators.

Table 3.1 summarizes key features of the reviewed Grid simulators. Existing Grid
simulators are mostly discrete-event system simulators. Half have been developed
in Java, and half have been developed in C. Not all of them have stood the test of
time and remain the object of active research projects.

Overview of SimGrid

Thirdly, the discrete-event system simulator most closely related to our work, Sim-
Grid [78, 209, 253, 77, 75, 278], is reviewed more extensively. GRAS [253, 252]
is a component of SimGrid that enables to code once, deploy twice Grid decision
making capabilities (see Section 3.1.4). It can enable the easy deployment of bar-
tering policies as part of a Grid middleware and as part of a simulator.

GRAS targets applicative overlay applications2: It exposes an API composed of a
set of low level primitives suitable for communications in P2P Grids. GRAS would
correspond to LBG’s Grid Node Messaging Protocol (GNMP) services and handles
(see Section 2.8) packaged into an API, augmented with timing management.

Weaving simulator code into the LBG middleware code is quite different from the
GRAS software development model. GRAS requires to adhere to its API when
developing decision making code. The LBG simulator, on the other hand, is tai-
lored to the LBG middleware, which is more natural given the exploratory nature
of our research.

2“GRAS is not a grid middleware in the common understanding of the world, but rather a tool
to constitute the building bricks of such a middleware. GRAS is thus a sort of ‘underware’.” [175]
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All P2P Grid middlewares that were reviewed in Section 2.5.2 are developed in
Java, probably because Java is particularly suitable to develop Internet-facing soft-
ware. GRAS is developed in C, which is a good choice in itself. Given that LBG
is developed in Java, using GRAS through JNI would be possible but performance
penalties would have to be evaluated.

Rationale for a new P2P Grid Simulator

In the course of our research work we independently arrived at the conclusion that
code once, deploy twice is a powerful idea that can really help the software engi-
neering of P2P Grids. We have followed a top-down approach to the virtualization
and simulation of Grid middleware that can be retrospectively considered as the
first application to a complete P2P Grid middleware of the code once, deploy twice
pattern that was contemporarily proposed by GRAS/SimGrid [253, 252].

GRAS/SimGrid is an exciting project that is probably on its way to become a
reference tool in the universe of Grid simulators. To the best of our knowledge, it
is the only existing Grid simulator to support the code once, deploy twice pattern.
Put simply, there is no other approach besides GRAS/SimGrid that addresses the
issues discussed in this chapter.

Had we started our research in 2008, GRAS/SimGrid would have constituted an
excellent choice to enable the virtualization and simulation of LBG. However, the
integration of GRAS/SimGrid with the LBG middleware code would have required
more effort than directly weaving simulator code with the LBG middleware due to
the development model and different implementation language. More importantly,
it is only recently [78] that the simulation of multithreaded code was supported
through the SimIX component of SimGrid.

Other simpler, Java-based Grid simulators, e.g. GridSim [69], might have been
considered to implement the simulation core itself (orthogonally to the code once,
deploy twice pattern), but rare are those that provide an expressive simulation
description language [153]. Indeed, one strength of the LBG simulator is its simu-
lation description language (introduced in Section 3.5) that is specifically tailored
to the configuration of Peer policies. This tight integration makes it easy to run
large parameter sweeps of tens of thousands simulation configurations (as discussed
in Section 6.1).



3.3. Grid Nodes Virtualization 92

3.3 Grid Nodes Virtualization

We now explain how Grid nodes of our proposed P2P Grid architecture are vir-
tualized. Simulated Grid nodes are instantiated during the initialization of our
proposed Grid simulator (see Figure 3.1). The code of these simulated Grid nodes
is loaded (using the Java VM class loader) and shared among all instances, but
each simulated Grid node has its own separate data structures (those of Peers grow
over time due to the storage of metadata about interactions with other Peers).

The code of the simulator implementation of Grid nodes is identical to the code
of the the middleware implementation. However, some parts of the code have two
distinct implementations: One is activated in the simulator, the other one is ac-
tivated in live Grid nodes. The dual-implemented Java classes are those involved
in communications between Grid nodes, multithreading activities and Task exe-
cution. The simulated Grid nodes have to be virtualized, i.e. isolated from their
environment. They should have no awareness of the fact that they are being run
within the same thread of the same Java VM and interact with a fully controlled,
virtualized environment. This corresponds to the virtualization of the Fabric, Con-
nectivity and Resource layers [150] in Foster et al.’s Grid architecture.

The virtualization of the Grid nodes code from the middleware implementation
is described in this section. The virtualization of communications between Grid
nodes is first discussed, followed by the virtualization of Grid nodes themselves.
The virtualization of multithreading activities is essentially done for Peers, while
the virtualization of actual Task execution is essentially done for Resources. Fig-
ure 3.3 illustrates the differences in execution paths in the case of a live Grid and
of a simulated Grid.

3.3.1 Grid Nodes Messaging Virtualization

To achieve the isolation of Grid nodes from their simulated environment, interfaces
should be placed at the locus of minimum data flow with the environment. In the
LBG architecture, this corresponds to the Grid Node Messaging Protocol (GNMP)
services interfaces (see Tables A.2, A.3 and A.4) as GNMP messages pass through
handles and services (see Section 2.8).

In the middleware implementation, a handle performs a network call to send a mes-
sage to the corresponding service. In the simulator implementation, the network
call is replaced by a method call as all handles and services reside in the same Java
VM; the transmission of simulated GNMP messages is considered to be infinitely
fast and does not cause the system time to be updated. This is a reasonable as-
sumption given the context of a P2P Grid, which is intended to process mostly



3.3. Grid Nodes Virtualization 93

(a) Live Grid nodes

(b) Virtualized (simulated) Grid nodes

Figure 3.3: Peer-to-Resource interaction illustrating the difference in execution
paths between (a) live Grid nodes, (b) virtualized (simulated) Grid nodes.
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long-running (i.e. at least a few seconds), Grid applications. The processing of
the contents of GNMP messages by Peers is identical in the simulator and in the
middleware implementations of Peers. The processing of the contents of GNMP
messages by Resources and User Agents varies between their simulator and the
middleware implementations because Task execution and interactions with human
users are virtualized, i.e. interactions with entities outside of the middleware.

3.3.2 Resource Virtualization

The simulated and the middleware versions of a Resource share some common
code. The common code encompasses the update of the state of the Resource and
the management of Tasks metadata. In both implementations, Tasks are handled
similarly within the Resource state space.

The two implementations are also different with respect to Task execution and
cancellation. Data transfers and data storage on a Resource are not simulated.

Simulation of Task Execution

The middleware implementation of the runTask() operation (see Table A.3) con-
sists of launching within a helper thread an execution module that asynchronously
starts and controls a new Java VM to run the Task (see Section 2.7.1). This is
done in order not to block the Resource service thread, which had invoked the
runTask() operation.

The simulator implementation of runTask() essentially consists of computing the
completion time of the simulated Task in function of the computing power of
the simulated Resource, and of the Task nominal runtime. In the simulation
description file (see Section 3.5), the simulated Resources are configured with a
computing power, by the human user of the simulator. Also in the simulation
description file, the description of the synthetic workload (to submit by simulated
User Agents) associates a nominal runtime to the simulated Tasks. This nominal
runtime is given for a Resource with a computing power of one unit. It is thus
straightforward to compute the completion time of a Task of given nominal runtime
on a Resource of given computing power.

Simulation of Task Cancellation

The middleware implementation of the cancelTask() operation on a Resource
(see Table A.3) consists of asking the execution module to destroy the Java VM
where the Grid application is running.
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The simulator implementation of the cancelTask() operation on a Resource is not
as straightforward because the state of the simulated Resource must be updated
in case of simulated Task execution failure. A Task, whether submitted to a live
P2P Grid or in the simulator of P2P Grid, may be cancelled because:

• the owner Peer of the Resource decides to cancel the Task because

� the Task has timed-out (see Section 2.9.6),

� or it is a Supplying Task cancelled by its consumer Peer (see Section 2.9.6);

• (in the simulator implementation only) the simulated Resource cancels a Task
to simulate Task execution failure, which causes the simulated Resource to
signal its owner Peer to initiate preemption of the running Task;

• the owner Peer has received a preemption signal from the Resource and accord-
ingly updates its internal state, then signals back the Resource to update its
internal state too (the Resource expects this message from the Peer because
it is important that the Peer updates its internal state).

Simulation of Task Execution Failure

To test Peer behavior and the performance of scheduling algorithms in presence of
Resource failure, simulated Resources can be configured to exhibit an unreliable
behavior. If a simulated Resource is configured to be unreliable, its runTask()

operation fails some executions by inserting a FailedTaskEvent instead of a Com-
pletedTaskEvent into the event list (see Section 3.4.2). As Task execution failures
due to Resource failure are supposed to be rare events, they can be modelled by
a Poisson process [36], i.e. in practice with a negative exponential distribution [135].

3.3.3 Peer Virtualization

The Peer middleware and simulator implementations differ only in how multi-
threading is implemented. Figure 3.4 illustrates the middleware and the simulator
implementations of Peer threads.

In the middleware implementation, many threads (including the service, internal
events processor, Scheduler, Negotiator and data management threads) are started
when the Peer comes online.

In the simulator implementation, a time-delayed communication channel for ac-
tivation signals - the environment controller - is instantiated and no thread is
started. The Scheduler, Negotiator, internal events processor and service threads
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(a) (b)

Figure 3.4: (a) Middleware, (b) simulator implementation of Peer threads.

are simulated. The Peer service, Scheduler controller (not shown) and Negotiator
controller (not shown) are reimplemented to simulate multithreading.

Multithreading Virtualization

In the middleware implementation, a large number of threads are running in every
Grid node. Although the service (see Sections 2.8 and 2.9.2) of every Grid node
is simulated, service threads are not. Indeed, the services are purely reactive de-
vices. The simulation of helper threads used for Task execution and data transfers
is straightforward as these operations are abstracted into a very simple model.

The challenge therefore consists of simulating the scheduler and internal events
threads of every simulated Peer. Running all Scheduler, Negotiator and inter-
nal events threads within the simulator would be possible but would degrade the
simulator scalability as the number of threads would be linear with the number of
simulated Peers. The Schedulers, Negotiators and internal events processor should
therefore not run within their own, dedicated threads. We propose that the simula-
tor regularly activates every Scheduler, Negotiators and internal events processors
to simulate the multithreading activities of the middleware implementation.

Environment Controller

To simulate the multithreading of the Scheduler and Negotiator threads, we in-
troduce a device called environment controller. It is defined as a time-delayed
communication channel used by the Schedulers and Negotiators of Peers, through
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(a) (b)

Figure 3.5: (a) Scheduler-related, (b) Negotiator-related Environment Controller
operations.

the Negotiator and Scheduler controllers (see Section 2.9.7, in particular Fig-
ure 2.27), to activate Scheduling and/or Negotiation policies of this Peer.

When scheduling or negotiation policies are activated, a signal is sent to the ap-
propriate Scheduler or Negotiator controller. In the simulator implementation,
this signal is not immediately forwarded to the Scheduler or Negotiator. Instead,
notification is simulated by the update of the state of the environment controller,
through the raising of corresponding flags (see Figure 3.5).

Multithreading is simulated after all simulator events at the current timestamp
have been processed (with all reactive interactions between Grid nodes completed).
At this point the environment controller is activated. In turn, it activates the
Scheduler, Negotiator and internal events processor of every Peer in arbitrary or-
der. The environment controller reads - and resets - its state for every Peer: When
activation signals have been stored for a given Peer, the corresponding Scheduler
or Negotiator is activated. The internal events processor is systematically acti-
vated for each Peer every simulated time unit, i.e. after all events with a given
timestamp have been processed (see also Appendix C.3).

The environment controller is activated after the processing of simulator events
with the same timestamp. This is done to guarantee the completion of all inter-
actions between Grid nodes that result from events with that timestamp. The
environment controller could be activated after the processing of each simulator
event. This would require supplementary coding in the current implementation
for probably limited benefits. The environment controller could also be activated
during the processing of each simulator event. That would require simulator-level
multithreading, with a number of threads linear with the maximum number of
simulated Peers that could be involved in cascade interactions. However, running
a large number of threads in the same Java VM would not be tractable in practice.
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3.3.4 User Agent Virtualization

The simulator implementation of a User Agent is simple: It only counts completed
Tasks and BoTs, and does not have to retrieve output data files.

3.4 Simulator Implementation

The implementation of major simulator components (main simulator loop, simula-
tor event processor and simulator clock - see Figure 3.1) is described in this section.

3.4.1 Main Simulator Loop

One Iteration of the Main Simulator Loop

If an event extracted from the event list has a timestamp strictly greater than the
timestamp of the previously extracted event, the simulator updates the system-
wide clock to simulate the advance of time.

The processing of each event consists of updating the state of the simulated sys-
tem. During the processing of a simulation event, a new simulation event may be
generated, and inserted into the event list. The processing of a simulator event
may lead to Grid nodes exchanging (simulated) GNMP messages with one another.
Given the code once, deploy twice pattern, the processing of the contents of
GNMP messages by Peers is identical in the simulator and in the mid-
dleware implementations.

Figure 3.6 gives the skeleton of the algorithm (presented with a Java syntax) of the
main simulator loop (see Section 3.2.2). As can be seen, scheduling and negotiation
operations are activated by the environment controller (cf. previous section), if
the two following conditions are verified:

• All the events happening at the current timestamp have been processed;

• Scheduling or negotiation signals have been communicated by some Peer man-
agers to some Scheduler or Negotiator controller during the processing of the
events at the current timestamp.

Termination of the Main Simulator Loop

The main simulator loop stops when the event list is empty. As Tasks complete
their simulated execution, simulator events are eventually removed from the event
list. Nonetheless, new simulator events are inserted into the event list as long as
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simulated User Agents submit Tasks to Peers. The simulated User Agents must
thus be configured to submit a finite amount of Tasks to Peers, so that the simu-
lator stops after a finite period of time.

As explained in Sections 2.9.2, 2.9.7 and 3.3.3, a Peer service is a purely reac-
tive device. It may use some Peer managers, such as the Queue Manager (see
Section 2.9.3). These may in turn try to activate scheduling or negotiation oper-
ations. But contrarily to what happens in the middleware implementation, these
signals are not immediately communicated to the Scheduler and Negotiator con-
trollers (see Section 2.9.7, in particular Figure 2.27).

In the simulated implementation, the environment controller (see Section 3.3.3)
is notified instead. The environment controller stores scheduling or negotiation
signals, but does not process them immediately, independently of the number of
managers of a given Peer that have requested the activation of scheduling or ne-
gotiation operations. It is only after all events at a given timestamp have been
processed that any pending scheduling or negotiation signal is processed by the
Scheduler or Negotiation controller of the corresponding Peer. Together with the
guarantee that the timestamps of all newly created events are set in the future3,
i.e. are not inferior or equal to the current simulator time, this ensures that there
is no possibility for scheduling or negotiation signals to trigger an infinite cycle of
processing and emission of Peer events between Peers.

3.4.2 Simulator Events

Simulator events are inserted into the event list by the simulated versions of Grid
nodes and processed by the main simulator loop. There are currently four sup-
ported types of simulator events (they are related to Peer events, see Section 2.9.2):

• job, i.e. BoT, submission (SubmittedJobEvent),

• completion of Task execution (CompletedTaskEvent),

• failure of Task execution (FailedTaskEvent),

• internal event (InternalEvent).

The event processor extracts simulator events from the event list. For each event,
the event processor calls code that, in the middleware implementation, would be
called from a Grid node following a signal from its environment, e.g. status of Task

3This implies that Tasks running for less than one simulated time unit cannot be accurately
simulated. This is not an issue, as Tasks are considered to be long-running.
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EventList el = new EventList();
EnvironmentController env ctrlr = new EnvironmentController();

Event first evt = new SubmittedJobEvent();
el.insert(first evt);

while (el.isEmpty() == false) {
Event evt = el.extractFirstEvent();
processEvent(evt);
if (el.nextEventHasGreaterTimestamp()) {

if (env ctrlr.canScheduleAndNegotiate()) {
env ctrlr.scheduleAndNegotiate();

}
}

}

Figure 3.6: Main simulator loop.

execution or input from a human user.

The processing of simulator events is summarized in Figure 3.7, where the simula-
tor event processor and the event list (see also Figure 3.2) are represented for each
simulator event type, along with the relevant Grid nodes. The processing of each
type of simulator events is described in the remainder of this section.

Processing of SubmittedJobEvent

Each simulated User Agent is activated by the simulator to submit new jobs to
the Peer it is using. When submitting a job, it simultaneously inserts a new event
into the event list so that, at the expected timestamp, the simulator activates it
(until the configured number of BoTs has been submitted). A new job is then
submitted and this cycle goes on. Inserting a SubmittedJobEvent into the event
list can be seen as a form of callback mechanism.

Processing of CompletedTaskEvent and FailedTaskEvent

Simulating a simulator event related to Task execution is a two-step process:

•When a Task is sent to a Resource for execution, the simulated Resource makes
a random decision about its reliability and inserts (with high probability) a
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CompletedTaskEvent or (with low probability) a FailedTaskEvent into the
event list.

• A simulated Resource is activated by the simulator when a Task execution sim-
ulator event occurs. In the middleware implementation, this would happen
when the Grid application run by the Resource actually either completes
or fails its execution. Upon completion or failure of simulated Task execu-
tion, the simulated Resource - activated by the event processor - uploads
a dummy output data file to its owner Peer, or notifies it that the running
Task has been preempted. In either case, the Peer state is correctly updated.

Processing of InternalEvent

The concurrent (i.e. between Grid nodes) execution of the internal events proces-
sor of each Peer is simulated by activating it every simulated time unit, so as to
simulate the internal events processor thread (see Section 2.9.6). The processing
of an InternalEvent simulator event consists of activating, sequentially within the
main simulator thread, the internal events processor of each Peer. The environ-
ment controller performs this activation, as it has full access to Peer components.

The activation of internal events processors of all Peers is triggered by one In-
ternalEvent simulator event. After an event has been processed, a new one is
immediately inserted into the event list with a timestamp set one simulated time
unit later. When an inserted InternalEvent is the only event in the event list, it
means that the simulation is nearing completion. This triggers the activation of a
counter. InternalEvents continue to be inserted for a certain number of iterations.
When the counter meets a threshold, no more InternalEvent is inserted and the
simulation stops. This threshold is computed so that any running timer has the
possibility to eventually time-out. The counter is reset if a time-out of a running
timer leads to the insertion of other events into the event list. The activation of
the counter ensures that the main simulator loop (see Section 3.4.1) eventually
completes.

Event List Implementation

The event list of the simulator is implemented with a 2-levels tree-based data
structure. A balanced binary tree maintains an ordered list of timestamps when
at least one simulator event is happening. Keys are timestamps, each of which
is mapped to a set of simulator events. Each of these sets is backed by its own
balanced binary tree, where keys are unique event identifiers.
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(a) SubmittedJobEvent

(b) CompletedTaskEvent

(c) FailedTaskEvent

(d) InternalEvent

Legend: numbers (x) describe the execution order of operations.

Figure 3.7: Processing of simulator events: (a) simulated job submission, (b) sim-
ulated Task execution completion, (c) simulated Task execution failure, (d) simu-
lated internal event.
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3.4.3 Time Management

The middleware and the simulator implementations use the same interface to read
the current time. In the middleware implementation, the time is provided by the
Java VM and is updated by the computer clock.

In the simulator implementation, the returned time does not come from the com-
puter clock. The returned time is read from a simulator-wide simulated clock
instead. The clock is initialized to zero simulated time units and updated by the
event list only, when all simulator events happening at a given timestamp have
been processed. The temporal resolution of the simulated clock, i.e. the value
symbolized by one simulated time unit, is currently one second.

In the middleware implementation, time desynchronization between clocks of Grid
nodes does not give rise to major issues. Indeed, a P2P Grid is designed to operate
in a fully decentralized way. For example, a Peer which would not acknowledge (by
counting supplied favors) its debts towards other Peers would risk to be penalized
in the long term, as if it were a free rider.

In the simulator implementation, time synchronization between simulated clocks
of Grid nodes must be enforced so that the simulator can correctly compute simu-
lation statistics. As simulated Grid nodes transparently share the same simulated
clock, continuous time synchronization is guaranteed.

There is however a small, yet systematic bias in time simulation: The time spent
by the bartering code of Peer themselves is neglected in the time management pro-
cess. This is acceptable as there are many orders of magnitude between the time
taken by Peer managers to process an incoming event (a few milliseconds) and the
time taken to execute a Task on a Resource (several minutes to several hours).
Indeed, the total time to simulate the internal operations of a Peer to manage a
Task (including scheduling and negotiation) is independent of the length of the
Task execution (which is abstracted).

3.4.4 Limits of the Current Implementation

Transfers of input/output data files between Grid nodes are currently not simu-
lated. The time taken to complete simulated Bags of Tasks is inevitably shorter
than what it should be, especially for Data-Intensive Bags of Tasks. We are aware
of this issue which will require considerable amounts of work in order to be fully
addressed. Recent research works in this direction include those of Al Kiswany
et al. [4, 5], Eger et al. [131], Casanova, Legrand et al. [78, 209], Yang [322] and
Nussbaum et al. [226].
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The activities of multiple Peers, notably scheduling, are sequentialized in the sim-
ulator implementation because Grid nodes are no longer running independently
from one another. GNMP messages (see Section 2.8) sent concurrently by live
Grid nodes running the middleware implementation are also sequentialized.

The processing order of GNMP messages sent simultaneously by multiple Grid
nodes thus vary from what it would be for live Grid nodes running the middleware
implementation. Indeed, the order of multithreading simulation as well as the or-
der of insertion and extraction of simultaneous simulator events are currently both
arbitrary. Moreover, multithreading simulation takes place only after all simulator
events at the current timestamp have been processed. Future work is definitely
required to investigate the impact of the order of multithreading simulation.

The processing order of single GNMP messages also vary slightly from what it
would be for live Grid nodes running the middleware implementation. Small
hardware- or network-level variations, e.g. high CPU load or network delays, will
always be present and constitute a form of background noise that would be ex-
ceedingly difficult to reproduce.

Simulating the network transfers of GNMP messages or introducing true paral-
lelism in the simulation of multithreading would require further analysis. Main-
taining acceptable performance so that simulations would remain tractable is likely
to be a major challenge. Indeed, the goal of simulation is to abstract reality at
a relatively high level to get the benefits of a tool usable in practice (see Sec-
tion 3.2.1).

3.5 Simulation Description Language

The purpose of this section is to describe the simulation description language that
is used in the experiments presented in the next section.

3.5.1 Simulation Description Language

A small simulation description language has been defined. It enables to control a
simulation by describing:

• Grid configuration (number of Peers, number and power of Resources for
each Peer, . . .);

• User Agents configuration (number and metadata of submitted BoT);
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<scenario description file> ::= <list of scenario properties>

<list of separators> ::= <list of separators> <separator> | <separator>

<list of scenario properties> ::=
<list of scenario properties> <list of separators> <scenario property> |
<scenario property>

<scenario property> ::= <key> = <value>

<key> ::= < reserved keyword>

<value> ::= <scalar value> | <vector value>

<scalar value> ::= <boolean> | <int> | <float> | <string>

<vector value> ::= { <list of scalar values> }

<list of scalar values> ::= <list of scalar values> , <scalar value> |
<scalar value>

Figure 3.8: BNF grammar of a simulation description file.

• Peers Scheduler and Negotiator configuration (selection of scheduling and ne-
gotiation policies for each Peer);

• Peers negotiation control;

• Task control;

• data management configuration;

• configuration of some parameters of the simulator itself.

A simulation description file (.sdf), also called a scenario, does not need complex
language constructs. It can be structured as a classic properties file, where each
property has the form key = value. Each key is a string. Each value may be a
scalar or a vector, where a scalar or vector element is either a boolean, an integer
or a floating point literal, or a string.

Figure 3.8 presents a partial BNF grammar of a simulation description file. The
complete grammar is defined in Appendix B.2.
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3.5.2 User Agents Configuration

Multiple simulated User Agents are implicitly defined in a simulation, with ex-
actly one User Agent assigned to each Peer. More User Agents could be easily
simulated, but the current focus of the Lightweight Bartering Grid simulator is to
study Peer-to-Peer interactions rather than User Agents-to-Peer interactions.

User Agents configuration enables to generate synthetic workloads. The number of
BoTs that each User Agent submits, the lower and upper bounds of the BoT inter-
arrival time distribution (i.e. time between two consecutive BoT submissions), and
an initial time shift before beginning to submit BoTs, have to be defined.

The number of Tasks per BoT, the lower and upper bounds of Task runtime dis-
tribution (for a Resource with a power equal to one), and the number of simulated
input data files per Task, have to be defined. Importantly, to reflect the LBG
architecture, these runtime (exact) estimates are used by the simulator
only (to simulate Task execution and compute execution statistics), not
by the scheduling and negotiation policies.

3.5.3 Grid Configuration

As the purpose of the simulator is to study interactions in P2P Grids, the con-
cept of Peer group is introduced to facilitate the writing of scenarios with multiple
Peers which have the same behavior. A Peer group is a group of Peers identically
configured, except for their identifier. In a scenario, there must be at least one
Peer group and at least one Peer in each Peer group.

Each simulated Resource is assigned a power [266], (in an absolute unit) which
is a multiple of a known base power. The power of several Resources relative to
one another can be easily adjusted. The Peer power is the sum of its Resources’
individual powers. It can be split explicitly or randomly between Resources. In
each Peer group, the Peer power, number of Resources per Peer and power of each
Resource have to be defined with nonnegative values. The algorithm to distribute
the power of a Peer between its Resources is given in Figure 3.9. The storage
capacity of the Resource (see Section 5.2.5), or cache size, has also to be specified.

The Resource Mean Time Between Failure (see Section 3.3.2) must also be speci-
fied, so as to enable the simulation of Task execution failure on Resources.

Finally a refresh time-out must be defined for the Search Engine client. It is used
to indicate the period after which it must refresh its cache and download recently
added Peer handles from the Search Engine.
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// res count: flag controlling the number of Resources to configure
// peer power: flag controlling the total power assigned to the Peer
// lo, hi: minimum, maximum power for Resources (may be undefined)

• (res count == 0) and (peer power > 0) →
random number of Resources and random Resource power in [lo..hi]

• (res count > 0) and (peer power > 0) →
fixed Resource number and power

• (res count > 0) and (peer power == 0) →
fixed number of Resources, random Resource power in [lo..hi]

• (res count == 0) and (peer power == 0) →
no Resource. . . complete free rider

Figure 3.9: Power repartition algorithm for a simulated Peer.

3.5.4 Peers Policies Configuration

Parameters to configure Peers policies have to be defined, including scheduling,
negotiation (see Chapter 2) and data management parameters (see Chapter 5).

Six scheduling policies have to be defined (see Section 2.9.4): Local Tasks schedul-
ing, Consumption Tasks scheduling, Supplying Tasks scheduling, Supplying Tasks
Filtering and waiting Supplying Tasks Preemption, running Supplying Tasks Pre-
emption. Two negotiation policies have to be defined (see Section 2.9.5): emission
and evaluation of supplying requests. An accounting policy also has to be defined.

A threshold and a time-out have to be defined for received supplying requests and
consumption grants, as well as a time-out for Request Supplying (see Section 2.9.6).

Task control and filtering parameters also have to be defined:

• a time-out specifying the period after which to cancel a Consumption Task that
takes too long to complete (see Section 2.9.6);

• a queue length threshold to determine if submitted Supplying Tasks should be
filtered out and a queue length threshold to determine if queued Supplying
Tasks should be preempted (see Section 2.9.4);

• a flag and a ratio to activate blacklisting of unreliable supplier Peers.
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Finally, the data management policies [56, 57] (BitTorrent-awareness of Task selec-
tion, data-awareness of Resource selection, activation of proactive data replication)
also have to be defined (see Sections 5.3.1, 5.3.2, 5.4).

3.5.5 Simulation Configuration

There are currently two simulation configuration parameters: the initial seed of the
simulator master random number generator, and a flag to enable the cloning [178,
49] of Java objects that represent GNMP messages.

The initial seed of the simulator master random number generator (also called the
random seed) enables to control the randomness of all simulated quantities, such
as BoT submission inter-arrival times.

Simulated GNMP messages (see Section 2.8) all reside in the same memory heap.
They are passed directly from one method of a handle to a method of a service,
rather than being serialized and transferred over a network. The simulator can be
configured to clone GNMP messages before they are passed from one simulated
Grid node to another, instead of passing them as-is.

There is a performance penalty4 associated with this cloning, but it is more safe5.
Without cloning, implementation mistakes in the handling of the contents of
GNMP messages can lead to incorrect-in-subtle-ways and hard-to-reproduce run-
time behaviors.

An example of such an implementation mistake is the confusion between the L-
value and the R-value of a Java object that is compared to another Java object,
i.e. using the == keyword (which tests equality of memory references) instead of
the .equals() method (which tests equality of data fields). With cloning, the
crashes of the simulator can be reproduced and the bugs can be easily isolated.

3.6 Experimental Results

3.6.1 Simulator Accuracy

Two scenarios are both run in the LBG simulator and run on a live deployment
of the LBG middleware. The results are compared with one another, as well as
results from the literature [14] about a comparable live deployment of the OurGrid

4Typically less than 2% of execution time, up to 20% for short, extreme simulations.
5If Task replication (see Section 2.9.4) were supported, cloning would be mandatory.
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Grid topology: 4 Peers (managing 4 Resources each).

Figure 3.10: Grid topology for simulator accuracy experiments.

middleware. The experiments presented in this section have been conducted on
21 x86 PC (Intel P4 CPU with 512 MB RAM).

Both considered scenarios have been proposed in related work [14] as baseline sce-
narios to discuss the benefits of bartering under contention6 for Resources, in the
OurGrid [233, 84, 286] middleware.

The topology of both considered scenarios is identical. It consists of a Grid of 4
peers that manage 4 Resources each (see Figure 3.10). Each peer must process 60
Bags of 40 Tasks with no input data files. All Resources are identical. Each Task
can be completed in exactly 1 minute by any Resource. The inter-arrival time of
submitted BoTs is a random variable (uniform distribution) with a value between
1 minute and 20 minutes. If a Peer uses its own Resources only, and in absence of
queueing delays, the optimal mean BoT response time (MBRT) is 10 minutes.

It could be argued that it would be interesting to simulate more than 20 Grid
nodes. The two considered scenarios were selected first because they could be
validated against existing results published for another similar middleware. A
major bottleneck to the scalability of reproducible experiments involving live de-
ployments of the full middleware is that many computers have to be dedicated for
extended periods of time. The two considered scenarios are also sufficiently small
that it was possible for us to reserve enough dedicated computers for the duration
of the experiments presented in this section.

The two scenarios differ on the policies used by the Peers. There is one scenario
with bartering and there is one scenario without bartering. In the scenario without
bartering, Peers do not exchange computing time. In the scenario with bartering,
Peers can barter computing time. They are configured to match as closely as pos-
sible the default policies in OurGrid, so that our results can be compared with re-

6Considering that the set of all Resources of the P2P Grid constitute a shared medium that
Peers want to access as largely as possible when they must process Local Tasks.
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Scenario Peer 1 Peer 2 Peer 3 Peer 4 Grid
MBRT (s) MBRT (s) MBRT (s) MBRT (s) MBRT (s)

LBG sim, bartering 573 973 805 893 811
LBG sim, no bartering 820 1202 2216 829 1267

LBG live, bartering 576 907 1153 806 860
LBG live, no bartering 839 1253 2314 850 1314
OurGrid live, bartering 436 453 427 462 445

OurGrid live, no bartering N/A N/A N/A N/A 1571
optimum, no bartering 600 600 600 600 600

Table 3.2: Mean BoT response times for both scenarios for simulated LBG runs
(simulated time), live LBG runs (real time) and live OurGrid runs (real time).

lated results that were obtained from the observation of a real deployment (i.e. not
simulated) of the OurGrid middleware [14]: preemptive Local Tasks scheduling,
queue-aware NoF-based Supplying Tasks scheduling, Supplying Tasks limited can-
cellation (when a Peer reclaims its Resources, it cancels rather than preempts the
minimum number of Supplying Tasks), data-aware Consumption Tasks schedul-
ing, very short negotiation time-outs, and minimal queueing of Supplying Tasks
beyond capacity.

Each scenario has been run in the LBG simulator. The resulting workload traces,
i.e. BoTs inter-arrival times, have been recorded. Each scenario has subsequently
been run on a live deployment of the LBG middleware in a controlled environment
(this constitutes an error-prone and time-consuming process). The delays between
BoTs submitted to the live P2P Grid were set by the workload traces produced
by the simulator. The results, i.e. mean BoT response times (MBRT), are given
in Table 3.2, along with results from the literature [14] about a comparable live
deployment of the OurGrid middleware. The results are an average for the first
55 BoTs, when no Peer had yet completed all 60 BoTs.

A first observation is that bartering considerably shortens the MBRT, as expected
(further experiments are presented in Chapter 4). Utilization of the Resources is
typically around 85% with bartering and around 90% without bartering. However,
utilization for Local Tasks is only around 66% with bartering (utilization for Sup-
plying Tasks is thus around 19%), which confirms that Peers are able to acquire
computing time from other Peers.

A second observation is that the MBRT (averaged over the four Peers) predicted
through simulation is 6% (860 vs. 811) and 3.7% (1314 vs. 1267), respectively,
shorter than the MBRT observed through observation of a live P2P Grid. It
means that our proposed simulator is able to explain around 95% of the
MBRT for the evaluated scenarios with a total execution time of around
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20 hours (of real, wall clock time). In other variants of these experiments, we
never observed a divergence of more than 10%. In Section 3.4.4, arose the hy-
pothesis that the simulation of GNMP messages and multithreading are possible
sources of divergence. From our experience watching the log files of these exper-
iments, we tend to believe that most of the divergence comes from not taking
into account the time to transfer GNMP messages across the network, and sub-
sequently process them (a few milliseconds each time, that add up with a large
number of exchanged messages). It would be interesting to measure a large num-
ber of runs of a live P2P Grid in a controlled environment. This requires many
computers to be both fully dedicated and operational for many months: If all goes
well - i.e. 100% of sustained reliability of computers, network, operating systems
and middleware - each of all planned experiments is completed with 21 computers
(4 Peers, 16 Resources, 1 Search Engine) in a little less than a day; larger scenarios
involving more Peers require additional time and computers to run the middleware.

A third observation is that some MBRTs are shorter than 600 seconds, which is
the optimal MBRT without queueing delays and without bartering. This happens
with some “well-spaced” workloads where BoTs are submitted at the longest pos-
sible intervals of time, i.e. 20 minutes rather than 1 minute. With such workloads,
the request peaks of Peers are temporally complementary, i.e. one Peer’s busyness
often corresponds to other Peers’ idleness.

A fourth observation is that OurGrid seems to outperform LBG. Several hundreds
simulations of the scenario with bartering have been run (the details are discussed
in Chapter 6), in order to explore the behavior of the simulator. We found that
LBG can also achieve an equally short MBRT, e.g. 437 seconds, when processing
a well-spaced workload. We thus hypothesize that the related results [14] were
provided for a well-spaced workload. On the other hand, our results in Table 3.2
are given for typical, average workloads.
Finally, we highlight again that the results observed for the simulation of the two
considered scenarios have been doubly validated with real executions of the LBG
middleware and with real executions of the OurGrid middleware. Future work
should of course be undertaken to evaluate to what extent these promising results
can be generalized to other scenarios.

3.6.2 Simulation Bias

The time spent by the Peers bartering code is neglected in the time management
process. This small, yet systematic, bias in the simulation of the time is however
acceptable. There are many orders of magnitude between the time taken by Peers
to process the contents of an incoming GNMP message (several milliseconds) and
the time taken to execute a Task on a Resource (several minutes to several hours).
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On a typical desktop computer (Intel P4 CPU with 512MB RAM), small typical
test scenarios may take less than 1 minute of wall clock time to simulate about 3
hours of operations of a medium-sized Grid (15 Peers, 500 Resources). Let rs =
3 × 3600 seconds = 10800 seconds be the simulated runtime of a given scenario.
Let rp = (60 seconds / 15 Peers) = 4 seconds be the average runtime of Peer code
(which is identical in both middleware and simulator implementations). For this
typical test scenario, the time bias has an upper bound of much less than 1% of the
simulated execution time (rp/rs = 0.04%). Furthermore, this represents an overly
large upper bound on simulation bias, considering that some wall clock time is
spent by the simulator to initialize its data structures, manage the event list and
perform environment controller operations.

3.6.3 Simulator Performance

The performance of the simulator is evaluated according to two metrics: simula-
tor runtime (wall clock time expressed in seconds), and MBRT (simulated time
expressed in simulated time units). The scenario of Section 3.6.1 is used as a base
scenario: 60 BoTs of 40 Tasks are submitted to each of the 4 Peers that manage
4 Resources each.

The simulator runs presented in Table 3.3 vary according to one of three param-
eters: number of submitted BoTs, number of Peers in the Grid and number of
Resources per Peer. The experiments presented in this section have been con-
ducted on a single core of a 64bits PC (quad-core Intel Xeon CPU, with 15GB
RAM available).

The observed simulator runtimes are linear with the number of submitted BoTs.
The “BoTs ×100” experiment - which involves nearly 1 million Tasks (2400 Tasks
submitted to 4 Peers, multiplied by 100) - exhibits performance asymptotically of
the same order of magnitude as what is achieved by SimGrid [78]. However, it
must be kept in mind that different things are simulated: The scheduling model
of LBG is probably more complex, while simulation of data transfers constitutes
the main activity of SimGrid.

The observed simulator runtimes are more than linear with the number of Peers.
However, memory consumption becomes unbearable beyond a few thousands Peers,
precluding larger simulations. Indeed, LBG Peers - whether simulated or live -
memorize a lot of data about their interactions with other Peers: Even if the in-
teraction history is strictly bounded, the memory requirements of the simulator
are quadratic with the number of simulated Peers. Memory management can be
optimized by both exploiting secondary storage and tuning the Peer discovery pro-
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Variations from base scenario Runtime (s) MBRT (s)
BoTs Peers(∗) Resources(∗∗) simulator simulation

× 1 × 1 × 1 7 607

× 10 × 1 × 1 10 979
× 100 × 1 × 1 163 955
× 1000 × 1 × 1 1605 1030
× 10000 × 1 × 1 18089 1051

× 1 × 10 × 1 106 451
× 1 × 100 × 1 1085 237
× 1 × 200 × 1 3457 298
× 1 × 400 × 1 7963 256
× 1 × 800 × 1 23271 297

× 1 × 1 × 10 6 60
× 1 × 1 × 100 7 60
× 1 × 1 × 1000 11 60
× 1 × 1 × 10000 69 60
× 1 × 1 × 100000 611 60

× 10 × 10 × 10 114 60
× 100 × 100 × 100 16935 60

(∗) the total number of Resources in the Grid varies with the total number of Peers
(∗∗) i.e. Resources per Peer

Table 3.3: Simulator runtimes and mean BoT completion runtimes for multiple
scenarios derived from the base scenario.

cess. We believe that controlling memory consumption can dramatically improve
the simulator performance in scenarios involving large numbers of simulated Peers.

The observed simulator runtimes are less than linear with the number of Resources
per Peer, as expected. Such scenarios lead to less simulator iterations because the
increased computational power of the simulated Peers enables to process BoTs
much faster. Nonetheless, the management of several hundred thousands Re-
sources per Peer induces a small performance penalty. This penalty impacts the
simulation itself, but is negligible for individual Grid nodes.

After the observed simulator runtimes, the observed MBRT of the BoTs from
the considered scenarios is now discussed. The MBRT is expectedly higher - but
almost constant - with the number of BoTs. Interestingly, it is not that much
higher, thanks to bartering. System utilization is around 85% in the base scenario
and around 97% in the 1000× BoTs scenario, which demonstrates a high level of
Resource sharing. The MBRT is sharply decreasing with an increasing number of
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Peers. Such scenarios increase the number of Peers with temporally complemen-
tary requests patterns, in turn leading to more opportunities of Resource sharing.
The MBRT is constant and optimal with the number of Resources per Peer.

Finally, when the number of Peers, Resources per Peer and submitted BoTs are
all increased by the same factor, the larger number of additional Resources com-
pensate for the larger number of BoTs and thus does not increase the MBRT,
so the total simulated time also remains constant. The MBRT is also optimal.
The simulator performance expectedly decreases, as the larger number of Peers
increases the simulation time.

The O(.) complexity of the simulator is O(nevt×cevt +tsim×npeers×cbarter), where:

• nevt: total number of simulator events injected in the event list;

• cevt: cost of processing of one event (which depends on the event type);

• tsim: total simulation time (in simulated time units);

• npeers: total number of Peers of the scenario;

• cbarter: cost of bartering operations for one Peer (influenced by many factors).

The presented results are compatible with this complexity model: More submitted
BoTs - i.e. more injected simulator events - yield a linear decrease in simulator
performance; more Peers yield a more-than-linear decrease in simulator perfor-
mance; More Resources - i.e. an increased processing time of events and bartering
operations - yield a less-than-linear decrease in simulator performance.

3.6.4 Simulator and Middleware Co-Development

Chronology of Development

In this dissertation, the middleware implementation of the Lightweight Bartering
Grid architecture has been presented before the simulator implementation. This
order of presentation was selected to provide an easier or more intuitive reading
and understanding of both implementations.

In practice however, most common components (i.e. bartering code) have been im-
plemented concurrently with the simulator, in a main development branch (April-
August 2006). The middleware implementation (network and data management
code) was later implemented mainly by another developer [99] in a separate, sec-
ondary development branch, that has been regularly synchronized with the main
development branch (September 2006-April 2007). The implementation of multi-
threading in the middleware has been completed in the main development branch



3.6. Experimental Results 115

during the winter 2006-2007. In parallel with the middleware implementation,
the development of supplementary common components, simulator features, and
middleware multithreading code continued in the main development branch (es-
sentially September 2006-May 2007). Multiple bugs have been fixed and additional
features have been added to the main development branch thereafter.

Benefits Derived from Simulator and Middleware Co-Development

The simultaneous implementation of the middleware and the simulator - the code
once, deploy twice pattern - has been made possible thanks to the structuring
of communications following the handle/service pattern (see Section 2.8). The
development overhead due to the synchronization of the two development branches
was actually very small. This development process has worked very well in practice
and has demonstrated the following benefits:

• separation of concerns → simplification of the development of both implemen-
tations, as well as of the common code;

• behavior of Peer components thoroughly simulated, and late addition of the
middleware multithreading code → faster and easier testing and debugging
of the middleware implementation, as the common code could be considered
reliable when multithreading was added;

• large common code base with cleanly designed interfaces→ smaller middleware
implementation, that is easier to maintain, or to upgrade in order to support
future standard Grid protocols [26];

• parallel development of the simulator and the middleware→ reduced time span
between the development of new algorithms and their deployment.

3.6.5 Comparison of Software Engineering Practices

The co-development of the middleware and the simulator implementations has en-
abled us to develop a P2P Grid middleware about half the size (in terms of lines
of code and probably features and ease of use as well) of the current state of the
art, operational middleware (OurGrid 3.3.2), with probably only a fraction of the
time and effort (see Table 3.4).

OurGrid

OurGrid results from a multi-year, multi-developers effort. Distributed develop-
ment by multiple small teams introduced some challenges of code integration [103,
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OurGrid 3.3.2 OurGrid 3.3.2 Lightweight Bartering
(all) (w/o UT) Grid 0.4.1

Development since 2003 since 2003 since April 2006
Classes 772 643 508
Lines 102341 79256 70528

Table 3.4: Comparison of OurGrid (full version, version without unit testing code),
and Lightweight Bartering Grid.

52]. Aspect-Oriented Programming [23], which is concerned with so-called cross-
cutting concerns, is a software engineering pattern that has provided OurGrid with
a development methodology enabling to refactor initial implementations into a sta-
ble OurGrid 2.2 release [103, 102].

Other software engineering patterns that proved to be very useful for OurGrid
are event-based modelling of Grid nodes and unit testing (i.e. automated tests of
independent units of source code).

Lightweight Bartering Grid

Both implementations of the Lightweight Bartering Grid (the middleware and the
simulator) are also event-driven [62] (see Section 2.9.7), which helped to separate
concerns. However, if the code once, deploy twice pattern had not been followed,
we believe it would not have been possible to develop to an operational status
a completely new P2P Grid middleware within about a year. Every bug in the
bartering code was isolated in the controlled environment of the simulator, either
before it could appear or right after it had appeared during execution of the mid-
dleware.

The use of Grid computing itself to improve the quality of Grid computing soft-
ware - through the completion of a large number of test cases - is discussed in
Chapter 6. Complementarily, when an error or unexpected exception occurred
when executing the middleware, we used the simulator with identically configured
Grid nodes to trace the cause of the problem. The difficulty of testing code on a
real network of Resources has thus been avoided.

However, a run-time monitoring tool [325] providing the state and stack of all
threads of target Grid nodes had to be used to isolate distributed deadlocks. In-
deed, a couple of distributed deadlocks in the Peer middleware were detected only
when it was deployed on a few dozen Grid nodes. Specifically, the Negotiator of
one Peer and the filtering and queueing components of another Peer were waiting
for one another to release the lock on their own RMS, although the RMS was
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locked by operations depending on other Peers. This was an implementation issue
that forced to check that Grid-facing Peer components were indeed asynchronous.
The domains of systematic unit testing, Aspect-Oriented Programming [102] and
Formal Verification [313] can also certainly provide efficient tools at different levels
of automation to prevent such issues that arise from massively multithreaded code.

3.7 Summary of the Contributions

Software engineering challenges arise from the distributed and unreliable nature
of the P2P Grid environment, where many elements are beyond the control of
P2P Grid administrators and researchers. A discrete-event system simulator of
P2P Grid can be a very helpful software engineering tool facilitating the
development, testing, debugging and performance evaluation of P2P
Grid software. To this end, we have contributed the first large-scale, top-down
application of the code once, deploy twice pattern [63, 59], introduced by the con-
temporarily proposed GRAS (Grid Reality And Simulation) component [253] of
the SimGrid [78, 278] middleware.

Grid nodes are virtualized, which consists of abstracting their environment as well
as the time-consuming operations (e.g. Task execution). The code of a discrete-
event P2P Grid simulator is weaved into the code of the virtualized middleware
at boundaries between Grid nodes and their environment. This contrasts with
the contemporarily proposed GRAS component [253] of SimGrid [78, 278], which
is designed as an “underware” [175] to be used in Grid middlewares. Moreover,
support for the simulation of multithreaded code - which is required for the vir-
tualization and simulation LBG - was added only recently to GRAS/SimGrid [78]
through the SimIX component.

The virtualization of Grid nodes enables the execution of a whole P2P
Grid in a controllable and reproducible way on a single computer, thus al-
lowing full observation of their bartering behavior. Given the massive code
reuse introduced by the code once, deploy twice pattern, and given the
speed of discrete-event simulation (that can be several orders of magnitude
faster than its execution on real computers), new bartering policies can be
easily simulated, integrated and deployed as they are run similarly in both
the middleware and the simulator implementations.

In practice, we first implemented the basic bartering code of the Lightweight Bar-
tering Grid architecture, along with the simulator implementation. The actual
implementation of the middleware implementation started several months later
and was greatly facilitated because Peer bartering policies - which are a complex
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part of the P2P Grid - could always be tested and validated in the simulator. As
separation of concerns was largely achieved, it was possible to focus on network-
related issues when developing the middleware.

There are open questions and possibilities to extend the features of the proposed
discrete-event P2P Grid simulator. Data transfers are currently not taken into ac-
count. Simulating data transfers is certainly the next step in the evolution of the
simulator, as this will considerably improve simulator accuracy when dealing with
Data-Intensive BoT (which are investigated in Chapter 5). Multithreading is sim-
ulated but its implementation may be coupled too tightly to design choices specific
to the Lightweight Bartering Grid architecture. Recent work on the automated
testing of multi-threaded code [102] should be investigated and possibly integrated.

It would also be interesting to investigate the convergence between our proposed
approach of code once, deploy twice - which implies the weaving of the simulator
code into the middleware code - and a pattern centered around the development
of a low level API, proposed for SimGrid [78, 278]. Of practical interest would
be the standardization of the description of Grid configurations and deployment
metadata [78, 278], as well as the interface of bartering algorithms [201] and trace
workloads [80, 140, 238, 163]. This would enable multiple research teams to easily
plug one another’s algorithms into their own P2P Grid simulator and evaluate these
for well-known workloads on well-known Grids. Also of practical interest, a graph-
ical user interface would enable the easy editing of Grid configurations [288, 69].

Finally, there are several possibilities to scale up the proposed simulator. Limited
multithreading of the environment controller could improve simulator performance
on multi-core CPU. Structuring of the simulator itself as an Iterative Stencil ap-
plication (see Section 2.4, Chapter 6) could lead to a fully distributed simulator.
This would involve simulating in parallel the execution of Grid nodes that should
run concurrently. The communication costs between the distibuted chunks of the
simulator might however be a limiting factor.



Chapter 4

Bartering Guidelines

Opportunities are a tricky crop,
with tiny flowers that are difficult to see
and even more difficult to harvest.

- in Legends of Dune,
by Brian Herbert & Kevin Anderson

A challenge in a middleware as complex as P2P Grid is to design efficient schedul-
ing policies. The Peer scheduler and the Peer negotiator models are structured
around Policy Decision Points (PDP). This enables to systematically explore a
large number of different possibilities and ideas. This constitutes a mechanism
that enables to combine basic policies in a multitude of ways. Several policies are
thus proposed for each PDP. Within the scope of the experiments performed using
the LBG simulator, it is confirmed that bartering (i.e. cooperation between Peers)
is efficient, and that filtering the submitted Supplying Tasks is required to prevent
queue wait times to grow out of control. The adaptive preemption policy performs
best for the conducted experiments. It is also observed that, despite attempts to
model the reliability of supplying, random selection of suppliers is most efficient,
which confirms design choices arbitrarily proposed in related works. Experiments
are performed using the LBG simulator.

Task execution may fail for multiple reasons. Resources may fail at the hardware-
level, at the O.S.-level or (despite the software engineering tools introduced in the
previous Chapter) at the middleware-level. Single Resources or even whole Peers
can suddenly leave the Grid. Resources are edge computers, thus intrinsically un-
reliable. Preemption of Task execution is another major cause of Task execution
failure: Supplying Tasks can be preempted or cancelled1 when a Peer reclaims the
computational power of its Resources to process its own Local Tasks.

1Reminder: cancellation = preemption without subsequent requeueing.
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Figure 4.1: Typical interactions leading to the preemption of a Supplying Task.

These interactions are illustrated on Figure 4.1 (see also Figure 2.20 for the Peer
scheduling model): the consumer Peer (on the left) submits a Consumption Task
to the supplier Peer (on the right). If this Task - perceived as a Supplying Task
by the supplier Peer - is not filtered out, it is queued and eventually run on a
Resource of the supplier Peer. When a User Agent submits new Local Tasks to
the supplier Peer, the latter can preempt or cancel the running Supplying Task. If
the Supplying Task is preempted, the supplier Peer requeues it. If the Supplying
Task is cancelled, the supplier Peer notifies the consumer Peer of the cancellation.
This cancellation is perceived as a Task execution failure by the consumer Peer.
Given the opacity between Peers, the consumer Peer does not know whether it
was caused by preemption or Resource failure.

In this chapter, scheduling policies are introduced in order to prevent, or at least
reduce, the loss of computing time due to Task execution failures. The purpose of
designing robust scheduling policies is maintain short MBRTs in the presence of fre-
quent Task execution failures. Even though some of the proposed fault-avoidance
and fault-prevention mechanisms may seem straightforward at first sight, they are
actually not trivial to design because of the informational opacity between Peers.
To also enable Peers to not barter computing time, appropriate policies, e.g. “no
scheduling”, are defined for each policy decision point (PDP). A Peer should use
together either all or none of these policies designed to prevent bartering.

This chapter is structured as follows. Policies for the Local Tasks scheduling, Sup-
plying Tasks scheduling and Supplying Tasks filtering PDPs are first introduced.
A model, worthwhile metrics, metadata storage and policies for the Consumption
Tasks scheduling PDP are successively introduced; related work is also reviewed.
Policies for the Supplying Tasks preemption PDP are finally introduced. Barter-
ing guidelines are derived from experimental results and the chapter is summarized.
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NonpreemptiveLocalScheduling preeption deactivated
PreemptiveLocalScheduling preeption activated

Table 4.1: Local Tasks Scheduling Policies.

4.1 Local Tasks Scheduling

Local Tasks scheduling consists in matching a queued Local Task with an avail-
able Resource. Two Local Tasks scheduling policies are currently implemented:
with and without preemption. With preemption, the Supplying Tasks preemption
policy is activated when there are queued Local Tasks and no available Resource.
The preemption of running Supplying Tasks enables the scheduler to reclaim ad-
ditional Resources for the scheduling of Local Tasks.

BoT selection follows a FIFO policy (see Section 2.6.2), i.e. Task selection is ap-
plied to all unscheduled Task of the oldest - i.e. least recently submitted - queued
BoT, then to the next one, and so on towards the newest BoT. By default, Task
selection also follows a FIFO policy, but a data-aware Task selection policy is in-
troduced in Chapter 5. By default, Resource selection follows a random policy,
but a data-aware Resource selection policy is also introduced in Chapter 5.

Table 4.1 lists the proposed Local Tasks scheduling policies. Task selection and
Resource selection are orthogonal to the selected Local Task scheduling policy.

4.2 Supplying Tasks Scheduling

Supplying Tasks scheduling consists in matching a queued Supplying Task with
an available Resource. Three Supplying Tasks scheduling policies are currently im-
plemented: “no scheduling”, FIFO-based and favors-based. By default, Resource
selection follows a random policy, but a data-aware Resource selection policy is
also introduced in Chapter 5. Task selection and BoT selection are the same op-
eration as computing time is exchanged at the Task level.

With the FIFO-based policy, the oldest - i.e. least recently submitted - Supply-
ing Task in queue is selected. With the favors-based policy, the Supplying Task
is selected according to the Network of Favors model (see Section 2.3.4): The
Supplying Task submitted by the consumer Peer with the currently highest favor
balance is selected; ties are broken arbitrarily. Finally, one policy has no effect,
i.e. Supplying Tasks are not scheduled; a Peer can be configured with this policy
to prevent the sharing of the computing time of its Resources.



4.3. Supplying Tasks Filtering 122

FIFOSupplyingScheduling FIFO-based consumers ranking
FavorsSupplyingScheduling favors-based consumers ranking

NoSupplyingScheduling no bartering

Table 4.2: Supplying Tasks Scheduling Policies.

Table 4.2 lists the proposed Supplying Tasks scheduling policies. Resource selec-
tion is orthogonal to the selected Supplying Task scheduling policy.

4.3 Supplying Tasks Filtering

Supplying Tasks filtering consists in accepting or denying the queueing of a Sup-
plying Task submitted by a consumer Peer. The purpose of filtering is to prevent
the Supplying Tasks queue to grow when no Resource is available. Five policies
are currently implemented: “no filtering” (i.e. all Supplying Tasks are always ac-
cepted), total filtering (i.e. Supplying Tasks are never accepted), one FIFO-based
filtering policy and two favors-based filtering policies.

The FIFO-based as well as both favors-based filtering policies accept Supplying
Tasks until the number of outstanding Tasks exceeds a threshold configured by
the human Peer administrator, typically to a very low value. The number of out-
standing Tasks of a supplier Peer is defined as the number of waiting Local Tasks,
plus the number of waiting Supplying Tasks, minus the number of idle Resources.
Intuitively, it gives the queue length - expressed as a number of Tasks - that a
newly accepted Supplying Task would find in front of itself.

The FIFO-based filtering policy only considers the number of outstanding Tasks,
without inspecting the contents of the Supplying Tasks queue, as opposed to the
two favors-based filtering policies. Both favors-based filtering policies follow the
Network of Favors model (see Section 2.3.4): The favor balances of all the con-
sumer Peers with queued Supplying Tasks, as well as that of the consumer of the
Supplying Task under consideration, are evaluated. If the balance of the incom-
ing Supplying Task has the smallest value, it is filtered out. The rejection of the
Supplying Task is communicated to the consumer, but if the GNMP message were
lost, the Consumption Tasks control of the consumer Peer (see Section 2.9.6) would
automatically initiate the cancellation of the Task. Otherwise, it is accepted and
the queued waiting Supplying Task associated with the smallest favor balance is
dequeued (ties are broken by dequeueing the most recently submitted - and still
waiting - Task among those submitted by the consumer Peer with the smallest
favor balance).
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FIFOSupplyingFiltering FIFO-based consumers ranking
NoSupplyingFiltering no bartering

RelaxedFavorsSupplyingFiltering relaxed favors-based consumers ranking
StrictFavorsSupplyingFiltering strict favors-based consumers ranking
UnlimitedSupplyingFiltering no filtering

Table 4.3: Supplying Tasks Filtering Policies.

The two favors-based filtering policies differ in that one of them strictly enforces
the NoF model: Running Supplying Tasks are also considered in the filtering pro-
cess. The favors-based filtering policies are very important to prevent free-riding:
Supplying Tasks submitted by consumer Peers with a positive favor balance will
replace in the queue any Supplying Task submitted by consumer Peers with a null
favor balance, i.e. free-riders.

Table 4.3 lists the proposed Supplying Tasks filtering policies.

4.4 Metrics for Consumption Tasks Scheduling

4.4.1 Requirements for Metadata

A consumer Peer has no knowledge of the state of other Peers, in particular, queue
state, scheduling policies, peaks of Local Tasks, reliability of Resources. If such
metadata were transmitted and trusted, as in Desktop Grids, ensuring their ac-
curacy and freshness would be difficult at best. Moreover, the architecture would
tend to become centralized as Peers would process large amounts of metadata
about many other Peers, which would limit scalability.

Instead, we propose [60, 58] that Consumption Tasks scheduling policies select
supplier Peers based on historical metadata collected following past completed in-
teractions with supplier Peers. Trust2 between Peers is built over many completed
interactions rather than a priori. As consumer Peers rely only on their own per-
ceptions, the number of exchanged control messages is minimized.

The bartering process of a consumer Peer can be modelled as a decide-interact-
memorize loop (see Figure 4.2). This constitutes an evolution of the Network of
Favors (NoF) bartering model [13] (see Section 2.3.4) used in the related Our-
Grid [233, 84, 286] middleware. The original NoF model is concerned with equi-

2 According to Sober and Wilson [284, 142]: “Trust is the consequence or state when one or
more members of a network perform according to mutual expectation. It is not an abstract moral
virtue, but a network property, byproduct of the quality of interactions between parties.”
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Figure 4.2: Decide-interact-memorize loop. Decisions are made by the Consump-
tion Tasks scheduling PDP, based on information collected from completed inter-
actions.

table supplying, i.e. resistance to free-riding, and relies on Task replication [86] as
a mechanism to compensate Task execution failures. It therefore does not study
preemption and cancellation [14]. To the contrary, we take preemption and can-
cellation into account.

Several basic metadata and metrics are now examined. They are depending on
bartering-related, Task-related, negotiation-related and Resource-related informa-
tion. Some of them are selected, others are discarded, based on their computability
and storability by desktop computers.

4.4.2 Bartering-related Metadata

Each consumer Peer can store as metadata the outcome of the execution of Tasks
(completed, failed3, filtered out). The time elapsed between Task submission and
Task execution outcome can also be stored, either as an execution time or a time-
to-failure.

Metadata is collected by a consumer Peer upon Peer external events (see Sec-
tion 2.9.2):

• submission of a Consumption Task,

• uploading to a consumer Peer of results from a Consumption Task completed
by a supplier Peer,

• consumer-initiated or supplier-initiated cancellation of a Consumption Task.

Task Completion Ratio (TCoR) A first, obvious metric to estimate supplier
Peer reliability is the Consumption Task Completion Ratio (TCoR). The TCoR
of Consumption Tasks is defined as the ratio between the number of Consump-
tion Tasks that were successfully completed and those that were accepted by the

3 Given the opacity between Peers, a consumer Peer cannot determine if the cancellation of
a Task by a supplier Peer has been caused by Resource failure or preemption.
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supplier Peer and for which the interaction is completed. The TCoR is a dimen-
sionless metric. A high TCoR indicates good reliability of the supplier Peer, but
not necessarily good performance. This type of simple metric is typically used
in Volunteer Grids [134] to estimate the availability of worker nodes because it is
simple to compute and store.

Task Cancellation Ratio (TCaR) A complementary metric of TCoR is the
Consumption Task Cancellation Ratio (TCaR). The TCaR of Consumption Tasks
is defined as the ratio between the number of Consumption Tasks that were can-
celled and those that were accepted by the supplier Peer. The TCaR is a di-
mensionless metric. A high TCaR indicates either poor reliability of the supplier
Peer, or very poor performance, as the recorded cancellations might have been
self-initiated by the consumer Peer subsequently to a time-out (the origin of the
cancellations is not stored).

Mean Correlated Consumption Cancellations Count (MC4) Preemption
often leads to multiple correlated Task execution failures as a supplier Peer reclaim-
ing its Resources to complete Local Tasks would typically need more than one of
them. To the contrary, Task execution failures caused by failures of individual
Resource are typically independent, except in special cases such as when multiple
Resources are deployed on a multi-core computer. Following the hypothesis that
“large-scale correlated failures are common” [320], the Mean Correlated Consump-
tion Cancellations Count (MC4) metric is thus introduced.

MC4 is defined as the mean of the sizes of correlated cancellations sets. The
timestamps of the most recent cancellations of Consumption Tasks are stored by
each consumer Peer. When a set of these cancellations occur within a short time
span, they are considered to be correlated. If one cancellation is not correlated
with any other cancellation, it is considered as a set of size one. The MC4 is a
dimensionless metric. A high MC4 indicates a tendency to correlated cancellations.

Mean Time Between Cancellations (MTBC) The Mean Time Between
Cancellations (MTBC) measures the average time elapsed between successive can-
cellations of Consumption Tasks by a supplier Peer. The MTBC is defined as
the mean of the time spans delimited by successive cancellations of Consumption
Tasks. The MTBC is expressed as a number of time units, i.e. seconds. The MTBC
can be seen as a measure of availability inspired by a classic metric in reliability
engineering, the Mean Time Between Failure (MTBF). The MTBC can be used
as an estimation of the amount of “uninterrupted attention” that a supplier Peer
gives to a Consumption Task. A high MTBC indicates that a Consumption Task
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has a higher probability of being successfully completed, i.e. not being cancelled.

Results from related work [320], interpreted in the context of this dissertation,
indicate that a high TCoR does not necessarily lead to a high MTBC. Indeed,
most Consumption Tasks may complete successfully, with only a small percentage
being cancelled (high TCoR), while the time spans between the few cancellations
(low MTBC) may be short. Moreover, according to the same related work [320],
while the MTBC has some relevance, estimating the time of the next cancellation
appears not so trivial. Another limitation of the MTBC is its sensitivity to Task
runtimes.

Mean Completion Stride (MCoS) A stride is defined as a sequence of iden-
tical Task events, i.e. Task completion or cancellation, and its length is its number
of events. The Mean Completion Stride (MCoS) of Consumption Tasks is de-
fined as the mean length of strides of successfully completed Consumption Tasks.
The MCoS is expressed as a (real) number of completed Consumption Tasks. The
MCoS provides an indirect estimation of the length of the time spans during which
cancellations of Consumption Tasks do not occur. Like the MTBC, the MCoS can
be used as an estimation of the amount of “uninterrupted attention.” The MCoS
can be seen as a measure of availability of a supplier Peer in terms of bursts of
successfully completed Tasks.

The MCoS and the MTBC are closely related metrics. Combining them may yield
a better estimation of availability. Both rankings can be combined by assigning
the worst normalized rank (out of the MCoS-based and the MTBC-based ranks)
for each supplier Peer. In practice, a set of supplier Peers can be ranked based on
the MCoS and the MTBC, thus producing two independent rankings. Each rank
of both rankings can then be normalized, i.e. divided by the number of ranked
supplier Peers. Finally, the worst of its two normalized ranks is assigned to the
supplier Peer. We call this metric the conservative time/stride.

Mean Time To Cancellation (MTTC) The Mean Time To Cancellation
(MTTC) is defined as the mean of the time spans that occur between the sub-
mission of a Consumption Task and its cancellation (the MTTC is thus defined
for cancelled Consumption Tasks only). It is a good measure of the loss of time
incurred by cancellations. The MTTC is a variant of the Mean Time To Failure,
which is widely used in reliability engineering4.

4 A Weibull distribution [16] could also be used to compute it instead of the mean, but the
estimation of its parameters is not trivial and could be computationally expensive.
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Relying on the MTTC may help to minimize the cost of a cancellation when se-
lecting among several supplier Peers of equal unreliability or unavailability. On
one hand, selecting a supplier Peer with a high MTTC increases the probability
of successful Task completion. On the other hand, selecting a supplier Peer with
a low MTTC may also improve performance, in the sense that the time lost to a
cancellation is minimized if it happens early. Our intuition is that it is efficient
to select supplier Peers with a high MTTC when they are mostly reliable, and to
select Peers with low MTTC when they are mostly unreliable. Such a strategy
increases the probability of Task completion when Task completion is probable,
and it decreases the cost of Task execution failure when Task execution failure is
probable.

4.4.3 Task-Related Metadata

Task-related dynamic data can be used as metadata. Task execution outcomes,
e.g. bartering-related metadata, can be used for reliability-aware supplier Peer se-
lection, as explained in the previous paragraphs. Metadata related to transfers of
input data files by Resources can be used for data-aware supplier Peer selection,
as will be further discussed in Chapter 5.

Task-related static data, such as input parameters (see Section 2.6.3) or filenames
of input data files, can be used as metadata. Such metadata, although they can be
put to good use [188], are highly application-dependent. Moreover, they provide
no information if a Task has no input parameter or no input data file. For exam-
ple, no input data file is associated to web crawling Tasks or more generally to
Tasks that download their data from an out-of-Grid data server (see Section 6.2).
Runtime estimates (see Section 2.6.3), if they were available, could also be used.

4.4.4 Negotiation-related Metadata

The proposed negotiation model (see Section 2.9.5) is designed so that supplier
Peers can provide hints of their availability to the Consumption Tasks scheduling
PDP of consumer Peers. The number of consumption grants sent by a supplier
Peer can certainly be used as metadata by consumer Peers. The number of sup-
plying requests might also be used, but it is certainly of less interest to consumer
Peers than it is to supplier Peers.
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4.4.5 Resource-related Metadata

Resource-related static metadata, i.e. hardware parameters such as the CPU clock
rate, are certainly useful and constitute an important source of metadata in Desk-
top Grids [193]. The NodeWiz Grid Information Service [53], discussed previously
in this section, could provide such information. However, the opacity between
Peers does not allow one to determine with certainty to which Resource a Task is
effectively scheduled. The use of Resource-related static metadata is thus limited
to the filtering of supplier Peers that do not match specific hardware requirements,
but it is still up to the supplier Peers to schedule Supplying Tasks to Resources.

Resource-related dynamic metadata could be used as metadata, if available. Meta-
data communicated by supplier Peers should not be trusted in P2P Grids. Further-
more, communicating up-to-date dynamic metadata would limit the scalability of
the P2P Grid architecture. Actual CPU availability [16, 71, 260], a widely used
metadata, thus cannot be used in the P2P Grid context, especially in 2-levels P2P
Grids.

Dynamic performance benchmarks [83, 114] could be initiated by consumer Peers.
The Peer middleware of a consumer Peer could periodically schedule benchmark-
ing Tasks to supplier Peers. However, besides the obvious cost in computing time,
the opacity between Peers does not allow one to determine with certainty to which
Resource a Task is actually scheduled.

Nonetheless, there are two very specific forms of dynamic benchmarking that could
be useful. Firstly, a Task could perform its own dynamic benchmark before start-
ing its intrinsic execution, before deciding how much data to process (this will be
further discussed in Section 6.2). This requires, however, supplementary work on
the behalf of the Grid application developer. Secondly, a consumer Peer could
perform dynamic benchmarks using Tasks of fixed runtime (i.e. elapsed time),
e.g. sleep 2 minutes. This can be used to estimate the queue length of supplier
Peers, but the proposed negotiation protocol (see Section 2.9.5) has been specifi-
cally designed to remove the need for such benchmarking. It should be noted that
both this benchmarking with Tasks of fixed runtime and the proposed negotiation
protocol could equally be fooled by a malicious supplier Peer; however, the cost of
repeated negotiations is certainly less than the cost of repeated benchmarking.

4.4.6 Metadata Storage

The neighborhood of a Peer is defined as the set of Peers with which interactions ei-
ther have taken place or could take place, i.e. Peers whose handles (see Section 2.8)
have been communicated by the Search Engine (see Sections 2.1.4 and 2.9.5). Each
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Peer stores metadata that summarizes its perception of the recent state of the Grid.
These metadata are collected implicitly only through the interactions of each Peer
with Peers belonging to its neighborhood, without any explicit communication of
metadata.

The high number of interactions with other Peers during a Peer’s lifetime, i.e. on-
line time, precludes the storage of all metadata about every interaction. Therefore,
metadata should be stored either in aggregate form, or only within a window of
recent interactions. It should be noted that even if all metadata could be stored,
their retrieval should be efficient enough to prevent the scheduling operations to
become a performance bottleneck.

The Peer register is the Peer component that stores metadata about supplier Peers
belonging to the neighborhood of the Peer running the Peer register. The Peer
register stores a profile of each supplier Peer belonging to the Peer’s neighbor-
hood, as well as a Grid-level profile. A Peer profile stores collected and aggre-
gated bartering-related metadata communicated by the Task Manager (see Ap-
pendix C.1), i.e. completion, cancellation and failure of Supplying Tasks, about
the profiled supplier Peer. The metadata required to compute the MC4, MTBC,
MCoS, MTTC metrics must be stored for a window of the last K completed in-
teractions; K is currently arbitrarily chosen as 100. The other metadata can be
stored in aggregated form if only the mean of the stored values needs to be known.

A Peer profile also stores bartering-related metadata about Supplying Tasks sub-
mitted by consumer Peers; this can be used by the Peer when it acts in a supplier
role (i.e. as a supplier Peer). It also stores negotiation-related metadata (see Sec-
tion 2.9.5), i.e. supplying requests and consumption grants sent to, and received
from, other Peers. The Grid-level profile stores aggregated bartering-related and
negotiation-related metadata, as well as metadata on the input data files of queued
Tasks. The implementation of the Peer register is currently not persistent; as fu-
ture work, persistence support will be added to the Peer register.

Finally, it should be noted that, in the absence of collected metadata, the selection
of supplier Peers is reduced to a random choice (i.e. the decide step of Figure 4.2
makes random selections when the interact and memorize have not been activated
for the considered suppliers). This is important as it enables the bootstrapping of
bartering in the P2P Grid.
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4.5 Consumption Tasks Scheduling Policies

Consumption Tasks scheduling consists in matching a queued Local Task with
a supplier Peer that sent consumption grants; preferred supplier Peers are those
with good reliability and availability. Fifteen Consumption Tasks scheduling poli-
cies are currently implemented. These policies use historical metadata about com-
putational resources but no metadata on Tasks; this corresponds to the (H, U)
type in Iosup et al.’s classification of scheduling policies [176]. The random pol-
icy randomly selects supplier Peers. One policy has no effect, meaning that no
Consumption Tasks are scheduled. The other policies are described in the next
sections.

4.5.1 Reliability-Aware Consumption Tasks Scheduling

Some authors argue that stability is a form of robustness [210]; an interesting
observation is that “adding capacity and reducing variability are, in some sense,
interchangeable options” [210]. Following this perspective, several policies are now
proposed with an objective of fault-avoidance. The reliability of a set of supplier
Peers is estimated based on metrics introduced in the previous section. These met-
rics depend only on the recent behavior of the supplier Peers, not on the Tasks;
this is consistent with the previous decision not to require runtime estimates from
the Grid application developers (see Section 2.6.3). The value of a given metric
is computed for each supplier Peer; a high value indicates a higher probability of
successful completion of Task execution. The supplier Peers can be ranked accord-
ing to the computed values. The supplier Peers are then selected following this
ranking - most reliable (i.e. higher-ranked) first - until all available consumption
grants have been spent.

The MC4-based, MCoS-based, MTBC-based, MTTC-based, TCaR-based and con-
servative time/stride-based policies rank and select supplier Peers using the eponym
metrics presented in the previous section.

The grants-based policy ranks and selects supplier Peers by decreasing amount
of consumption grants they sent during the most recent negotiation interaction,
i.e. supplier Peers that declare explicitly a high availability are ranked higher.
This, of course, is not consistent with the lack of trust between Peers.

The TCoR, TCaR and MC4 metrics can be made adaptive to blacklist supplier
Peers at the Peer-level. An adaptive TCoR policy is introduced based on the ra-
tionale discussed in the previous section: The MTTC of reliable supplier Peers
should be high and the MTTC of unreliable supplier Peers should be low. After
supplier Peers are ranked, those with a high TCoR (i.e. more than 50% of success-
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ful completion of Task execution) and a low MTTC (i.e. less than two minutes)
are blacklisted. The supplier Peers with a low TCoR (i.e. less than 50% of success-
ful completions) and high MTTC (i.e. more than two minutes) are also blacklisted.

An adaptive MC4 policy is introduced. Our intuition is to minimize the impact
of multiple execution failures The supplier Peers are first ranked with the MC4
metric. The supplier Peers with a high MC4, i.e. at least two simultaneous Task
execution failures on average, are scheduled in a round-robin fashion over multiple
activations of the Consumption Tasks scheduling policy during a given activation
of the Peer scheduler, i.e. until all waiting Local Tasks have been scheduled or all
recently received consumption grants have been used. This tends to reduce the
number of Consumption Tasks to supplier Peers with a high MC4.

A BoT-level blacklisting mechanism is added to the ranking computation of all
metrics. Supplier Peers with a very low probability of successful Task execution
at the BoT-level are blacklisted, i.e. excluded from the ranking (see Section 4.6.2
for a discussion of the rationale). A supplier Peer is estimated not to be able to
successfully complete the execution of a Consumption Task if the number of execu-
tion failures of Consumption Tasks from the same BoT than the Task to schedule
exceeds a fixed threshold that can be configured by the human Peer administrator,
typically 5 [233]. This mechanism prevents to repeatedly reschedule Consumption
Tasks to a supplier Peer that consistently exhibits execution failures. This mecha-
nism also implicitly discards supplier Peers which are, in some sense, incompatible
with the Tasks from the considered BoT, e.g. not enough RAM actually available,
without requiring a complex, dynamic matchmaking mechanism.

A Peer-level blacklisting mechanism is also added to the ranking computation of
several metrics: TCaR, TCoR, Adaptive MC4 and Adaptive TCoR. Supplier Peers
with extreme TCoR/TCaR/MC4 values are blacklisted. In order to bootstrap the
bartering process between Peers and to allow previously unreliable supplier Peers
to increase their reputation of reliability, the blacklisting is probabilistic. If an
unreliable supplier Peer is selected for blacklisting, it is actually blacklisted only
if a random variable is below an activation threshold; this threshold is configured
by the human Peer administrator, typically a high value such as 0.8.

4.5.2 NoF-Aware Consumption Tasks Scheduling

For the evaluation of supplying requests (see Section 2.9.5), the Network of Favors
model (NoF, see Section 2.3.4) can be used by a supplier Peer to rank consumer
Peers based on their bartering reputation. We hypothesize that the NoF can also
be used by a consumer Peer to rank supplier Peers through their favor balance
and favors history. Supplier Peers could thus be ranked based on the amount of
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computing time they supplied in a recent past. The favors-based policy follows
the NoF model to rank and select supplier Peers by decreasing amount of supplied
favors, i.e. supplier Peers that supplied a lot in the past are ranked higher.

4.5.3 Reciprocity-Aware Consumption Tasks Scheduling

A consumer Peer could also estimate its own capacity of reciprocal supplying to
other Peers. This could enable this consumer Peer to select as supplier Peers those
to which it has itself been a reliable supplier Peer in a recent past. Those sup-
plier Peers that have reliably received computing time from this consumer Peer
in a recent past (when the consumption and supplying roles were reversed) rank
it higher when asked to reciprocate. Doing so tends to reinforce the bartering
relationships of Peers that have temporally complementary peaks of local requests
(see also Appendix D.3.6 for additional discussion).

For instance, a consumer Peer could examine its own history of preemptions and
cancellations of Supplying Tasks; using, e.g. the TCaR metric (see Section 4.4.2),
it could try to detect if it had to repeatedly preempt or cancel the Supplying Tasks
of some of its consumer Peers. This Peer can then consume preferably from Peers
to which it was able to reliably supply computing time. In the current implemen-
tation, no Consumption Tasks scheduling policy takes the capacity of reciprocal
supplying into account but this certainly constitutes interesting future work.

4.5.4 Performance-Aware Consumption Tasks Scheduling

As in OurGrid [84], supplier Peers ranking currently does not take into account
“how quickly or slowly the work was performed” [14]. Correctly predicting the
computational performance of supplier Peers may be difficult because the expected
runtime of Tasks is not provided by Grid application developers (see Section 2.6.3),
and also because Consumption Tasks are submitted to supplier Peers, not directly
to their Resources. For these reasons, it may not be possible in a P2P Grid to ever
support advance reservations (with guaranteed nonpreemptible execution) or sys-
tematically meet hard QoS deadlines, without a huge cost overhead, e.g. massive
Task replication.

However, ranking supplier Peers on their estimated computational performance
can decrease response times if scheduling Consumption Tasks to supplier Peers
with good (or at least not extremely low [193]) computational performance.

One Consumption Tasks scheduling policy based on performance ranking - thus
similar to DFPLT [176] - is implemented. Performance is estimated based on the
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mean completion time of Consumption Tasks recently completed by the considered
supplier Peers.

Supposing that this policy is systematically used, each consumer Peer would tend
to systematically consume computing time from supplier Peers with better compu-
tational performance than itself, if available. These would not tend to do the same,
as they would first avoid supplier Peers slower than themselves. The Grid-wide
impact of such a performance-based policy is thus not certain. Adding support for
awareness of reciprocal supplying would probably be of high interest.

4.5.5 Data-Aware Consumption Tasks Scheduling

Supplier Peers can also be ranked according to the expected availability of in-
put data files on their Resources. Response times can be decreased if Tasks are
scheduled to supplier Peers that have Resources where input data files are already
stored. Data-aware scheduling policies are introduced in Chapter 5. In particular,
one Consumption Tasks scheduling policy is introduced to take into account the
expected availability of input data files on supplier Peers. A variant of this pol-
icy is also introduced: Supplier Peers with a very low TCoR, i.e. less than 20%,
are blacklisted even if it is expected to store all input data files required by the
Consumption Task to schedule.

4.5.6 Resource Ranking

Some of the mechanisms proposed for Consumption Tasks scheduling in the pre-
vious sections could be applied to Local Tasks and Supplying Tasks scheduling.
When selecting a Resource, a Local Tasks or Supplying Tasks scheduling policy
could rank the Peer’ Resources. In particular, the performance and reliability of
Resources could be taken into account in future work. Existing work by Kondo
et al. [192, 193], Ren et al. [261, 260], Dinda [118], Kapadia et al. [188], Smith et
al. [282], for instance, could be integrated in order to improve site-level schedul-
ing. The availability of input data files on Resources is systematically taken into
account, as explained in Chapter 5.

4.5.7 Summary of Consumption Tasks Scheduling Policies

Table 4.4 lists the proposed Consumption Tasks scheduling policies. The policies
involving on the MC4, favors and data-aware metrics are 100% original, while the
others are derived from existing metrics.
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AdaptiveMC4 adaptive MC4-based suppliers ranking
AdaptiveTCoR adaptive TCoR-based suppliers ranking

ConservativeTimeStride combined MCoS/MTBC-based suppliers ranking
Data data-aware suppliers ranking

Favors favors-based suppliers ranking
Grants consumption grants-based suppliers ranking
MC4 MC4-based suppliers ranking
MCoS MCoS-based suppliers ranking
MTBC MTBC-based suppliers ranking
MTTC MTTC-based suppliers ranking

NoConsumptionScheduling no bartering
Performance performance-based suppliers ranking

Random random suppliers ranking
Reliable TCoR-based then data-aware suppliers ranking
TCaR TCaR-based suppliers ranking

Table 4.4: Consumption Tasks Scheduling Policies.

4.6 Related Work

Typical fault-management mechanisms in distributed systems include fault-toler-
ance, fault-avoidance and also fault-prevention. Fault-tolerance mechanisms en-
able a distributed system to resume its operations after the occurrence of a fault.
Fault-avoidance and fault-prevention mechanisms steer the operation of the dis-
tributed system away from potential faults; fault-avoidance mechanisms try to
avoid outcomes that are predicted to be disrupted by faults, while fault-prevention
mechanisms try to prevent faults from occurring. Fault-tolerance, fault-avoidance
and fault-prevention are thus complementary.

4.6.1 Acquisition of Metadata

Gil et al. have stated that “without a knowledge-rich infrastructure,” e.g. a Grid In-
formation Service such as the Network Weather Service [314], “fair and appropriate
use of Grid environments will not be possible” [157]. In a P2P Grid, the challenge, for
a consumer Peer, resides in accumulating knowledge on the behavior of supplier Peers
in a totally decentralized way.

Distributed Peer discovery services, such as the recent, fully-distributed, kd-tree-based
NodeWiz Grid Information Service [53] are extremely useful, but of very limited rel-
evance to the current context. The NodeWiz overlay distributes metadata that are
relatively static, such as hardware configuration. Moreover, these metadata must be
provided by supplier Peers themselves, and cannot be independently acquired. Addi-
tional notes on Peer discovery services are provided in Appendix D.
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The recent AssessGrid [24, 25, 307] project is partially similar to ours in its intent,
i.e. assessing risk and reliability of the supplying of computing time. In AssessGrid,
however, consumption and supplying are not linked. Furthermore, AssessGrid is not
intended to be as lightweight and autonomous as a P2P Grid.

4.6.2 Fault-Tolerance

Fault-tolerance can be achieved through a variety of proactive mechanisms, such as
checkpointing and Task replication, and reactive mechanisms such as Task control
and Task reexecution.

Task reexecution [71, 37, 21] - also called eager scheduling [37] - consists of reexecuting
a Task upon failure of its execution, until it is eventually completed. The number of
such re-executions can be limited to a configured value. Failure-prone Resources can
be blacklisted [233, 191], i.e. Tasks from a BoT with failed Tasks on a given Resource
should not be executed on this Resource.

Blacklisting [233, 191, 193] consists of not using, for a BoT, a supplier Peer or Re-
source that is considered as unreliable, e.g. that failed the execution of multiple Tasks
of the BoT [233]. Selecting excessively low thresholds for blacklisting can unduly ex-
clude reliable supplier Peers or Resources, thus leading to lower response times than
what could be achieved optimally.

Task replication [86, 308], as explained in Section 2.9.4, consists of having each con-
sumer Peer simultaneously executing multiple replicas of each Task. It clearly brings
fault-tolerance but at a cost.

Task control, presented in Section 2.9.6, consists of the preemption/cancellation of
Tasks that take too long to complete [37].

Checkpointing, as will be further explained in Section 6.2.3, consists of periodically
replicating the state of Tasks to replicas stores. Upon Task execution failure, the state
of the failed Task is loaded from one of the stored replicas, so that its execution is
restarted at the last checkpoint event.

4.6.3 Fault-Avoidance

Fault-avoidance requires (see Figure 4.2) the acquisition and the storage of meta-
data, the estimation of the availability and performance of supplier Peers Peers,
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as well as their ranking.

Our proposed decide-interact-memorize loop is related to the concept of autonomic
computing [243, 64] where a system constantly monitors and models its environment
to adapt its behavior accordingly.

Rankings can be used to exclude supplier Peers with Resources exhibiting extremely
low availability or performance [134, 193]. Rankings can also be used to compare
the availability and performance of a set of Resources [296]. Rankings can be gen-
erated automatically, or interactively with human assistance [296]. Rankings can be
computed following a centralized [8, 43], semi-decentralized [100, 307] or fully decen-
tralized [58, 134] organization, the latter being relevant to P2P Grids.

Migration is a fault-avoidance mechanism [306] that consists of first suspending the
execution of a Task when an imminent failure is predicted, then moving the suspended
Task to another Resource so that it can be restarted. It depends on both ranking and
checkpointing.

4.7 Supplying Tasks Preemption Policies

4.7.1 Preemption of Running Supplying Tasks

Supplying Tasks preemption consists in preempting or cancelling queued Sup-
plying Tasks; it is activated by the Local Tasks scheduling policy as needed. Six
Supplying Tasks preemption policies are currently implemented for running Sup-
plying Tasks: minimum preemption, full preemption, minimum cancellation, full
cancellation, adaptive preemption, and “no preemption”.

The minimum preemption policy preempts and requeues as few running Supplying
Tasks as needed, i.e. potentially all of them if there are more waiting Local Tasks
than running Supplying Tasks. The minimum cancellation policy preempts but
does not requeue - i.e. cancels - as few running Supplying Tasks as needed. The
full preemption policy preempts all running Supplying Tasks. The full cancella-
tion policy cancels all running Supplying Tasks. The adaptive preemption policy
adaptively selects whether Supplying Tasks should be preempted or cancelled, and
if they should be offered a second chance, i.e. a short grace period during which
they cannot be preempted; the adaptive preemption policy preempts or cancels as
few Supplying Tasks as needed. Finally, one policy has no effect, i.e. Supplying
Tasks are not preempted; a Peer can be configured with this policy to explicitly
prevent the preemption of Supplying Tasks.
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Orthogonally to the choice of preemption policy, a cost-aware Resource selection
algorithm that we call PSufferage5 is introduced. PSufferage selects for preemp-
tion/cancellation the Supplying Task that would suffer the least from preemption,
i.e. the most recently running one.

4.7.2 Fault-Prevention Through Adaptive Preemption

The perception by consumer Peers of the reliability or the performance of a sup-
plier Peer decreases with the cancellation or preemption of Supplying Tasks; This
is a well-known issue [14], but it has received little attention in other P2P Grids
middlewares. Our intuition is that fault-avoidance - that is initiated by consumer
Peers through efficient Consumption Tasks scheduling - can be complemented by
fault-prevention, that can be initiated by supplier Peers.

We propose a fault-prevention mechanism based on an adaptive Supplying Tasks
preemption policy. It is based on the following observations:

• the cost (in terms of response time) of preemption/cancellation is not identical
to all Supplying Tasks;

• the impact of preemption/cancellation on the reliability and performance of a
supplier Peer depends on the length of its Local Tasks queue.

The response time of a Supplying Task selected for preemption/cancellation is not
greatly affected if it had been running for a short time only. Conversely, its re-
sponse time is greatly affected if it had been running for a long time. We thus
introduce the concept of second chance: When a long-running Supplying Task is
selected for preemption/cancellation, it is given a short grace period in which, it
is hoped, it will eventually complete its execution. After this short grace period
during which the Supplying Task is nonpreemptible/noncancellable, the Supplying
Task is finally preempted/cancelled if it is still running.

By introducing some small delay in the reclaiming of Resources by a supplier Peer,
it is expected that Supplying Tasks that are about to complete their execution are
not preempted/cancelled. This introduces a small, but of course systematic, per-
formance penalty in the execution of Local Tasks. The second chance operation is
idempotent, i.e. trying to activate it more than once for a running Supplying Task
has no effect, so that no Task is graced repeatedly in a potentially infinite loop.
Moreover, a graced Supplying Task is protected from preemption/cancellation dur-
ing the grace period.

5The term PSufferage is selected by analogy to the XSufferage scheduling algorithm [74].
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Supplying Task queued Tasks action delay

short runtime few waiting preempt immediately
short runtime many waiting cancel immediately

almost completed few waiting preempt after grace period
almost completed many waiting cancel after grace period

Note: almost completed = expected to be soon completed, as the Task’s nominal runtime is not
provided by the Grid application developer.

Table 4.5: Adaptive Supplying Tasks preemption policy.

Preempting or cancelling a Supplying Task has a different impact on its response
time depending on the length of the Task queues of the supplier Peer. If many
queued Tasks are waiting (e.g. because a new Local BoT has been submitted to
the supplier Peer) preempting a Supplying Task preserves the reliability of the
supplier Peer (because there is no cancellation) but decreases its performance (be-
cause queueing delays are introduced and increase the response time). If many
queued Tasks are waiting, cancelling a Supplying Task allows the consumer Peer
to try and reschedule this Task immediately. We thus propose that Supplying
Tasks be preempted if there are few waiting Local Tasks, and cancelled if there
are many waiting Local Tasks. The threshold of waiting Local Tasks is configured
by the human Peer administrator, typically to a very low value.

Using the queue length as an estimation of the waiting time is a classical [285],
even if not optimal, strategy. Indeed, accurate estimates of the waiting time
would necessitate runtime estimates for the waiting Local Tasks, a prediction of
the requeueing of cancelled Consumption Tasks, a prediction of the availability of
the Peer’s Resources (i.e. additional Resources may become available, others may
crash), and a prediction of the availability of supplier Peers (i.e. for a fixed number
of supplying requests, the number of supplier Peers that send consumption grants
and the number of consumption grants both fluctuate over time). Existing results
for the prediction of queue wait time [283] are certainly not applicable to P2P
Grids because the metadata required to compute predictions, e.g. queue parame-
ters, are not available due to the opacity between Peers.

Our proposed adaptive Supplying Tasks preemption policy is summarized in Ta-
ble 4.5. Three parameters influence its behavior:

• a threshold (few vs. many waiting queued Tasks) to select preemption or can-
cellation,

• a threshold (short runtime of Supplying Task vs. Supplying Task almost com-
pleted) to decide if a second chance should be offered,



4.7. Supplying Tasks Preemption Policies 139

• a grace period during which the Supplying Task is protected from preemp-
tion/cancellation if a second chance has been offered.

The threshold of waiting queued Tasks can be arbitrarily small or large. It should
likely be a small number of Tasks. The grace period is configured by the human
Peer administrator. It should be small, and likely be no more than a few minutes
so that the performance penalty on the completion of Local Tasks remains accept-
able. Another idea would be to dynamically adapt the grace period proportionally
in function of the Task’s current runtime (i.e. elapsed time since the beginning of
the Task execution on the Resource).

The threshold of the Supplying Task’s current runtime can be arbitrarily chosen,
but it would be difficult to estimate it as an absolute value. As the grace period
and this threshold of the Supplying Task’s current runtime are related, we pro-
pose another approach to determine if a Supplying Task should be given a second
chance. If a Supplying Task is expected to complete its execution within the grace
period, it can be given a second chance. An estimation of the completion time of
the Supplying Task is thus required. To compute this runtime estimation, we pro-
pose a modified version of the history conservative prediction algorithm [321, 269].
The history conservative prediction algorithm is simple to implement and con-
sistently yields acceptable results [321]. The algorithm produces an estimate by
adding the mean and the variance of recent values of the quantity to estimate: Our
version is based on the completion times of the most recently (the window size for
metadata storage is 100 Supplying Tasks, see Section 4.4.6) completed Supplying
Tasks that were submitted by the consumer Peer of the Supplying Task of interest.

4.7.3 Dequeueing of Waiting Supplying Tasks

The Supplying Tasks filtering policy prevents other Peers to submit too many
Supplying Tasks. However, it does not preclude the Supplying Tasks queue to
grow upon preemption and subsequent requeueing of running Supplying Tasks.
Dequeueing a Supplying Task corresponds to cancel the corresponding waiting
(i.e. unscheduled) Supplying BoT, as illustrated in Figure 2.18.

A policy to dequeue waiting Supplying Tasks (thus without scheduling them)
should thus be defined along with a policy to preempt running Supplying Tasks.
Four Supplying Tasks dequeueing policies for waiting Supplying Tasks are cur-
rently implemented: FIFO-based, favors-based and full dequeueing of waiting Sup-
plying Tasks, as well as no dequeueing of waiting Supplying Tasks.

The FIFO-based dequeueing policy dequeues the most recent waiting Supplying
Task. The favors-based preemption policy follows the Network of Favors model
(see Section 2.3.4): It dequeues the waiting Supplying Task associated with the
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AdaptivePreemption adaptive preemption
FullCancellation full cancellation
FullPreemption full preemption

LimitedCancellation limited cancellation
LimitedPreemption limited preemption

NoPreemption no preemption

Table 4.6: Running Supplying Tasks Preemption Policies.

FIFOWaitingDequeueing FIFO-based consumers ranking
FavorsWaitingDequeueing favors-based consumers ranking

FullWaitingDequeueing unlimited dequeueing
NoDequeueing no dequeueing

Table 4.7: Running Supplying Tasks Dequeueing Policies.

smallest favor balance (ties are broken by dequeueing the most recently submitted
Task among those submitted by the consumer Peer with the smallest favor bal-
ance). The full dequeueing policy dequeues all waiting Supplying Tasks. Finally,
one policy has no effect, i.e. waiting Supplying Tasks are never dequeued.

4.7.4 Summary of Supplying Tasks Preemption Policies

Table 4.6 lists the proposed running Supplying Tasks preemption policies.
Resource selection is orthogonal to the selected running Supplying Task preemp-
tion policy.

Table 4.7 lists the proposed waiting Supplying Tasks dequeueing policies.

4.8 Experimental Results

4.8.1 Methodology

The 4-Peers base scenario of Section 3.6.1 - that has been proposed in related
work [14] - is considered again. The topology is fixed; it consists of a Grid of 4
peers that manage 4 Resources each (see Figure 3.10). All Resources are iden-
tical. The workload is also fixed. Each peer must process 60 Bags of 40 Tasks
with no input data files. Each Task can be completed in exactly 1 minute by any
Resource. The inter-arrival time of submitted BoTs is a random variable (uniform
distribution) with a value between 1 minute and 20 minutes. If a Peer uses its own
Resources only, and in absence of queueing delays due to contention, the optimal
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scenario.sdf PDPcts PDPsts PDPlts PDPstf PDPrstp PDPwstp PDPemr PDPevr MBRT

strategy00001 p1
cts p1

sts . . . ?

strategy00002 p2
cts p2

sts . . . ?

strategy00003 p3
cts p3

sts . . . ?

strategy00004 p4
cts p1

sts . . . ?

. . . . . . . . . ?

strategy00015 p15
cts p3

sts . . . ?

strategy00016 p1
cts p1

sts . . . ?

. . . . . . . . . ?

strategy16850 . . . . . . . . . ?

Figure 4.3: Strategy matrix (each line is a combination of policies).

mean BoT response time (MBRT) is 10 minutes.

Combinations of the bartering policies, presented in this chapter6 for the five
scheduling policy decision points (PDP), as well as for the two negotiation policy
decision points (see Section 2.9.5), can be systematically enumerated. Such a com-
bination of eight7 bartering policies is called a strategy. Figure 4.3 illustrates the
strategy matrix. Given the currently implemented policies, only 16850 strategies
are meaningful8, and only these are actually evaluated (see also Section 6.1.1 for
additional details on the generation of the strategy matrix).

Each strategy of the strategy matrix must be completed with policy parameters,
as well as descriptions of the workload and P2P Grid topology to consider. All of
these are described in a common scenario description file (see Section 3.5), that
is associated with each strategy. The policy parameters of the scenario assume
constant, standard values, except for the grace period of the adaptive Supplying
Tasks preemption policy, which varies (1, 2, 3, 5 and 10 minutes); the values of all
parameters are provided in Appendix B.2.2.

6In this section, the naming convention of policies is metric-then-PDP-label, e.g. AdaptivePre-
emption, RelaxedFavorsSupplyingFiltering, RandomConsumptionScheduling, . . .

7Two policies are needed for the Supplying Tasks preemption PDP, see Section 4.7.
8Many combinations are of little interest, e.g. “no scheduling” Supplying Tasks scheduling

policy with a Supplying Tasks preemption policy; 16850 strategies out of 1080000 are meaningful.
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4.8.2 Evaluation of Strategies (4-Peers Base Scenario)

The optimal mean BoT response times (MBRT) that can be achieved without
bartering, i.e. each Peer relies on its own Resources only, is 600 seconds (10 times
4 Tasks running in parallel on 4 Resources for 1 minute each). The optimal MBRT
that might be achieved with bartering but without contention, i.e. Peers barter
computing time and have temporally complementary workloads, is 180 seconds (2
times 16 Tasks, then 1 time 8 Tasks, running in parallel on 16 Resources for 1
minute each). After running the 16850 simulations corresponding to the strategies
of the strategy matrix, we found that, over all strategies, the average MBRT is
2617 seconds, but large variations are observed: The best (shorter) MBRT is 381
seconds and the worst (longer) MBRT is 33197 seconds, i.e. there is a factor of 100
between the best and the worst strategies.

Furthermore, in the context of the experiments from Section 3.6.1, the MBRT
claimed to be achieved with the OurGrid middleware is 445 seconds; the best
MBRT obtained from the results presented in this section is is 358 seconds. The
evaluation of a large number of strategies has enabled, for the considered scenario,
to identify 36 strategies that lead to lower MBRTs than the strategy equivalent to
OurGrid’s default strategy.

In this section, several figures provide the average MBRT obtained over all strate-
gies of the strategy matrix; the given MBRTs are thus an average of 16850 MBRTs.
As some policies are underperforming and lead to unacceptably long MBRTs, it
can be useful to recompute the average MBRT without taking them into account.
This enables to discriminate policies leading to strategies with good-but-never-
optimal MBRTs from policies leading to strategies with good-and-very-variable
MBRTs.

To this end, the average MBRT is computed five times: over 100% of strategies of
the strategy matrix, as well as over the top 80%, 20%, 5% and 1% best strategies.
The best strategies are those that achieve the lowest MBRTs. Computing the
average MBRT of the strategy matrix for the top k% best strategies consists of
sorting the strategy matrix by increasing MBRT values and computing the average
MBRT over the top k% strategies.

Consumption Tasks Scheduling PDP

Figure 4.4 gives the MBRTs of Consumption Tasks scheduling policies. A first
observation is that among the worst results, some strategies with underperforming
policies considerably influence the results of most Consumption Tasks schedul-
ing policies. With the “no scheduling” policy, bartering is not used; it is thus
not influenced by underperforming policies of other PDPs. Random scheduling
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Figure 4.4: MBRT of Consumption Tasks scheduling policies for the 4-Peers sce-
nario.
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gives better results over all strategies, and similar results than other policies when
considering over the top 80% strategies. Random scheduling is not influenced by
underperforming policies of other PDPs either. It is important to remark that a
consumer Peer, in the scenario considered in this section, has very little choice: At
most 3 supplier Peers to choose from, at any time. This can explain why random
consumption choices give better results for strategies when associated with under-
performing policies of other PDPs

A second observation is that the strategy with the “no scheduling” policy disap-
pears from the best 20% results. Its MBRT is actually9 1251 seconds, which is
higher than the optimal 600 seconds because of contention, i.e. frequent arrival of
Local BoTs less than 600 seconds apart. The rank of the strategy with the “no
scheduling” policy is 8293, which means than a little less than half of the strategies
with bartering perform better. This confirms the potential speedup of bartering.
Indeed, after identifying underperforming policies for all PDPs and removing the
corresponding strategies, most of the remaining strategies perform better than the
one without bartering. Consequently, even if it proves elusive to isolate a priori
the best strategy for a given Grid topology and a given workload, most strategies
that exclude really underperforming policies lead to an acceptable MBRT.

Local and Supplying Tasks Scheduling PDPs

Figures 4.5 and 4.6 give, respectively, the MBRTs of Supplying Tasks scheduling
policies and the MBRTs of Local Tasks scheduling policies. Similarly to Con-
sumption Tasks scheduling, a first observation is that the “no scheduling” strategy
behaves better than strategies with any other Supplying Tasks scheduling policies
associated with underperforming policies for other PDPs, but is not among the
best 20% strategies.

A second observation is that strategies that may involve preemption can be on av-
erage as good as those that never involve preemption, except in underperforming
strategies where preemption is important. In the latter case, our interpretation is
that preemption acts as a form of queue length control, preventing queueing delays.

Supplying Tasks Filtering PDP

Figure 4.7 gives the MBRTs of Supplying Tasks filtering policies. Same comments
as for other PDPs apply to the “no filtering” policy, i.e. when there is no bartering
between Peers.

9It can be remarked that the results of the simulations provided in this section are - as
expected - compatible with those presented in Chapter 3.
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Figure 4.5: MBRT of Supplying Tasks scheduling policies for the 4-Peers scenario.

Figure 4.6: MBRT of Local Tasks scheduling policies for the 4-Peers scenario.
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Figure 4.7: MBRT of Supplying Tasks filtering policies for the 4-Peers scenario.

A first observation is that, when bartering is enabled, it is really important to filter
out incoming Supplying Tasks so that the Supplying Tasks queue does not grow
out of control, i.e. causing queueing delays when there are not enough available
Resources. Even if efficient preemption policies are used, the unlimited filtering
policy should be avoided. Indeed, accepting all Supplying Tasks and preempting
or dequeueing most of them is likely to have a major impact in the middleware
implementation, essentially due to the cost of GNMP message transfers. However,
this cost is not taken into account in the current simulator implementation; that
constitutes one of the rare instances we identified where the simulator is not accu-
rate enough. The impact of this limitation is likely to be quite limited in practice,
as the unlimited filtering policy is intended for comparison purposes rather than
for production deployment. As the response times obtained with an unlimited
filtering policy are already measured to be overly long, it may not be that infor-
mative to confirm that they are even longer in a real deployment.

A second observation is that the strict favors-based filtering policy consistently
leads to higher MBRTs. The strict favors-based filtering policy preempts running
Supplying Tasks if required, as opposed to the relaxed favors-based filtering policy.
The strict policy is closer to the NoF model. However, as will be seen in the next
few paragraphs, preemption is useful but does not always lead to better results.
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Supplying Tasks Preemption PDP

Figure 4.8 gives the MBRTs of running Supplying Tasks preemption policies. Same
comments as for other PDPs apply to the “no preemption” policy, i.e. when there
is no bartering between Peers.

A first observation is that the adaptive Supplying Tasks preemption policy10 con-
sistently leads to better results.

A second observation is that both non-adaptive preemption policies (full pre-
emption and limited preemption) are underperforming. This may seem counter-
intuitive but can be interpreted as follows: When Supplying Tasks are preempted
to schedule newly submitted Local Tasks, they are requeued. If there are many
queued Local Tasks, or if even a few Local Tasks have a long runtime, the re-
queued Supplying Tasks experience large queueing delays. Cancellation policies
(full cancellation and limited cancellation) intuitively seem harsher than preemp-
tion policies. In a sense, they are, as the adaptive preemption policies mitigates
the side effects of cancellation by cancelling only when needed (and preempting
otherwise) and only after a grace period. But, on the other hand, cancelling Sup-
plying Tasks enables consumer Peers to try and reschedule these Tasks to other
Peers.

If Task replication (see Section 2.9.4) were supported, the side effect of preemption
(i.e. queueing delays) might be compensated by the scheduling of multiple instances
of Tasks to multiple Peers, of course at a greater computational expense. However,
in large-scale deployments of distributed systems [107, 108], it has been observed
that Task replication is best used in endgames, i.e. when there remains only a
few Tasks to compute and there are many Resources available. Consequently, in
this context queueing delays would be counter-productive. Additionally, cancelling
Supplying Tasks enables the consumer Peers to recognize the unreliability of sup-
plier Peers: This enables consumer Peers to avoid submitting Consumption Tasks,
in particular the last few ones, to heavily-loaded supplier Peers. Thus, preemption,
if not adaptive, should not be used. Cancellation or adaptive preemption should
be preferred.

Figure 4.9 gives the MBRTs of waiting Supplying Tasks dequeueing policies. Same
comments as for other PDPs apply to the “no preemption” policy, i.e. when there
is no bartering between Peers.

10Grace periods of more than 1 minute have no impact in this scenario given the Task length
of 1 minute. These are shown as a baseline for the scenario considered in the next section.
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Figure 4.8: MBRT of running Supplying Tasks preemption policies for the 4-Peers
scenario.

Figure 4.9: MBRT of waiting Supplying Tasks dequeueing policies for the 4-Peers
scenario.
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The only observation is that dequeueing waiting Supplying Tasks - upon preemp-
tion of running Supplying Tasks and requeueing of cancelled Local or Consumption
Tasks - is very important in underperforming strategies. Indeed, this consistently
leads to lower MBRTs, including for these underperforming strategies. It should
thus be enabled.

Emission and Evaluation of Supplying Requests PDPs

Figures 4.10 and 4.11 give, respectively, the MBRTs of the policies for the emission
of supplying requests and the MBRTs of the policies for the evaluation of supply-
ing requests. Same comments as for other PDPs apply to the “no emission” and
to the “no evaluation” policies, i.e. when there is no bartering between Peers.

As expected, Figure 4.10 simply shows that the emission of supplying requests is
influenced by underperforming policies of other PDPs.

Figure 4.11 shows that distributing an unlimited number of consumption grants,
i.e. as many consumption grants as requested by consumer Peers, leads to under-
performing strategies. Similarly to the unlimited Supplying Tasks filtering policy,
the unlimited evaluation of supplying requests policy should not be used in prac-
tice. Indeed, even if an efficient preemption policy is used, the frequent dequeueing
of nearly all accepted Supplying Tasks is likely to have an impact on performance
in the middleware implementation.

4.8.3 Evaluation of Strategies (4x10-Peers Scenario)

The base scenario of the previous section is modified by multiplying by 10 the
number of Peers, i.e. there are 40 Peers in each considered P2P Grid (with 4 Re-
sources each), so as to increase opportunities when scheduling Consumption Tasks.
Figure 4.12 gives the MBRTs of Consumption Tasks scheduling policies. On av-
erage over all strategies, the mean MBRT is 23063 seconds, the best (minimum)
is 158 seconds and the worst (maximum) is 602949 seconds; there is a factor of
∼4000 between the best strategy and the worst strategy.

As a reminder, the minimum MBRT over all strategies was 381 seconds in the 4-
Peers base scenario. It means that increasing the opportunities of bartering helps
Peers to achieve a lower MBRT.

The remarks about the bartering policies that were presented in the previous sec-
tion still hold for the 4x10-Peers scenario (as they also do for an intermediate
number of Peers or variable Task runtimes), save for two differences.
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Figure 4.10: MBRT of emission of supplying requests policies for the 4-Peers
scenario.

Figure 4.11: MBRT of evaluation of supplying requests policies for the 4-Peers
scenario.
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Figure 4.12: MBRT of Consumption Tasks policies for the 4x10-Peers scenario.
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Firstly, the gap of performance between underperforming strategies and regularly
performing strategies has increased, e.g. the MBRTs achieved with underperform-
ing strategies among 100% of the strategies is more than 10 times as long as those
achieved among the best 80% of the strategies (while it is about 2 times as long
for the base scenario).

Secondly, the random, the “no scheduling” and also the favors-based Consumption
Tasks scheduling policies perform very well when combined with underperforming
policies for other PDPs, i.e. they lead to significantly lower MBRTs when consid-
ering 100% of the strategies. The other Consumption Tasks scheduling policies do
not perform well when considering 100% of the strategies; they do not perform bet-
ter than the three mentioned ones either, when considering only the best strategies.

Simple Consumption Tasks scheduling policies can lead to strategies that perform
very well. RandomConsumptionScheduling is the Consumption Tasks scheduling
policies used in the OurGrid middleware. With the experiments presented in this
section, we showed that lower MBRTs than those achieved with the OurGrid de-
fault strategy can be achieved. But these experiments also show that, for the
Consumption Tasks scheduling PDP, a simple policy is sufficient.

Nonetheless, we still believe that ranking-based policies can be designed to take
advantage of the specificity of some workloads. Our proposed P2P Grid archi-
tecture, bartering, scheduling and negotiation models constitute a framework to
easily test new policies. Now that these foundations have been laid, we envision
the following roadmap for future research in ranking-based Consumption Tasks
scheduling policies:

1. Study trace workloads from operational, large-scale P2P Grids deployments,
using more advanced statistical tools so as to identify typical workloads;

2. Tune our proposed Consumption Tasks scheduling policies so that they are
adapted to some typical workloads;

3. Design a policy switching algorithm that can identify typical workloads;

4. Using this policy switching algorithm, activate on-the-fly the appropriate
ranking-based policy (instead of a simple policy such as RandomConsump-
tionScheduling) for BoTs that constitute typical workloads.
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Figure 4.13: Scheduling model.

4.9 Summary of the Contributions

4.9.1 Discussion

Our proposed P2P Grid architecture and the weaving of the simula-
tor code into the bartering code constitute a framework that have en-
abled us to systematically study ten of thousands of bartering strate-
gies. Scheduling is a computationally hard problem, thus heuristics are needed
for tractability of the implemented systems. With our approach based on Policy
Decision Points (see Figure 4.13 for a reminder of the scheduling model), it is pos-
sible to evaluate offline a large number of simple heuristics, and subsequently select
any of them when deploying the P2P Grid middleware. There are clearly limits
to such a combinatorial approach, but it nonetheless constitutes an improvement
over the evaluation of only a handful of policies at a time.

The simulations presented in this chapter are expected to be reasonably accurate,
based on results described in Section 3.6.1. However, also as stated in Section 3.6.1,
future work should be undertaken to evaluate the simulator accuracy for various
scenarios.

The two PDPs from which important conclusions can be made are the Consump-
tion Tasks scheduling PDP and the Supplying Tasks preemption PDP.

We have proposed several ranking-based Consumption Tasks scheduling policies,
but all failed to outperform random chance, probably because they are too nar-
rowly specific to some workloads. This does not prove that it is impossible to
achieve better-than-random results. Nonetheless, this is compatible with the
implicit11 selection of Consumption Tasks scheduling policy made in the

11To the best of our knowledge.
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OurGrid middleware (RandomConsumptionScheduling). Even though a ran-
dom choice of supplier seems efficient in the experiments that were conducted, the
Consumption Tasks scheduling PDP is only one out of several; there exist better-
than-random policies for the other PDPs.

We have also proposed an adaptive Supplying Tasks preemption policy that,
coupled with a cost-aware Resource selection algorithm that we call
PSufferage, leads to efficient and robust strategies. It is intrinsically in a
Peer’s best interest to preempt Supplying Tasks to reclaim its own computational
power in order to process its own workload first. Preemption with subsequent
requeueing, however, is not the most efficient approach. Cancellation without
subsequent requeueing leads to better strategies. However, even if cancellation
gives very good results on average, some consumers are individually penalized as
some of their BoTs experience unwelcome delays, even if their overall MBRT is
low. To prevent this side effect of cancellation, the adaptive preemption policy
offers a second chance to some of the Supplying Tasks that have to be preempted.
A short grace period is offered to those Supplying Tasks that are estimated to com-
plete shortly: During this grace period, the selected Supplying Tasks are protected
from preemption or cancellation. By accepting to slightly delay the reclaiming of
its computational power, a supplier Peer can greatly improve its reliability with
consumer Peers whose Supplying Tasks are offered a second chance.

4.9.2 Guidelines

Finally, we propose the following guidelines for an efficient and robust strategy
that can be deployed in practice:

• Consumption Tasks scheduling PDP: RandomConsumptionScheduling or Data-
ConsumptionScheduling;

• Supplying Tasks scheduling PDP: FavorsSupplyingScheduling;

• Local Tasks scheduling PDP: PreemptiveLocalScheduling;

• Supplying Tasks filtering PDP: RelaxedFavorsSupplyingFiltering;

• running Supplying Tasks preemption PDP: AdaptivePreemption;

• waiting Supplying Tasks dequeueing PDP: FavorsWaitingPreemption or Full-
WaitingPreemption;

• emission of supplying requests PDP: RandomConsumptionNegotiation;

• evaluation of supplying requests PDP: FavorsSupplyingNegotiation.



Chapter 5

P2P Data Transfers

The biggest difference between time and space
is that you can’t reuse time.

- Merrick Furst

The massive size and amount of data files to be transferred across the Grid can
cause delays in the completion of Tasks. In practice, sets of data files often present
repetitive patterns, in the sense that some files are repeatedly processed over time
in multiple Bags of Tasks, or some files are processed in a variety of ways within the
same Bag of Tasks. A fully decentralized data transfer architecture is proposed to
take advantage of these redundancies; importantly, it is designed to enable worker
nodes to collaborate beyond Peer boundaries. Temporal redundancy is addressed by
relying on P2P data transfers based on the BitTorrent P2P file sharing protocol; this
applies when there are enough Resources available and Tasks depending on identical
input data files can be scheduled together. Spatial redundancy is addressed by a
distributing caching mechanism combined with data reuse; this applies when input
data files required by Tasks are already cached by available Resources. Temporal
redundancy that is implicit can still be taken advantage of: When input data files
of Tasks to schedule are cached by Resources not available for scheduling these
Tasks, the decentralized data transfer architecture enables these busy Resources
to share the cached data files with the available Resources where the Tasks are
scheduled. Experiments are performed using the LBG middleware.

High parallelism in Task execution, leading to shorter overall BoT response times,
requires the simultaneous transfer of potentially large input data files. These data
transfers may rapidly lead to performance bottlenecks in the case of so-called Data-
Intensive Bags of Tasks [267, 113, 76, 184, 257], that are Bags of Tasks processing
large input data files (see Section 2.4). Scheduling Data-Intensive BoTs is not
trivial because transfers of large data files may become a performance bottleneck
in the P2P Grid. In turn, this has a negative impact both on the overall response
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times of the Tasks and on the willingness of supplier Peers to actually supply com-
puting time (very slow downloads of required input data files might discourage
suppliers).

A classic solution to this issue is data reuse. It entirely avoids the problem of
multiple simultaneous data transfers by making use of opportunistically cached or
proactively replicated data. On the downside, Tasks - essentially those sharing the
same input data files - have to be scheduled sequentially, rather than simultane-
ously, to benefit from the input data files that were downloaded for other Tasks.
This may lead to higher BoT response times and it becomes more difficult to offer
nontrivial QoS [151]. Furthermore, it is not always possible in practice to mas-
sively use data caching. As P2P Resources are nondedicated edge computers, the
availability of storage space is highly variable and potentially limited.

Task execution parallelism and data reuse both have benefits as well as down-
sides. In existing research, they are usually presented as mutually exclusive (see
Figure 5.1 for an intuitive illustration). We propose [56, 57] to actually integrate
them, so as to achieve good performance in most situations.

A highly scalable and fully distributed data transfer architecture is introduced:
Grid nodes are equipped with data caches and data transfer (download) as well as
data sharing (upload) softwares. The goal is to transparently increase the number
of data servers and to spread the load caused by data transfers, across the P2P
Grid. Input data files required by subsequent BoTs benefit from the caching, pro-
vided that Resource selection takes data location into account when scheduling.
To enable Task execution parallelism in Data-Intensive BoTs that exhibit some
redundancy in the required input data files, we propose to transfer data with the
BitTorrent P2P file sharing protocol. In order to exploit the efficiency of BitTor-
rent, we also propose a novel Task selection scheduling algorithm, Temporal Tasks
Grouping (TTG) to - counter-intuitively - maximize the temporal coincidence of
the downloads of large, identical input data files required by different Tasks of
a BoT. The combination of BitTorrent and TTG ensures an efficient download
of uncached data: Every input data file must obviously be downloaded at least
once into the P2P Grid, but our algorithms are designed to reduce the cost of
downloading identical - i.e. redundant - copies of input data files, be they needed
simultaneously or over time.

This chapter is structured as follows. The state of the art in scheduling of Data-
Intensive Bags of Tasks and in BitTorrent data transfer architectures is first re-
viewed in Section 5.1. Our proposed data transfer architecture and Task scheduling
policies are then introduced, in Sections 5.2 and 5.3, respectively. They are evalu-
ated and experimental results are discussed in Section 5.5. Proactive, asynchronous
data replication is also briefly discussed in Section 5.4.
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(a) Data reuse (b) Task execution parallelism

Figure 5.1: (a) Data reuse vs. (b) Task execution parallelism.

5.1 Related Work

In this section, the state of the art is reviewed in the scheduling of Tasks depending
on large data files, and also in mechanisms enabling multiple simultaneous data
transfers, in particular the BitTorrent P2P file sharing protocol.

5.1.1 Data Replication

A possibility to avoid that massive data transfers degrade performance is to per-
form them, as much as possible, when this does not increase BoT response times.
Proactively replicating data on multiple Resources may increase the efficiency of
subsequent data-aware Task scheduling, but with a possibly large storage cost due
to data caching.

In predictable environments, more typical of Desktop Grids rather than of P2P Grids,
it is possible to complete all data replication before the scheduling of a Bag of Tasks.
A recent example of state of the art synchronous data replication in a Desktop Grid,
in the context of life sciences applications [113], proposes an integer programming
scheduling algorithm. It is limited to a steady state context. It is therefore not appli-
cable in the context of P2P Grids because of the unreliability and constant change of
P2P environments.

It has been shown [257] that data replication can be performed proactively and asyn-
chronously from Task scheduling, with simple and cost-efficient algorithms, as long as
the Task scheduler is aware of data placement. As proactive data replication in a very
dynamic environment seldom achieve perfect data placement, a trade-off [45] must be
found between creating new replicas in order to balance the computational load, or
using existing replicas in order to avoid data transfers.
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5.1.2 Data Reuse

Synchronous data replication may not be applicable to P2P Grids. Moreover, the
costs incurred by data replication can be very high in terms of transfer times.
They can also be high in terms of infrastructure overload, i.e. a Grid Peer may
stop operating due to thrashing caused by the handling of an excessive number of
data management threads [98]. Explicit data replication should thus be avoided
and substituted with data caching, i.e. implicit data replication.

Data reuse is a general term to designate the combination of data caching and
awareness of data placement. If each Resource is equipped with a data cache, only
the first Task (scheduled to this Resource) requiring a given data file triggers its
transfer. Subsequent Tasks (scheduled to this Resource) requiring the same data
file do not trigger its transfer, assuming this data file is still present in the data
cache. When prior availability of data on Resources is taken into account, Task
scheduling is said to be data-aware. Parallelism in the execution of Tasks depend-
ing on the same input data files is of course reduced when using only a data reuse
mechanism.

There exist Task scheduling algorithms [98], taking advantage of data caching. One
algorithm sequentially schedules to the same Resources the Tasks requiring identical
input data files. Another algorithm schedules to a single Resource all Tasks requiring
the same set of large data files. Of course, this decreases execution parallelism but
may be very efficient in P2P Grids connected with slow data links, or when the data
files are so large that it would not be practical to transfer them more than once [44].

A data-aware Workflow scheduling algorithm has been designed [254] around a stat-
ically precomputed schedule of data reuse and cache cleaning operations. It is not
relevant to this dissertation because it is not adaptive to Resource availability.

The Storage Affinity [267] Task scheduling algorithm, implemented in the OurGrid [233,
84, 286] P2P Grid middleware, dynamically takes data placement into account and is
thus perfectly adapted to P2P Grids. It schedules Tasks first to Resources where
most of the required input data files are already available (as measured by the Stor-
age Affinity metric, which gives its name to the algorithm) before considering other
Resources where the unavailability of some input data files requires data replication.
The data transfer architecture presented with the Storage Affinity [267] algorithm re-
lies on a single Peer-level data cache on each Peer; as opposed to our work, it thus
does not rely on multiple Resource-level data caches per Peer. The Peer-level data
cache is accessed by Resources through an NFS file system, which is not highly scalable.

As it is operating in a P2P environment, the Storage Affinity algorithm has to deal
with the unavailability of accurate data about computational times. Task replication



5.1. Related Work 159

(see Section 2.9.4) is proposed as a heuristic to find good Task-to-Resource assign-
ments. Redundancy brings excellent tolerance to Resource faults and variability in
performance, but at a cost [86]. It can be remarked that Task replication has the side
effect that any BoT implicitly becomes Data-Intensive, in the sense that its input data
files are transferred multiple times, thereby increasing the amount of network traffic.

Data reuse, which depends on the presence of data caching support, can prevent
unnecessary data transfers. Among the reviewed related works, the Storage Affin-
ity [267] algorithm is the most suitable to our purposes, provided that it is adapted
to a fully distributed data transfer architecture and storage model. In particular,
the storage capacity available on Resources should be considered as limited rather
than infinite due to the nondedicated nature of Resources in a P2P Grid.

5.1.3 Task Execution Parallelism

Task selection can increase the parallelism of Task execution on multiple Resources,
but this may cause a so-called flash crowd. A flash crowd is a large number of
downloaders simultaneously downloading the same file, thus overwhelming the
original data server with download requests and causing a performance bottleneck.

Without efficient handling of flash crowds, Task execution parallelism is difficult
to achieve. The BitTorrent P2P file sharing protocol is able to prevent such per-
formance bottlenecks and has been proposed in several recent works [57, 56, 184,
309, 310], including ours [57, 56, 184], to address this issue. These works are dis-
cussed in a next section, after an introduction to BitTorrent and a discussion on
its relevance.

5.1.4 Overview of BitTorrent

BitTorrent [87, 207, 46] is a file sharing protocol that enables computers to ex-
change files with one another in a P2P fashion. Built-in mechanisms enforce the
cooperative behavior of a group of downloaders that has the common interest of
downloading the same file at the same time.

BitTorrent Architecture

A BitTorrent Peer is any computer running the BitTorrent client [46] software. As op-
posed to what happens in other P2P file sharing protocols, a BitTorrent P2P network
comes into existence for a single file only, i.e. a given BitTorrent Peer concurrently
downloading two files is a member of two BitTorrent P2P networks.
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In this chapter, to avoid confusion in the use of the terms Grid Peer and Bit-
Torrent Peer, the term BitTorrent Peer is substituted with the term BitTorrent
node, in order to disambiguate the usage of the term Peer. The term Peer is also
always prefixed, i.e. Grid Peer. To avoid unnecessary complexity when referring to
the bartering role of a Grid Peer, the terms Grid consumer Peer and Grid supplier
Peer are substituted with the terms consumer Peer and supplier Peer, respectively.

A BitTorrent node that shares a complete file with other BitTorrent nodes is called
a seeder. A BitTorrent node originally sharing a file must first split the file to share
into pieces and also create a so-called torrent file. This sharing is at the piece-level,
i.e. individual file pieces are requested and transferred. This metadata file describes
the file to share, as well as the location of the tracker that is used.

The BitTorrent tracker [48] software is the file-level BitTorrent node discovery service1.
It introduces to one another BitTorrent nodes interested in a given file. A BitTorrent
node originally sharing a file must either launch its own tracker or use a publicly avail-
able tracker.

BitTorrent Protocol

Each BitTorrent node that wants to download a given file - i.e. each downloader - must
first contact the tracker. From this point on, it belongs to the BitTorrent network for
this file. Downloaders exchange pieces of the file with one another, and also download
pieces from seeders. A BitTorrent node invites other BitTorrent nodes to cooperate by
uploading to them (allowing them to download) the pieces it has already downloaded.

The BitTorrent protocol has a built-in incentive mechanism to incite reciprocity among
BitTorrent nodes. Each BitTorrent node does not serve most of the downloaders that
are interested in pieces it has already downloaded. At any time, a BitTorrent node
only allows a few BitTorrent nodes to download pieces. In a tit-for-tat fashion, the
accepted downloaders are those that have uploaded the most in a recent past.

To bootstrap the system, another policy, called the optimistic unchoking [87, 207]
policy, also regularly selects at random one BitTorrent node to unchoke. This allows
BitTorrent nodes to initially acquire a few pieces of the file, so that they can eventually
start contributing to the BitTorrent network. Initially, a downloader waits to be selected
a few times by the optimistic unchoking algorithm of other BitTorrent nodes, so that
it can acquire a few pieces. The downloader then starts sharing these pieces with other

1Trackerless versions of the BitTorrent protocol are beginning to appear [117]. Given their
recency, it is not clear yet whether they are resistant to sabotage by malicious BitTorrent nodes
attempting to corrupt or to slow down the propagation of information that would be communi-
cated by the BitTorrent tracker.
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BitTorrent nodes. It continues exchanging pieces until the download is complete. Fi-
nally, it continues to share (serve pieces of) the file even after the download is complete.

BitTorrent Properties Relevant to Grid Computing

BitTorrent P2P networks are unstructured and need not be centrally deployed.

Collaboration between downloaders starts very early, as pieces of files, rather than
whole files, are exchanged. As opposed to several other P2P file sharing proto-
cols [222, 160], BitTorrent nodes do not have to wait for a file to be completely
downloaded to begin uploading some of its pieces to other BitTorrent nodes. Every
BitTorrent node downloading a file also can begin acting as an uploader as soon
as it has downloaded at least one piece of the file (as opposed to: as soon as it has
downloaded the whole file).

The BitTorrent protocol also specifies the default behavior that each BitTorrent
node continues to act as uploader after its role as a downloader is finished. The
sharing of a given file thus continues after its download is completed. This behavior
is very useful in the context of P2P Grids, as will be explained in the next sections.

With BitTorrent, as opposed to what happens with direct file transfer protocols,
network links between BitTorrent nodes are exploited (see Figure 5.2): As each
downloader is also an uploader, the network load is removed from the original
seeder and distributed among all downloaders and seeders. BitTorrent is able to
exploit so-called orthogonal network bandwidth, which is made up of the “physical
network paths not included in a source-rooted application level tree.” [4]

The resulting advantage over direct file transfer protocols, e.g. File Transfer Proto-
col (FTP), is that the total transfer time of a file by multiple downloaders increases
slowly with their number [309], i.e. less than linearly. This property makes any
BitTorrent node able to efficiently handle a flash crowd of downloaders.

5.1.5 Why BitTorrent Is Relevant

Recent studies [4, 5, 189, 328] on the use of BitTorrent in Grid environments show
that BitTorrent performs nearly as well as mechanisms based on explicitly built
overlays2 in over-provisioned network cores.

2“An overlay network is a computer network which is built on top of another network. Nodes
in the overlay can be thought of as being connected by virtual or logical links, each of which
corresponds to a path, perhaps through many physical links, in the underlying network. For
example, many P2P networks are overlay networks because they run on top of the Internet.” [234]
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(a) centralized (e.g. FTP) data sharing (b) P2P (e.g. BitTorrent) data sharing

Figure 5.2: A Grid Peer (top) shares a file with 3 Resources. (a) With FTP data
sharing, only the network links with the Grid Peer are exploited. (b) With BitTor-
rent data sharing, the 4 BitTorrent nodes (1 Grid Peer + 3 Resources) cooperate
with one another: Network links between all downloaders are also exploited, lead-
ing to file download times essentially independent of the number of downloaders.

More importantly, these studies also indicate that BitTorrent sustains “equivalent
undegraded performance” as the available network bandwidth decreases. In other
words, BitTorrent performs well in managed and over-provisioned networks and,
as opposed to explicit overlay-based techniques, maintains good performance in
bandwidth-constrained networks that are more typical of P2P Grids environments.

Transferring data with the BitTorrent P2P file sharing protocol in a P2P Grid
opens a very interesting perspective: As more Tasks sharing the same input data
files are scheduled at the same time, the overall time of the multiple simultaneous
data transfers remains close to the time of transferring it only once.

The relevance of using BitTorrent in P2P Grids is now discussed.

• First, BitTorrent is both highly scalable [287] and highly adaptive to unreliable
network conditions, making it suitable for P2P Grids.

• Second, BitTorrent’s incentive mechanism, i.e. the choking policy, discourages
malicious Grid nodes to run misbehaved BitTorrent nodes.

• Third, data exchanges at the piece-level enable that multiple copies of a given
input data file (required by multiple Tasks scheduled concurrently) are si-
multaneously transferred with a very high temporal efficiency, whereas data
exchanges at the file-level would be much less temporally efficient.
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• Fourth, the default behavior upon completion of a download is to continue
sharing the downloaded file. This behavior actually encourages Grid Peers
to schedule Tasks using Temporal Tasks Grouping as this has the effect of
maintaining a large number of data sources even if a flash crowd is not totally
synchronized, i.e. if Tasks needing the same data are not scheduled at the
exact same time, or if network performance of Resources are highly variable,
leading systematically to delayed response times on some of them. It is
important to remark that, when supplementary storage space is needed, a
Grid node will eventually stop sharing a completely downloaded input data
file not needed by the currently running Task, thus effectively precluding
downloaded files from saturating the storage capacities of a P2P Grid.

• Fifth, the BitTorrent node discovery service, i.e. the tracker, operates at an
appropriate level of granularity, as each Grid Peer can operate its own Bit-
Torrent tracker to manage a discovery service for its own files. Indeed, as
explained in Section 5.1.4 there is no need for a global Grid-level tracker that
would manage a BitTorrent node discovery service for all files of a P2P Grid.

Introducing QoS in BitTorrent [15, 194] has been proposed in recent research work in
Content Networks. This research is very relevant and may lead to BitTorrent variants
enhanced for P2P Grids.

Extracting the basic concepts from BitTorrent and using them to design new, lightweight
BitTorrent-like protocols, such as GridTorrent [189] or Overhaul [240], may also be a
promising avenue of research.

5.1.6 Why GridFTP Is Not Relevant

Classic Grids often exhibit certain features that can be taken advantage of, such
as high speed networks and the presence of multiple network interfaces on many
Grid nodes. Some direct data transfer protocols have been modified specifically
for use in Grids with the goal to speed up massive data transfers.

GridFTP [165, 7] is an extended FTP protocol specifically designed for high perfor-
mance, highly managed Grids. GridFTP [165] is “a high-performance, secure, reliable
data transfer protocol optimized for high-bandwidth wide-area networks. It is based
upon the Internet FTP protocol, and it implements extensions for high-performance
operation that were either already specified in the FTP specification but not commonly
implemented or that were proposed as extensions by [the Globus alliance].”

Historically, GridFTP has targeted high performance, controlled environments, in
particular those involving cluster-to-cluster file transfers. One of its key strengths is
the support for striping, i.e. parallel data transfers of a file through several network
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interfaces. “Data striping refers to the segmentation of logically sequential data,
such as a single file, so that segments can be assigned to multiple physical devices
[. . .] and thus written concurrently” [104]. Using data striping can improve the
performance of data transfers even with a single network interface [214]. However,
data striping support - which is a key strength of GridFTP - cannot be exploited
to its full potential in a P2P Grid context, if only because P2P Grid Resources
rarely come with more than one active network interface.
The security features of GridFTP [235] ensure authentication of the parties as well
as the encryption of the transferred data. This is hugely important in practice.
However, we hypothesize that the support of most of these features (except maybe
delegation of credentials) can be added transparently to other data transfer pro-
tocols as well.

Importantly, GridFTP does not exploit the network links between downloaders.
In contrast, this is the key strength of BitTorrent.

Despite all its strengths, because the exploitation of the so-called orthogonal band-
width is a requirement to maintain fully decentralized architecture, GridFTP
should thus not be used as-is as the baseline protocol of the data transfer archi-
tecture of a P2P Grid. However, GridFTP could certainly be used as a secondary
protocol to optimize some BitTorrent operations. As Allcock et al. [7] have pointed
out, GridFTP “could be used to good effect as a data transfer tool in” BitTorrent
to augment the reliability and performance of TCP/IP connections between Bit-
Torrent nodes, as point-to-point data transfers would be performed with GridFTP.

5.1.7 BitTorrent Support in Existing Grid Middlewares

The idea of using the BitTorrent file sharing protocol in distributed computing
systems has been proposed in several research works. BitTorrent has first been in-
troduced in stable distributed environments (Desktop Grids and clusters) usually
as loosely coupled, script-based implementations [184, 47], but also as a well-
integrated, but specially modified, BitTorrent library [310, 309]. BitTorrent has
also been considered, but not yet implemented, in mainstream Grids and Volun-
teer Grids. We have recently proposed to use BitTorrent in P2P Grids [56, 57],
with a deeply integrated, off-the-shelf BitTorrent library [30].

Desktop Grids and Clusters

Using BitTorrent in a Desktop Grid has been recently and independently proposed
in two studies, one by Wei, Fedak and Cappello [310], and one by us [184].
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In the first mentioned study [310], a model of BitTorrent transfer times is described
(building upon previous work [309]), along with a BitTorrent data transfer architecture
and BitTorrent-aware Task scheduling.

Several BitTorrent-aware versions of classic, knowledge-based scheduling heuristics
(BT-MinMin, BT-MaxMin, BT-Sufferage) are proposed. The BT-X knowledge-based
scheduling heuristics [310] are designed to operate in a cluster or Desktop Grid envi-
ronment. They require “knowledge about communication performance and CPU load
performance.” However, this data is not generally easy to obtain, and it is specifically
not to be trusted in a P2P environment.

Furthermore, the proposed heuristics use a modified version of BitTorrent, where the
standard choking policy is replaced by Predictive Communications Ordering (PCO):
All Resources must follow a precomputed and inflexible data transfer schedule. This is
only possible when Grid Peers downloading input data can be centrally managed, which
is not the case in P2P Grids. For these two reasons (requirement of hard-to-obtain
knowledge and PCO), the BT-X heuristics cannot be applied to the context of P2P
Grids.

This very interesting work is, to the best of our knowledge, the first published proposal
to couple Task scheduling and BitTorrent data transfers.

In the second mentioned study [184], which is part of the work leading to this disser-
tation, a Computer Vision Learning problem, structured as a Data-Intensive Bag of
Tasks application, is presented. This BoT is shown to be successfully computed with
a non-dedicated Desktop Grid running a basic, proprietary middleware. BitTorrent is
used to simultaneously transfer half-gigabyte-sized data to several dozens of Resources.
However, Task scheduling is very basic and unadapted to P2P Grids [184].

Finally, loosely coupled BitTorrent support has been implemented in a computer clus-
ter [47] but, again to the best of our knowledge, there is no relevant publication.

Volunteer Grids

BitTorrent support for data transfers in Volunteer Grids has been considered [12]
but, to the best of our knowledge, there is no relevant publication that proposes a
complete mechanism or architecture.

BitTorrent support is planned to be implemented in the well-known BOINC middle-
ware [51, 12, 92, 93] by the end of 2007. “With BitTorrent fully in place by clients and
servers late-2007, great savings are expected in the telecommunication cost structures
of the current server user base.” [50].
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Mainstream Grids

Recent research [4, 5] has shown through simulation that BitTorrent is indeed an
excellent choice of data transfer technology in networks that are typical of a P2P
Grid environment. It has also been shown that in the near future BitTorrent will
become an excellent choice in networks that are typical of mainstream Grids.

The main goal of these recent studies [4, 5] was to investigate the possibility of using
BitTorrent in mainstream Grids, i.e. high performance, highly managed Grids such as
those running gLite [158] in the context of the CERN LHC experiments. A conclusion
is that BitTorrent support will be required in future mainstream Grids as the deluge
of data to process increases year after year and will eventually overcome the capacity
of every existing network. This conclusion is supported by a recent BitTorrent-like
protocol, called GridTorrent [189], that is designed specifically for mainstream Grids.

P2P Grids

The environment of P2P Grids is different from the stable environment of Desk-
top Grids, clusters and mainstream Grids. A data transfer architecture based on
BitTorrent is even more relevant in P2P Grids.

Our recent work [56, 57] has proposed and shown how to use the BitTorrent file sharing
protocol in P2P Grids. A Java implementation [55] has been publicly released in May
2007.

The main contributions reported in this publication are presented in the remainder of
this chapter: (1) A scalable data transfer architecture, (2) an efficient Task scheduling
policy designed to benefit from BitTorrent’s efficiency at handling flash crowds and
(3) the description of an operational software implementation tailored for P2P Grids.
Our implementation is easily and automatically deployable, in a fully decentralized way.
It does not need a centrally controlled and explicitly constructed data transfer overlay.
It does not need Predictive Communications Ordering. It is deeply integrated with
a BitTorrent library. All these features constitute improvements over the few early
implementations of BitTorrent-based data transfer architecture in Grids.

Distributed, long-term storage of torrents, i.e. BitTorrent metadata files, is relevant
as it may add help develop data persistence support in P2P Grids. Nodezilla [224],
self-described as a Grid network, proposes reliable distributed storage for torrents.
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5.1.8 Other Group-based Data Transfer Mechanisms

Besides multicast, which is difficult to implement both reliably and scalably [146],
distributed cooperation and multi-sourcing, i.e. having multiple sources of data
sharing (which may be seen as a variant of data replication), constitute the two
main mechanisms of group-based data transfers.

Using a set of data caches scattered over a P2P Grid leverages the bandwidth of several
Peers and partially redistributes the transfer load across the P2P Grid. Recent work
includes the Super-Peer model [95] and the File Mover overlay network [17]. They
however both require the explicit deployment of Peer-independent data caches as well
as of a routing substrate, or overlay.

Having simultaneous downloaders of a given data file act cooperatively as a group with
a common interest is another, efficient possibility. The BitTorrent [87, 207, 46] P2P
file sharing protocol is a prime example of this approach.

5.2 Data Transfer Architecture

We propose to augment the P2P Grid architecture with a fully distributed and
highly scalable data transfer architecture. Two overlays are coexisting: the P2P
Grid overlay and the data transfer overlay. To achieve efficient data transfers
across the P2P Grid:

• each Resource manages and downloads all required input data files as needed;

• each Grid Peer serves its own data files;

• Grid Peers are both BitTorrent nodes and FTP servers;

• Resources are also BitTorrent nodes;

• importantly, Resources also act as transient data servers to other Re-
sources: Data files downloaded by a Resource are automatically
shared with BitTorrent.

The most appropriate data transfer protocol (BitTorrent or FTP) is selected adap-
tively for each input data file downloaded by a Resource.

The data management, sharing, transfer and storage software components of our
architecture are described in this section, as well as the data paths taken by trans-
ferred files between Grid nodes in the data transfer overlay. The scalability of
the architecture is also discussed. Task scheduling and the data transfer protocol
selection algorithm are covered in Section 5.3.4.
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5.2.1 Data Scheduling

The data transfer mechanism is the following: Input data files of a given Task
are transferred synchronously upon scheduling of the Task to a given Resource.
When a Task is scheduled to a Resource, this triggers the Resource to initiate the
downloading of the required, uncached input data files. It is the Resource that
actually initiates and controls the file download, similarly to what is proposed in
the Super-Peer model [95]. The data transfer mechanism is thus pull-based.

The timing of data transfers, or data scheduling, is automatically synchronized
with the timing of Tasks scheduling, which is explained in Section 5.3.

5.2.2 Data Managers

A software component called Data Manager equips each Grid Peer and each Re-
source. Each Data Manager relies on its own data cache (will be described in
Section 5.2.5) to manage the storage of data files. Each Data Manager is also
deployed with data sharing and data transfer softwares.

Grid Peer Data Manager

A Data Manager running on a Grid Peer manages the input data files of its own
Tasks only. The Grid Peer Data’s Manager is used to download input data files
from its User Agents, to store and to share these files with the Resources that
process Tasks depending on them. Each Data Manager running on a Grid Peer
is deployed3 with a data cache, a BitTorrent tracker, a BitTorrent client and an
FTP server. There are potentially as many BitTorrent trackers as there are Grid
Peers. Each BitTorrent tracker offers a discovery service for all files shared by the
Grid Peer with which it is deployed.

Resource Data Manager

A Data Manager running on a Resource manages input data files of Tasks belong-
ing to the Grid Peer it is working for, as well as input data files belonging to any
of the consumers of this Grid Peer. The Resource’s Data Manager purpose is to
download (from the Grid Peer by which it is managed or from other Resources) and
store input data files. It also shares the stored input data files with other Resources
running Tasks depending on these input data files. Each Data Manager running
on a Resource is deployed with a data cache, a BitTorrent client and an FTP client.

3 Data Managers running on Grid Peers may also run an FTP client. Along with the Bit-
Torrent client, this enables a Grid Peer to use either protocol to get input data files from User
Agents if these files are not embedded within Tasks.
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Responsibility (consumer) Peer Resource
deployed software deployed software

data storage data cache data cache

BT data tracking Azureus -
BitTorrent tracker -

BT data sharing Azureus Azureus
BitTorrent client BitTorrent client

FTP data sharing Apache -
FTP server -

BT data downloading - Azureus
- BitTorrent client

FTP data downloading - edtFTPj
- FTP client

Table 5.1: Software deployed with Data Managers of Grid Peers and Resources.
Grid Peers acting in a supplier role do not make use of the deployed software.

Deployed Softwares

The responsibilities of a Data Manager running on a Grid Peer and on a Resource
overlap but are not equal. The sets of data sharing and data transfer softwares
deployed on different Grid nodes are thus different (see Table 5.1). In practice, all
the data sharing and data transfer softwares used in our architecture are available
as Java libraries, allowing a 100% Java implementation: Azureus [30] (version
2.5.0.4), Apache FTP server [20] (version 20061027, slightly patched to enhance
security by denying several FTP commands), and edtFTPj [130] (version 1.5.3).
They are thus embedded into the LBG middleware [62, 57], can be deployed as-is
and automatically on a great number of platforms, and do not require any extra
support.

5.2.3 Data Preprocessing

When a BoT is submitted to a Grid Peer by a User Agent, all required input data
files are transferred with the BoT to the Grid Peer. Before the Grid Peer queues
the BoT, it preprocesses the input data files embedded within the BoT: They are
removed from data structures of the BoT and stored into the data cache of the
Grid Peer. Metadata are generated for each input data file and added to the data
structures of the BoT’s Tasks. The metadata of an input data file [99] consist of an
automatically assigned file name based on a simple hierarchical scheme (in order to
provide Grid-wide naming unicity that is required when inserting a file into a data
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cache), a digital fingerprint 4 of the file and location metadata (FTP URL or Bit-
Torrent torrent metadata including the address of the BitTorrent tracker deployed
with the Grid Peer). With this preprocessing, Tasks can be transferred rapidly
across the P2P Grid, as they contain only metadata. Resources where Tasks are
scheduled know where to download the required input data files by consulting the
metadata embedded within the Tasks.

5.2.4 Data Paths

Data Transfer Endpoints

A Grid Peer may schedule its Tasks to its own Resources (i.e. Local Tasks), or to
other Grid Peers (i.e. Consumption Tasks). A Grid Peer may also schedule Tasks
from other Grid Peers to its own Resources (i.e. Supplying Tasks). Endpoints of
a data transfer in a P2P Grid vary according to the type of Task for which it is
required.

A data transfer is initiated similarly for Local Tasks and Supplying Tasks. It is
the Resource where the Task is scheduled that initiates, and constitutes the sink
of, the data transfer. The source of a data transfer for a local Task is the Grid
Peer managing the Resource running the Task, which acts as both consumer and
supplier Peer. The source of a data transfer for an external Task is its consumer
Peer, not the supplier Peer that owns the Resource running the Task.

A consumer Peer consumes computing time from other Grid Peers but, inter-
estingly, it “supplies” its input data files to Resources (the computing and data
transfer relationships are inverted). Input data files are not transferred immedi-
ately upon submission of a Consumption Task to a supplier Peer. Data transfers
take place only after the supplier Peer has scheduled this Task - perceived as a
Supplying Task - to one of its Resources. Such transfers never involve the supplier
Peer and are strictly between the consumer Peer and supplied Resources.

Path of Data Transferred with FTP

If a Resource selects the FTP data transfer protocol to download a given input
data file, this file is directly downloaded from the Grid Peer that shares it.

Path of Data Transferred with BitTorrent

If a Resource selects the BitTorrent data transfer protocol to download a given
input data file, this file is simultaneously downloaded from, and shared with, other

4The integrity of downloaded files is checked with a SHA-256 hash.
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Figure 5.3: Possible data paths for the transfer of a single file from a consumer
Peer (top left) to a supplier Peer (top right) and finally to a Resource of the latter.

Grid Peers and Resources already sharing or downloading it. The data path of a
given file in the Grid overlay, from the Grid Peer that shares it to the Resource
that downloads it, may therefore not be direct. Moreover, a Resource may down-
load an input data file using BitTorrent entirely from other Resources which have
already downloaded it, and not at all from the Grid Peer that shares it.

Path of Metadata

As explained in Section 5.2.3, metadata describing a given input data file of a
given Task are actually embedded within the given Task, and thus transferred to
a Resource along with the given Task. In particular, the BitTorrent torrent meta-
data of a given input data file - which is used to locate the BitTorrent tracker for
the given file, as explained in Section 5.1.4 - are communicated in this way. The
path and transfer timing of metadata are thus identical to those of the Tasks they
are embedded into.

Summary of Possible Data Paths

Figure 5.3 shows the multiple data paths of input data files and, implicitly, of
metadata in the Grid overlay. Plain lines represent the path of a Task from a
consumer Peer to a supplier Peer, and then to the Resource where it is actually
scheduled. Plain lines thus also represent the path of metadata, which are embed-
ded within Tasks. It should be noted that when a Grid Peer schedules the Task
directly to one of its own Resources, the representations of the consumer Peer and
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supplier Peer should be collapsed on Figure 5.3. Long-dashed lines represent the
data path of FTP-transferred input data files. Short-dashed lines represent the
data path of BitTorrent-transferred input data files. Resources in the cloud of Re-
sources represented at the bottom of Figure 5.3 may belong either to the consumer
Peer, to the supplier Peer, or to other supplier Peers that are not involved in the
represented Resource sharing but that have previously acted as supplier Peers to
the represented consumer Peer.

5.2.5 Data Caches

Each Data Manager is equipped with a data cache that manages the storage of
data files. A Grid Peer data cache is very basic, while more requirements are im-
posed on a Resource data cache.

A data cache running on a Grid Peer has an unlimited file capacity because it
stores input data files of its own Tasks and a Grid Peer is supposed5 to be able to
accept Tasks submitted by its User Agents.

The available storage capacity on Resources is considered to be finite, as opposed
to related works [267]. A data cache running on a Resource has a bounded capacity
because Resources in a P2P Grid are typically edge computers. This capacity is the
maximum number of cacheable files, as well as the maximum number of cacheable
bytes.

Data Cache Parameters

The only supported operation on a data cache running on a Resource is the syn-
chronization with a set of files, called working set, communicated by the Grid Peer
that owns the Resource. A Resource’s data cache is controlled by three parameters:
(1) a cache size, (2) a working set and (3) a cache replacement policy.

Cache Size

The cache size bounds both the maximum number of files and the number of bytes
that can be stored. It is configured statically by the human administrator of the
Resource. Except where specified otherwise, the term cache size designates the
maximum number of files allowed to be cached.

5Of course, as a practical measure, a maximum quota could be imposed on the number or
byte count of input data files of the BoTs of each User Agent.
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Working Set

Each Grid Peer maintains a separate working set for each of its Resources. A
working set is the set of files that the corresponding Resource data cache must
have in storage. The metadata of the files in the working set are communicated
by the Grid Peer each time6 a Task is scheduled to the Resource (see Section 5.2.1).

Upon reception of the working set metadata, a data cache synchronizes its contents
with these metadata. The data cache first verifies which files are already cached
using the hash and Grid-level name of the file that are contained in the metadata
(see Section 5.2.3).

When a file of the working set is not stored in the data cache, the Resource down-
loads it from the Grid Peer sharing it; this Grid Peer is either the owner Peer of
the Resource (in the case of Local Tasks), or the consumer Peer that submitted the
Task requiring this file (in the case of Supplying Tasks). As already mentioned, if
BitTorrent is used, the Resource may also download the file from other Resources
that have already downloaded it.

Each Grid Peer guarantees a property for each of the working set it maintains for
its Resources: The working set maintained for a given Resource always includes
the files needed by the Task running on, or scheduled to, the Resource. Each Grid
Peer also guarantees for each of its Resources that the associated working set can
always be fully stored in the Resource’s data cache. Consequently, a Grid Peer
never schedules a Local Task or a Supplying Task to a Resource with insufficient
cache size, either in term of available bytes or in term of available file slots.

Cache Replacement Policy

The cache replacement policy selects which files to eject from the cache when the
insertion of files from the working set causes an overflow, e.g. the byte count or
the number of files exceeds the cache size. Files not part of the working set are
ejected from the cache following a Least Recently Used (LRU) policy until the
working set is fully stored: Files the least recently used (and not in the working
set) are ejected from the cache. As a consequence of the cache replacement policy,
an input data file cannot be ejected from a Resource data cache as long as it is
needed by the currently running Task.

As long as a file is stored in a data cache, it remains shared with BitTorrent.
The size of a BitTorrent network for one given input data file, i.e. the number of

6They may also be communicated to the Resource asynchronously from Task scheduling (see
Section 5.4).
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BitTorrent nodes sharing or downloading a given file, depends upon the contents
of Resource data caches across the P2P Grid. As long as there is at least one
BoT yet to be completed that depends on a given input data file, the size of the
BitTorrent network for this file is at least one. The Grid Peer to which the BoT
was initially submitted continues to share this file until it is not needed by any
Task of its queued BoT.

5.2.6 Data Trackers

Each Grid Peer is equipped with a software component called Data Tracker. It is
not related to the BitTorrent tracker although it derives its name from a related
purpose. It has the responsibility to continuously track the contents of the data
caches of its Resources. It is actually a reverse mapping7 of input data files to the
Resources where they are actually stored.

The metadata stored in the data tracker can be used to:

• locate all Resources storing a given (set of) input data file(s);

• rank all Resources according to the number of bytes of the input data files of
a given Task are already cached (ties are broken by selecting the Resource
with the less filled data cache in order to balance storage among Resources);

• locate the most replicated of all tracked input data files, as well as the least
replicated one.

5.2.7 Scalability of the Data Transfer Architecture

As explained in the previous sections, the BitTorrent-based data transfer overlay
is distinct from the Grid overlay. Endpoints from both are connected (see Sec-
tion 5.2.4). A P2P Grid is intrinsically scalable, by design: How scalable does it
remain when transfers of large input data files occur?

Our proposed data transfer architecture is scalable for BitTorrent transfers. The
load of BitTorrent data transfers is almost entirely on Resources, not at all on
supplier Peers, and only minimally on consumer Peers (see Figure 5.3 again for an
illustration).

Our proposed use of BitTorrent can be classified as following the BitTorrent hy-
brid model [15], where the original data source, i.e. the consumer Peer serves data

7It consists of a 2-levels data structure backed by balanced binary trees: The first level maps
each file to a Resources set, each of which is stored in a separate data structure.
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along with other BitTorrent nodes, i.e. Resources. Consequently, a consumer Peer
sharing data files indeed experiences some load, but considerably less than with
FTP transfers.

To completely remove the load from consumer Peers, it could be imagined that
each consumer Peer first updates the working set of a handful of its Resources
with replicas of the input data files that are going to be needed by one of its Tasks
soon to be scheduled. The consumer Peer would not schedule any Task to these
Resources so that they are used exclusively to share input data files on its behalf.
Immediately after these Resources have downloaded the input data files to share,
the consumer Peer could entirely stop to share these files, effectively removing
from itself any load due to their sharing.

Our proposed architecture of data transfers is not immediately scalable for FTP
transfers. The load of FTP data transfers is totally on consumer Peers, not at all
on supplier Peers and only minimally on Resources (see Figure 5.3 again). More
accurately, the load due to FTP transfers is completely on the FTP servers co-
located with consumer Peers. So our proposed architecture could be made even
more scalable by using so-called Content Distribution Networks [145, 242, 279]
(CDN). This would however come at the expense of maintaining multiple FTP
servers. Interestingly, BitTorrent could be used to synchronize multiple CDN
servers efficiently. Synchronization would become very scalable and the resulting
network load would be spread among the CDN servers.

5.3 Task Scheduling

Scheduling one Task involves operations to be made data-aware (see Figure 5.4):

• Task selection: selecting a Task in the Local Tasks queue (Local Tasks and
Consumption Tasks scheduling) or Supplying Tasks queue (Supplying Tasks
scheduling);

• Resource selection: selecting on which Resource to schedule the selected Task
(Local Tasks and Supplying Tasks scheduling);

• supplier Peer selection: selecting on which supplier to schedule the selected
Task (Consumption Tasks scheduling);

• data transfer protocol selection: selecting for each input data file of the Task
which data transfer protocol (BitTorrent, FTP) to use (Local Tasks and
Consumption Tasks scheduling).
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Figure 5.4: Scheduling model (extended version of Figure 2.20).

5.3.1 Task Selection

We propose a novel Task selection algorithm, called Temporal Tasks Grouping
(TTG). It computes a schedule that determines the order in which Local or Sup-
plying Tasks should be selected for execution. It is based on the observation that
any Data-Intensive BoT may be partitioned into several groups of Tasks, with
each group depending on separate subsets of redundant input data files.

Let θ = θ0,. . . , θn−1 be a Bag of n Tasks. Let ∆i be the set of input data files of
Task θi, ∆j

i its jth input data file and |∆j
i | the size (in bytes) of the jth input data

file. Two Tasks θi, θk are said to be related when they have at least one input data
file in common, i.e. ∃j, l : ∆j

i = ∆l
k. A set of Tasks θ is said to be connected if

every θi is related to at least one other Task, i.e. ∀i∃k : θi, θk are related. Any BoT
can be partitioned into disjoint connected sets of Tasks by repeatedly applying a
transitive closure algorithm.

A schedule σ(θ) of a set θ of Tasks is an ordering of θ. When scheduling Tasks
of a BoT, Task selection consists in following the schedule computed for the BoT.
A subsequence σ̄s(θ) is a section of this ordering, and its length (expressed as a
number of Tasks) is noted |σ̄s(θ)|. The (statically computed) distance between the
sets of input data files of the two Tasks θi, θk is the sum of the sizes of the input
data files of θk that are not identical with θi: d(∆i,∆k) =

∑
l |∆l

k|, ∀l : ∆l
k /∈ ∆i.

This distance is not symmetric.

To schedule at the same time Tasks sharing some input data files, it could be effi-
cient to minimize the sum of distances between subsequent Tasks within schedules.
This would require to take into account the variability of the number of available
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Resources, and to solve an asymmetric8 Travelling Salesman Problem [203] for
each schedule, which is computationally hard. Instead, we propose to schedule
Tasks sharing input data files at the same time.

Two Tasks are said to be data-equal when they have all their input data files in com-
mon, i.e. d(∆i,∆k) = 0. A data-equal subsequence of θ is an extensive subsequence
of data-equal Tasks: The Tasks immediately before and after the subsequence are
not data-equal to those of the subsequence. Temporal Tasks Grouping consists in
sorting by decreasing length |σ̄s(θ)| the data-equal subsequences of a schedule (see
Table 5.5). Multiple data-equal subsequences of similar length may then be sorted
using a nearest neighbor algorithm [203]; the metric can be the distance d(∆i,∆k)
between two Tasks of neighbor subsequences, as the input data files of one Task
are representative of those of all Tasks in a subsequence.

Importantly, computing a schedule with TTG can be performed in batch-mode [215,
71], i.e. it considers a set of Tasks, but statically at the submission time of the BoT,
rather than dynamically, as it is decoupled from the Resource selection algorithm.
TTG takes into account only the BoT itself; it does not need any information from
other Grid Peers. Selection of Local Tasks or Supplying Tasks to schedule consists
in following the schedule computed for the BoT.

The main benefit of Temporal Tasks Grouping is to ensure that the scheduling of
data-equal Tasks is temporally grouped so as to maximize efficiency of BitTorrent
transfers. Another benefit of TTG is that the largest groups of data-equal Tasks
are scheduled first (the length of the scheduled data-equal subsequences is neces-
sarily decreasing). Indeed, the Peer negotiator (see Section 2.9.5) tries to obtain
as many consumption grants as possible as soon as a BoT is scheduled, which con-
tributes to the synchronization of the scheduling of Tasks belonging to the largest
data-equal subsequences.

As future work, it might be interesting to provide to the negotiator the size of the
next group of data-equal Tasks to schedule, so that it can hold the received con-
sumption grants until a certain number of consumption grants have been received.
This could increase the temporal synchronization of the scheduling of data-equal
Tasks, if the supplier Peers are not so busy that consumption grants are represen-
tative of their state only for short periods of time.

8 City = data cache. Tour = schedule of Tasks, with input data files cached as a side effect.
It is an asymmetrical TSP because the impact on data availability of scheduling θi then θj to a
Resource may not be the same as scheduling θj then θi, given the finite size of data caches.
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Figure 5.5: Tasks of BoT θ (here with 1 input data file per Task) are grouped into
data-equal subsequences, which are sorted by decreasing length |σ̄s(θ)|.

5.3.2 Resource Selection

The Resource selection algorithm selects a Resource to schedule Local and Sup-
plying Tasks. We propose to adapt an existing supplier Peer selection algorithm,
Storage Affinity [267], that explicitly takes data placement into account. Storage
Affinity must be adapted in the sense that the LBG data transfer architecture is
fully distributed.

Let ∆Rx be the contents of the data cache of Resource Rx. At a given time, it
contains input data files accumulated from previous Task executions.

When a Grid Peer is scheduling a Local or Supplying Task θi, a Resource is located
by minimizing the (dynamically computed) distance d(∆i,∆Rx) between the input
data set ∆i of the Task to schedule and the data cache of each Resource. This
distance, computed dynamically, represents the transfer cost of scheduling θi on
Rx. It requires data tracking support: Each Grid Peer knows the contents of the
data cache of each of its Resources at any time, which is made possible by the way
data caches operations have been designed, e.g. the contents of a data cache of a
Resource is synchronized on the working set communicated by the Grid Peer that
owns the Resource.

After a few Tasks have been scheduled, the minimum distance is expected to be
small. There is probably at least one Resource with a data cache already storing
most of input data files of ∆i due to the execution of previous Tasks. This mini-
mization is equivalent to maximizing the Storage Affinity [267] metric of the given
Task with the contents of the data caches of the Grid Peer’s Resources.

If Resources of a given Grid Peer exhibit large variation in reliability or perfor-
mance, the data-aware Resource selection should be complemented with a perfor-
mance- or reliability-aware [58] Resource selection algorithm (see Chapter 4), or
with Task replication [267] (see Section 2.9.4).
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5.3.3 Supplier Peer Selection

Data placement also has to be taken into account when selecting a supplier Peer
to schedule Consumption Tasks. Another variant of an existing supplier Peer
selection algorithm, Storage Affinity [267], is now introduced as supplier Peer se-
lection algorithm. Given the context of P2P Grids, the state of the data caches of
a supplier Peer is not accurately known to other Grid Peers. Awareness of data
placement can be taken explicitly into account, but based on estimates (as opposed
to Storage Affinity) rather than on actual knowledge (similarly to Storage Affinity).

The state of the data caches of suppliers is estimated based on metadata that a
Grid Peer can acquire independently. For each Local BoT, a Grid Peer maintains
the list of supplier Peers that have supplied Resources for at least one Task of the
BoT; the Grid Peer also maintains a reverse mapping of suppliers to input data
files. These mappings become inaccurate when input data files are ejected from the
data caches of suppliers’ Resources. Even if accurate, a supplier Peer may schedule
a Supplying Task poorly, if only because the Resources whose data caches contain
the required input data files are busy at scheduling time. As future work, it will
be useful to quantify the data storage reliability of supplier Peers, i.e. to estimate
the ejection rate of files from data caches of supplier Peers’ Resources. This is
not straightforward, as an input data file that has to be downloaded again may
simply have been cached by a busy Resource; therefore, multiple downloads of a
given input data file by Resources of a supplier Peer do not necessarily indicate
the ejection of this file from the supplier Peer’s data caches.

To schedule a Consumption Task, a Grid Peer selects a supplier Peer among a
set of suppliers. Those that already processed other Tasks of the same BoT are
ranked first. The ranking is performed using the same distance that was defined
in Section 5.3.2 (Resource selection), except that it is applied to the supposed
contents of the set of data caches of the target Grid Peer’s Resources instead of
the data cache of one Resource.

An important consequence of the organization of our proposed data transfer ar-
chitecture is that the impact of ineffective data-aware scheduling decisions is mit-
igated by the availability, in other Resources of the P2P Grid, of cached copies
of a file to download. If the required input data file has never been downloaded
into the P2P Grid before, or if it has been downloaded a long time ago (thus, not
cached anymore), all scheduling decisions are equivalent, as far as data-awareness
is concerned. If the required input data file is already cached on one Resource, an
ineffective scheduling decision would consist either in scheduling a Consumption
Task to a supplier Peer with no Resource having this file in cache, or in scheduling
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a Local Task or Supplying Task to a Resource that does not have this file in cache.
Following the cache miss, this file can be downloaded with BitTorrent from at least
one other source than the original data server (i.e. consumer Peer); this mitigates
bottlenecks arising at the original data server.

Finally, it can be remarked that data-aware supplier Peer selection by a consumer
Peer and data-aware Resource selection by the selected supplier Peer, even if based
only on estimates, are both needed to provide end-to-end data-aware scheduling.
Data reuse is thus a fully distributed, cooperative effort. It should be reminded
that the supplier Peer is motivated, by the incentives of the bartering mechanism
(see Section 2.3.4), to offer good response times to the consumer Peer. This implies
that suppliers Peer should seek to download data diligently.

5.3.4 Data Transfer Protocol Selection

The research presented in this section results from cooperative work with our col-
league Xavier Dalem.

Neither BitTorrent nor FTP achieves the shortest download times in all situations.
In most setups, a given input data file is downloaded in a shorter time by a group
of BitTorrent nodes rather than by a group of FTP clients. However, there ex-
ist conditions that may lead to shorter download times with FTP. Specifically, a
very small file size or a very small number of potentially concurrent downloaders
lead to shorter download times with FTP. This is caused by the larger overhead
of the BitTorrent protocol: BitTorrent nodes must initially wait to be selected
a few times by the optimistic unchoking algorithm of other BitTorrent nodes, as
explained in Section 5.1.4. On Figure 5.6a, the black curve separates the setups
such that BitTorrent or FTP leads to shorter download times. The zone below the
curve consists of all setups where FTP should be preferred.

We propose a variant [56, 57, 99] of an existing algorithm. The existing algo-
rithm [310, 309] is based on an analytical model of download times in function of
the file size, network bandwidth, latency of the data transfer protocol and also of
a factor that is logarithmic in the number of downloaders. To make a decision, the
output of the analytical model for each protocol (BitTorrent, FTP) is compared
and the fastest protocol (for the given setup) is selected.

Our data transfer protocol selection algorithm, illustrated on Figure 5.6b, deter-
mines if a given input data file should be shared with BitTorrent or with FTP,
based on the size of the file (following Wei et al.’s [310, 309] results) and on its
level of redundancy within the BoT and in data caches over the P2P Grid (the
latter is obtained indirectly from the BitTorrent tracker, as a consumer Peer has
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Figure 5.6: Data transfer protocol selection algorithm for one file.

no access to the data caches of supplied Resources). It is applied once to all files
of a Local BoT. On one hand, it is simpler, thus less accurate, than the existing
algorithm. On the other hand, it is easier to calibrate, thus to implement, as it
does not use estimates of the available network bandwidth (which would have to
be periodically updated given the variability in the performance of P2P networks).
Furthermore, as opposed to the existing algorithm, it does not rely on Predictive
Communications Ordering (PCO).

In the 100 Mbps switched Ethernet network used in our experiments, two concur-
rent downloads of a data file and a file size of ∼50 MB, are sufficient for BitTorrent
to outperform FTP. As illustrated on Figure 5.6b, there is a zone where BitTor-
rent is selected but FTP should be preferred. The data transfer load of the P2P
Grid influences the area of this zone, which tends to shrink under heavy load. In
situations of high contention, BitTorrent should be preferred so that the proposed
algorithm leads to lower or equal download times. In situations of low contention,
the absolute temporal penalty is limited, as the number and size of downloads are
intrinsically limited in the FTP-preferred/BitTorrent-selected zone. Predicting the
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situations of high contention would also be difficult, as it depends on BoTs sub-
mitted across the P2P Grid, as well as out-of-Grid network traffic. This is why we
propose a simple heuristic that behaves well in the worst cases and offers reasonably
degraded performance under low contention. Finally, the human administrators
of Resources and Grid Peers can always override the data transfer protocol selec-
tion algorithm. This is useful if one of the protocols is filtered at the network level.

5.4 Proactive Data Replication

In this section, a recent bartering-based data sharing mechanism that could benefit
our proposed data transfer architecture is first reviewed. It motivates idle BitTor-
rent nodes to help busy BitTorrent nodes download data files, with an expectation
of future reciprocity. We then propose a proactive data replication mechanism.
It is designed to speculatively cache input data files in idle Resources of a given
Grid Peer by proactively replicating the most popular input data files of recently
scheduled Supplying Tasks.

5.4.1 Bartering Bandwidth with Idle BitTorrent Nodes

A variant of the incentive mechanism of BitTorrent, called 2Fast [155], has been pro-
posed as part of Tribler [295, 250], which is a classic P2P network where only data files
are exchanged. Tribler itself relies on the standard BitTorrent [87, 207, 46] protocol
to manage data exchanges between BitTorrent nodes interested in a given file. 2Fast
operates on top of Tribler following a bartering model similar to the Network of Fa-
vors [13] (see Section 2.3.4). 2Fast seeks to harness the bandwidth of BitTorrent nodes
not belonging to the BitTorrent network of a given file. 2Fast relies on a byte-level
accounting of data transfers between BitTorrent nodes to motivate those not related
to the file to download it nonetheless.

2Fast provides incentives to idle BitTorrent nodes by making their contributions recog-
nized and memorized. Idle BitTorrent nodes are thus motivated to help busy BitTorrent
nodes to complete their ongoing transfers. BitTorrent has indeed the property that ad-
ditional downloaders of a given file further help to spread and balance the network load.
The standard BitTorrent protocol could be seen as enabling an immediate, restricted
form of bartering, with 2Fast enabling a delayed, more general form of bartering, sim-
ilarly to the Network of Favors.

The 2Fast [155] protocol could be added to the LBG data transfer architecture to
leverage the bandwidth of idle Resources. 2Fast could even be extended so that
idle Resources contributing their bandwidth also take account of the bartering (of
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computing time) relationships of their owner Grid Peer. Adding 2Fast to LBG
would contribute to the increasing of bandwidth utilization and to the decreasing,
in the P2P Grid, of all download times when BitTorrent is used.

5.4.2 Replicating Data to Idle Resources

With our proposed data transfer architecture, input data files stored in Resource
data caches continue to be shared for some time, until they are ejected because
they have not been needed in a recent past. This property can be leveraged by a
Grid Peer to augment the cache hits of its Resources in a near future. We propose
that a Grid Peer proactively makes its idle Resources download input data files
that are predicted to be required by Supplying Tasks in a near future.

To this end, we propose a proactive, asynchronous (from Task scheduling) data
replication mechanism [56]. Proactive replication benefits the owner Peer of these
idle Resources when it schedules Supplying Tasks requiring these input data files.
Indeed, not having to download these files contributes to increasing utilization and
decreasing response times of the owner Peer. Proactive replication also benefits
to other Grid Peers. Indeed, they benefit from supplementary sources of sharing,
which contributes to decreasing download times using BitTorrent. Proactive data
replication can also be first applied to queued Local Tasks before it is applied to
queued or expected Supplying Tasks.

The mechanism works as follows: A supplier Peer triggers some of its idle Re-
sources to download, using BitTorrent, the most popular input data files of Sup-
plying Tasks, that are already cached (or in the process of being cached) by other
Resources. The activation of the replication process can occur at any time. The
replication of a selected input data file can be triggered immediately after it has
begun to be downloaded by Resources where scheduled Tasks require it. This
replication could also be triggered at a later time, which promotes bandwidth uti-
lization anyways.

The contents of a Resource data cache are controlled through its working set (see
Section 5.2.5). Each time a Grid Peer schedules a Task one of its Resources, this
Grid Peer communicates the metadata of the working set associated to the Re-
source. These metadata must include the metadata of the input data files required
by the scheduled Task. They also include the metadata of cached files not ejected
from the cache by the files required by the scheduled Task. The Grid Peer can
also asynchronously make the Resource synchronize its data cache by communi-
cating working set metadata that also include the metadata of files selected for
data replication.
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The selection by a Grid Peer of input data files to be replicated works as follows:

• Following a spatial locality principle, we hypothesize that popular input data
files - i.e. files that are cached by a large number of the Grid Peer’s Resources -
are also good candidates for replication. Moreover, each copy of a popular
input data file also constitutes an additional source of sharing, which is an
advantage when using BitTorrent. A popularity metric is defined by counting
occurrences of input data files in Resource caches. It is similar to the metric
proposed by Ranganathan’s [257] which counts the occurrences of input data
files in recent scheduling decisions.

• Following a temporal locality principle, we hypothesize that, if several Tasks
(of a given consumer Peer) sharing the same input data files have been run
in the recent past, more of them will be run in the near future, at nearby
locations. To take recency into account, our popularity metric uses a sliding
window to take account only of the input data files of the K most recent
scheduled Supplying Tasks.

• In a spirit similar to BitTorrent’s optimistic unchoking policy [87, 207], adding
some randomness augments the diversity of the replicated data, which in
turns - we hypothesize - increases the probability of moderately popular
data to be replicated.

The input data files replicated to a given Resource includes the most popular input
data files (exploitation of high utility), as well as a few randomly selected input
data files (search for high utility). The replicated files should never eject already
cached files, but only fill empty slots. Our proposed data replication mechanism
is therefore controlled by the following parameters: timing of the activation of
data replication, value of the sliding window, number of files to replicate, pro-
portion (i.e. weight) of random files among the files to replicate. As opposed to
our proposed data transfer architecture and Task scheduling algorithms, the data
replication mechanism has yet to be experimentally evaluated, as future work.

Our proposed data replication mechanism is similar to related state of the art work
by Ranganathan et al. [257], but is slightly different: Our mechanism is pull-based,
i.e. initiated by Resources of supplier Peers, rather than push-based and our popularity
metric also uses a sliding window.

A data replication mechanism based on the replicator concept has recently been pro-
posed [218] to provide an augmented version of BitTorrent. The replicators are Bit-
Torrent nodes artificially introduced to support a BitTorrent network, unlike our mech-
anism. It is pull-based, similarly to our mechanism. It is not targeted towards P2P
Grid and is specifically limited to symmetrical-bandwidth networks.



5.5. Experimental Results 185

5.5 Experimental Results

In this section, the proposed combination of algorithms and protocols are evaluated
with a real application using a full deployment of the complete middleware. Useful
metrics are first introduced. Important implementation details are discussed. The
hardware environment and Grid configurations are then presented. Experiments
evaluating various parameters are then described.

5.5.1 Useful Metrics

Data Diversity Ratio

A measure of the diversity (and, conversely, of the redundancy) of input data files
between Tasks of a BoT is the Data Diversity Ratio (DDR). It corresponds exactly
to the Shared Data Ratio that has been used by Wei et al. in recent work [310],
but has been renamed to reflect more accurately its semantic.

The DDR is defined as the size (in bytes) of all the distinct input data files among
all Tasks of the BoT, divided by the total size (in bytes) of all input data files of
all Tasks of the BoT: DDR = number of bytes of distinct files

number of bytes of all files
.

If there is no sharing of data, DDR = 1. The DDR decreases towards 0 as the
level of sharing increases. It has a lower bound that is the size of the smallest
file of the BoT divided by the number of bytes of all files in the BoT; this bound
simplifies itself to 1

file count in BoT
when all files are identical. The following holds:

(0 < number of bytes of smallest file
number of bytes of all files

≤ DDR ≤ 1)

For example, the DDR of a Bag of three Tasks depending on the same input data
file is 1/3, which also corresponds to the lower bound.

Inter-Task Data Sharing

There is Inter-Task data sharing within a BoT whenever two or more Tasks share
at least one input data file. It is equivalent to the condition DDR < 1. This
metric was introduced by Santos et al. as “inter-task data reutilization” [267].

Inter-BoT Data Sharing

There is Inter-BoT data sharing between BoTs whenever there is data sharing be-
tween two subsequently submitted BoTs, i.e. at least one input or output data file
of the firstly submitted BoT is also included as an input data file of the secondly
submitted BoT. In the following, the definition is restricted to input data files only
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because there currently is no support for the caching of output data files in LBG.
This metric was introduced by Santos et al. as “inter-job data reutilization” [267].

Mean Cache Hit Ratio

It can be useful to estimate the efficiency of Task scheduling expressed as a measure
of good matching of Tasks and Resources such that a large number of input data
files are cached by the selected Resources. The cache hit ratio of a Resource is the
number of cache hits, divided by the number of cache queries, of the Resource’s
data cache. It is thus a real number between 0 and 1 included.

The cache hit ratio of a Resource is updated each time a file is required by the
synchronization of the data cache with the working set, i.e. when the input data
files of a scheduled Task are either retrieved from the cache or downloaded from
the P2P Grid. If scheduling decisions are efficient, the cache hit ratio is high,
many input data files are cached and few input data files have to be downloaded.

The mean cache hit ratio of a Grid Peer is the mean of the cache hit ratios of Re-
sources of this Grid Peer. It is thus also a real number between 0 and 1 included.
Human administrators of Grid Peers typically expect high mean cache hit ratios,
which constitute an indicator of efficient system utilization.

5.5.2 Deployment

Hardware Environment

The experiments presented in this chapter have been conducted on 30 x86 PC
(Intel P4 CPU 3GHz with 1GB RAM), all equipped with standard hard drives,
and connected with a 100 Mbps switched Ethernet network.

The P2P Grids considered in the experiments presented in the next sections 4 Grid
Peers (1 Grid Peer acting in a consumer role, 3 Grid Peers acting in a supplier role),
24 Resources (8 assigned to each supplier Peer), 1 User Agent (submitting Bags
of Tasks to the consumer Peer) and 1 Search Engine. 24 PC (out of 30 available)
are used as Resources. 6 PC are used as other Grid nodes: 4 Grid Peers, 1 User
Agent and 1 Search engine.

Grid Configuration

In order to avoid interferences arising from queueing issues in the presented exper-
iments, only one consumer Peer is deployed and it has no Resource. For the same
reason, only the single consumer Peer submits Tasks to the supplier Peers, which
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(a) Grid topology I: 1 consumer, 3 suppliers (managing 8 Resources each).

(b) Grid topology II: 1 consumer, 1 supplier (managing 8 Resources).

Figure 5.7: Grid topologies for P2P data transfer experiments.

Original Tasks input data files of Bag of Tasks θ

∆0 ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

{g} {r} {i} {d} {g} {r} {i} {d}

Figure 5.8: Data-equal Tasks of submitted BoTs are ordered as far as possible
from one another, so that FIFO Task selection results in temporal ungrouping of
data-equal Tasks.

have no User Agent and thus are not submitted any Local Task. Figure 5.7 illus-
trates the two Grid configurations that are deployed for the following experiments.

In order to control the impact of Task runtimes on the overall BoT response times,
the real application that is considered is a simple Hello, Grid-type Bag of Tasks.
The code of each Task first sleeps for 2 seconds (wall-clock time) then hashes the
input data file associated with the Task.

One large input data file is associated to each Task of each submitted BoT. In
case of data redundancy between Tasks, i.e. DDR < 1, Tasks within a submitted
BoT are ordered so as to maximize the distance between data-equal Tasks defined
in Section 5.3.1 (see Figure 5.8). This initial order of Tasks within a submitted
BoT is selected because it degrades BitTorrent performance the most if a FIFO
Task selection algorithm is used instead of TTG. There may exist several such
permutations for a given BoT.
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Several parameters are taken into account:

• number of submitted BoTs,

• number of Tasks of each submitted BoT,

• size of the processed input data files (bytes count),

• DDR,

• data transfer protocol,

• Resource selection algorithm,

• Task selection algorithm,

• cache size (capacity expressed as a number of files).

Mean BoT response times (MBRT) and (when applicable) mean cache hit ratios,
are evaluated for each.

5.5.3 Varying Data Protocol, Task Selection, Caching

Multiple combinations of data transfer protocols, Task selection algorithm and
caching support are evaluated. Grid topology I (see Figure 5.7) is used. One
BoT of 100 Tasks with a medium DDR of 0.25 is submitted, i.e. 25 groups of
4 Tasks depending on an identical input data file, with Tasks depending on the
same input data file spread as much as possible in the submission order. Results
presented in Figure 5.9 and Table 5.2 show that in this setup BoT response times
are much better, i.e. shorter, with both BitTorrent data transfers and Temporal
Tasks Grouping activated.

If Temporal Tasks Grouping is activated, the caching mechanism cannot bring any
benefit in this experiment. There are 25 sets of 4 data-equal Tasks: With TTG,
all 4 Tasks of any given set are scheduled at the same time to different Resources.
The cache hit ratios thus remain equal to 0.0, as none of the files is already cached.

If TTG is not activated, increasing the cache size leads to increasing cache hit
ratios and decreasing BoT response times, as expected. Also as expected, the
performance is degraded with BitTorrent data transfers when there is a small
cache size and no TTG. If the data transfer protocol selection algorithm were
activated, BitTorrent would be selected for all setups in this experiment: As FIFO
Task selection does not degrade the performance of FTP data transfers, activating
TTG ensures that the performance of BitTorrent data transfers is not degraded.
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Figure 5.9: Varying data protocol, Task selection, caching.

Fixed parameters Varying parameters
• 1 BoT of 100 Tasks • data transfer = { BitTorrent | FTP }
• file size = 256 MB • Task selection = { TTG | FIFO }
• DDR = 0.25 • cache size (# files) =
• Resource selection = data-aware { 0 | 1 | 2 | 4 | 8 | 16 }

data transfer = BitTorrent, Task selection = FIFO

cache 0 1 2 4 8 16
cache hit ratio 0.0 0.02 0.07 0.09 0.10 0.11

MBRT (s) 4260 2388 1874 1814 1739 1806

data transfer = BitTorrent, Task selection = TTG

cache 0 1 2 4 8 16
cache hit ratio 0.0 0.0 0.0 0.0 0.0 0.0

MBRT (s) 935 950 948 961 984 972

data transfer = FTP, Task selection = FIFO

cache 0 1 2 4 8 16
cache hit ratio 0.0 0.05 0.06 0.07 0.08 0.18

MBRT (s) 2297 2137 2146 2093 2092 1850

data transfer = FTP, Task selection = TTG

cache 0 1 2 4 8 16
cache hit ratio 0.0 0.0 0.0 0.0 0.0 0.0

MBRT (s) 2297 2298 2296 2298 2296 2298

Table 5.2: Varying data protocol, Task selection, caching.
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Figure 5.10: Varying data protocol and data configuration.

5.5.4 Varying Data Protocol and Data Configuration

The impact of file size and DDR on BitTorrent and FTP data transfers is now
evaluated. One BoT of 24 Tasks, i.e. exactly one Task per Resource, is submitted
so that caching and Resource selection play no role. Resource selection is done
with Temporal Tasks Grouping. Grid topology I (see Figure 5.7) is used.

Results presented in Figure 5.10 and Table 5.3 show that BitTorrent data transfers
lead to excellent performance in most configurations. They also show that there
is a threshold in the range of DDR values beyond which BitTorrent data transfers
become more interesting than FTP data transfers (independently of any extra
gain from an increased cache size). In this experiment, this threshold is expected
to be 0.5 and is indeed close to 0.5. A DDR of 0.5 means that there are 12
independent input data files, with exactly 2 Tasks depending on each of them. A
high DDR leads to mediocre performance with BitTorrent data transfers, as there
is no opportunity to exploit orthogonal bandwidth. As expected, the results also
show that the DDR has no impact on FTP data transfers. If the data transfer
protocol selection algorithm were activated, BitTorrent would be selected for a
given file when its number of copies would be two, which corresponds here to a
DDR of 0.5. This experiment demonstrates that this algorithm, even if simple,
gives acceptable results. This does not preclude, however, the need of further
study of its performance in a broader range of networks.
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Fixed parameters Varying parameters
• 1 BoT of 24 Tasks • file size = {16 MB | 64 MB | 256 MB}
• Resource selection = data-aware • DDR = { 0.04 | 0.25 | 0.40 | 0.50 |
• Task selection = TTG 0.60 | 0.75 | 1.0 }
• cache size (# files) = 1 • data transfer = { BitTorrent | FTP }

file size = 16 MB, data transfer = BitTorrent

DDR 1.0 0.75 0.60 0.50 0.40 0.25 0.04
MBRT (s) 49 43 40 38 35 31 30

file size = 16 MB, data transfer = FTP

DDR 1.0 0.75 0.25 0.04
MBRT (s) 38 38 38 38

file size = 64 MB, data transfer = BitTorrent

DDR 1.0 0.75 0.60 0.50 0.40 0.25 0.04
MBRT (s) 413 235 144 108 93 75 66

file size = 64 MB, data transfer = FTP

DDR 1.0 0.75 0.25 0.04
MBRT (s) 145 142 141 141

file size = 256 MB, data transfer = BitTorrent

DDR 1.0 0.75 0.60 0.50 0.40 0.25 0.04
MBRT (s) 1497 1160 760 539 377 232 109

file size = 256 MB, data transfer = FTP

DDR 1.0 0.75 0.25 0.04
MBRT (s) 562 562 565 558

Table 5.3: Varying data protocol and data configuration.
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5.5.5 Inter-Task Data Sharing, Varying Task Selection

The impact of Temporal Tasks Grouping is now evaluated. A BoT of 48 Tasks
(twice the number of available Resources) is submitted. Grid topology I (see Fig-
ure 5.7) is used. Different levels of data sharing are tested, with and without
activation of TTG. Two observations can be made about results presented in Fig-
ure 5.11 and Table 5.4.

First, all else being equal, BoT response times obtained with TTG-based Task
selection are much better, i.e. shorter, except for a very low DDR. In this latter
case, caching plays a greater role, leading to BoT response times roughly equiva-
lent between TTG-based and FIFO-based Task selection. The difference between
the two policies is that network bandwidth is traded for storage space. If the data
transfer protocol selection algorithm were activated, BitTorrent would be selected
except with a DDR of 1.0.

Second, caching has a huge impact, even when achieving only very low levels of
cache hit ratios. Deploying Resources with cache, even of small size, has thus a
strong practical interest due to the combination of Data-Intensive BoT and the
use of edge Resources.

5.5.6 Inter-BoT Data Sharing, Varying Resource Selection

A common and widespread scenario is that of a scientist who sequen-
tially submits multiple times the same BoT with high DDR - i.e. there is
little or no inter-Task data sharing - and the same algorithm run by all Tasks.
Only the input parameters or the algorithm are modified between consecutive ex-
ecutions of the BoT after an analysis of computed results, i.e. an experiments
session. The input data files of a given Task thus remain the same from one exe-
cution of the BoT to another.

An experiment is run for this scenario that is highly relevant in practice. Eight
Bags of 24 Tasks are submitted sequentially to the consumer Peer. Grid topology
I (see Figure 5.7) is used. Data-aware Resource selection is varying between fully
activated, activated for Grid Peers only, activated for Resources only, and com-
pletely deactivated.

Results in Figure 5.12 and Table 5.5 show that the cache hit ratio increases with
the level of data-awareness in the Resource selection. It is optimal, i.e. 7/8 in this
experiment, when both Grid-Peer-level and Resource-level data-aware Resource
selection algorithms are activated. BoT response times also decrease sharply when
the cache hit ratio increases.
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Figure 5.11: Inter-Task data sharing, varying Task selection.

Fixed parameters Varying parameters
• 1 BoT of 48 Tasks • DDR = {0.04 | 0.08 | 0.17 | 0.50 | 1.0}
• file size = 256 MB • Task selection = { TTG | FIFO }
• data transfer = BitTorrent
• Resource selection = data-aware
• cache size (# files) = 6

Task selection = FIFO

DDR 1.0 0.50 0.17 0.08 0.04
cache hit ratio 0.0 0.02 0.07 0.33 0.61

MBRT (s) 2775 1854 442 201 142

Task selection = TTG

DDR 1.0 0.50 0.17 0.08 0.04
cache hit ratio 0.0 0.0 0.0 0.04 0.38

MBRT (s) 2783 1039 361 223 113

Table 5.4: Inter-Task data sharing, varying Task selection.
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Figure 5.12: Inter-BoT data sharing, varying Resource selection.

Fixed parameters Varying parameters
• 8 BoT of 24 Tasks each • file size = { 64 MB | 256 MB }
• DDR = 1.0 • Resource selection = { random |
• data transfer = BitTorrent data-aware for Grid Peers only |
• Task selection = TTG data-aware for Resources only |
• cache size (# files) = 1 data-aware }

file size = 64 MB

Resource selection random data-aware data-aware data-aware
(Grid Peers only) (Resources only)

cache hit ratio 0.05 0.11 0.25 0.88
MBRT (s) 192 181 151 56.5

file size = 256 MB

Resource selection random data-aware data-aware data-aware
(Grid Peers only) (Resources only)

cache hit ratio 0.04 0.15 0.22 0.88
MBRT (s) 401 453 350 196

Table 5.5: Inter-BoT data sharing, varying Resource selection.
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Fixed parameters Varying parameters
• file size = 256 MB • { 1×12 Tasks (0 cached file) |
• data transfer = BitTorrent 1×6 then 1×12 Tasks (6 cached files) |
• Resource selection = data-aware 1×12 then 1×12 Tasks (12 cached files) }
• Task selection = TTG • DDR = minimal for each BoT

• cache size (# files) = { 0 | 1 }

Tasks in preparatory BoT 0 6 12
Tasks in studied BoT 12 18 24

# cached files (∗) 0 6 12
# files to download (∗) 0 6 12

cache size (# files) 1 1 1
cache hit ratio (∗) 0.0 0.33 0.50

MBRT (s) (∗) 107 80 72

(∗) for the studied BoT only

Table 5.6: BitTorrent Performance with Multiple Seeders.

5.5.7 Scalability of the Data Transfer Architecture

The impact of the availability of multiple BitTorrent seeders due to the presence
of cached copies of a given input data files is now evaluated. Grid topology I (see
Figure 5.7) is used. Bags of Tasks with a minimal DDR - i.e. input data files are all
identical - are submitted so that there are always 12 copies of a common, identical
input data file that must be downloaded concurrently.

A Bag of, successively, 12, 18 and 24 Tasks is studied three times. All Tasks de-
pend on a common, identical input data file. The BoT response time and cache
hit ratio are observed in 3 separate setups. Each setup corresponds to a varying
number of cached copies of the common input data file. In the first setup, there
exists no cached copy of the file required by the studied Bag of 12 Tasks. In the
second setup, a “preparatory” BoT of 6 Tasks is first submitted and completed,
so that there exists 6 cached copies of the file when the studied Bag of 18 Tasks is
submitted. In the third setup, a “preparatory” BoT of 12 Tasks is first submitted
and completed, so that there exists 12 cached copies of the file when the studied
Bag of 24 Tasks is submitted.

In all three setups, there are exactly 12 file downloads (of the same file, using
BitTorrent) that occur concurrently. The difference between setups resides in the
number of supplementary sources of sharing available, due to the number of cached
copies of the file. Results in Table 5.6 show that indeed the number of supple-
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TTG
l ↘

BitTorrent −→ replication
↑ ↑

caching ←→ data-aware Grid Peer
and Resource selection

Figure 5.13: Algorithms and protocols dependencies.

mentary sources of sharing improves the performance of the 12 downloads. This
demonstrates the scalability of our proposed data transfer architecture, that is de-
signed to distribute the load of data transfers across the P2P Grid, i.e. by having
Resources automatically share all downloaded files with BitTorrent.

5.6 Discussion

5.6.1 A Network of Technologies

We have proposed to combine several algorithms and protocols to perform ef-
ficient data transfers and data-aware Task scheduling of Data-Intensive BoT in
P2P Grids, namely BitTorrent P2P file sharing protocol, data caching, data-aware
Resource/supplier Peer selection, Task selection based on Temporal Tasks Group-
ing, data replication. Figure 5.13 summarizes the dependencies that exist within
our proposed network of algorithms and protocols.

Impact of BitTorrent

BitTorrent must be activated for Temporal Tasks Grouping to have any favor-
able impact on transfer times of identical input data files. Reciprocally, excellent
performance of BitTorrent data transfers is achieved only with a Task selection
algorithm that temporally groups Tasks with identical input data files.

BitTorrent should not be activated to transfer small files or files of a BoT where
the number of identical files is limited. In these setups, FTP overhead is lower.

If no BitTorrent support is available, TTG is not useful and the only gains of
performance would come from caching and data reuse.
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BitTorrent is necessary to control the cost of our proposed push-based, proactive,
asynchronous data replication mechanism. Therefore, in the absence of BitTorrent
support, no such replication should take place.

Impact of Temporal Tasks Grouping

The impact of Task selection with the Temporal Tasks Grouping algorithm is to
temporally group the scheduling of Tasks sharing the same input data files so as to
maximize the number of simultaneous BitTorrent nodes downloading these files,
thereby dramatically decreasing the mean file transfer times.

TTG can be activated at all times. On one hand, TTG can greatly decrease the
download times achieved with BitTorrent. On the other hand, TTG does not de-
crease the download times achieved with FTP.

Impact of Caching

Caching of data on Resources naturally brings important benefits as it can prevent
unnecessary data transfers. A larger cache capacity brings even greater benefits
as it increases the probability of cache hits.

On the downside, caching has a cost in terms of storage space, which might be
limited on Resources of a P2P Grid, which are not necessarily high end. However,
it is important to highlight that even limited caching support already brings con-
siderable benefits.

When Temporal Tasks Grouping is not activated or has a limited effect, i.e. when
processing a BoT exhibiting a high DDR or in the absence of BitTorrent support,
caching is the only source of performance gain.

Even in the presence of strong caching support, Temporal Tasks Grouping is very
important in case of inter-Task data sharing within a BoT. It is the only means
for efficient data transfers of files that are introduced in the Grid for the first time.

It should also be noted that the proposed management of data caches is fully dy-
namic, and thus more adapted to P2P Grids than existing data cache management
policies that are statically precomputed [254].
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Impact of the Cache Replacement Policy

Using a pure LRU cache replacement policy is sub-optimal. Better performance
would probably be achieved by taking into account the size of the cached files.

For example, a P2P Grid of 24 Resources, each having a cache size of 2 files, can
be considered. Those Resources can use two different cache replacement policies:
pure LRU (the least recently used file in the cache is ejected first) or weight-based
(the smallest file in the cache is ejected first). Task selection is based on Temporal
Tasks Grouping and Resource selection is data-aware.

3 BoTs of 24 Tasks (θ1, θ2, θ3) are submitted sequentially. All Tasks of a given
BoT depend on an identical file (∆0

1, ∆0
2, ∆0

3 respectively): The DDR of each BoT
is thus 1

24
. As an example, one can assume that ∆0

1 weighs 200 MB; ∆0
2 and ∆0

3

both weigh 1 MB.

With Temporal Tasks Grouping, all Resources hold both ∆0
1 and ∆0

2 in their cache
after the completion of θ2. When θ3 is submitted, depending on the cache replace-
ment policy (LRU or weight-based), either ∆0

1 (the oldest) or ∆0
2 (the smallest) is

ejected from the caches and replaced by ∆0
3. At this point, cache hit ratios are

all equal to zero (for both policies) since a different file was required for every Task.

If one hypothesizes that θ1 is then resubmitted, ∆0
1 has to be downloaded again

(which is expensive since it is a 200 MB file) or is loaded from the caches (in this
case, yielding a cache hit ratio of 0.25), depending on the cache replacement pol-
icy (LRU or weight-based). With LRU, the BoT response time is larger and the
perceived performance is lower.

It can be argued that a purely weight-based replacement policy is not optimal ei-
ther. A hybrid cache replacement policy, maybe also involving additional factors,
could lead to even better performance.

Performance of BitTorrent Data Transfers

Temporal Tasks Grouping enables the excellent performance of BitTorrent data
transfers in situations of inter-Task data sharing, i.e. when several Tasks of a given
BoT share input data files.

Caching support also increases performance of BitTorrent transfers in situations of
inter-BoT data sharing, i.e. when Tasks of multiple, successive BoTs share input
data files. Let’s suppose that a given input data file is cached on several Resources
but all these Resources are already running a Task: A new transfer of this file is
triggered by the available Resource when the Task that depends on it is scheduled.
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In this setup, a BitTorrent data transfer of this file benefits from existing replicas
of the file that exist on busy Resources, each of which constitutes a supplementary
source of data sharing. Therefore, caching support can be viewed as an indirect
way to increase the number of BitTorrent nodes sharing input data files. This
is very useful as it supports opportunistic scheduling of Tasks on extra supple-
mentary Resources as they become available, which is important in the unstable
Resource environment of a P2P Grid.

To sum up, the effect of Temporal Tasks Grouping on performance of BitTorrent
transfers is immediate, while the effect of caching support is temporally delayed.

Impact of Data-Aware Resource/supplier Peer Selection

Data reuse consists in taking data placement into account when selecting a Re-
source and, if applicable, a supplier Peer to schedule a given Task. The impact of
data-aware Resource selection by a given Grid Peer with an algorithm similar to
the Storage Affinity [267] algorithm (without Task replication) is to ensure that,
when scheduling a given Local or Supplying Task, the Grid Peer selects one of the
Resources that stores the maximum number of input data files required by this
Task.

Similarly, the impact of data-aware supplier Peer selection by a given consumer
Peer is to ensure that, when scheduling a given Consumption Task, the consumer
Peer selects one of the supplier Peers that has probably at least one Resource
storing the maximum number of input data files required by this Task.

Deactivating data-aware Resource selection or supplier Peer selection severely de-
grades BoT response times and cache hit ratio when scheduling BoTs with a low
DDR, i.e. a high number of identical input data files. Reciprocally, data-aware
Resource selection and supplier Peer selection are useless without caching support.

Finally, even for a BoT exhibiting a high DDR, i.e. there is no inter-Task data shar-
ing, data reuse has a strong practical interest in the case of inter-BoT data sharing.
A common and widespread scenario is that of a scientist who runs over
and over successive versions9 of a given algorithm applied to the same
set of input data files from one BoT to another (the files of the set are not
necessarily identical, i.e. the DDR may be high). This Grid application, which is
the same for all Tasks of one submitted BoT, is modified between executions of
BoTs, following a phase of debugging or analysis of computed results. For a given

9 A parameter sweep is a BoT that exhibits inter-Task data sharing and with a low DDR. The
kind of BoT discussed here, with different code but data sharing between BoTs and arbitrary
DDR, might be named application sweep.
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execution of the BoT, input data files of different Tasks are very different. For
multiple executions of the BoT, input data files of a given Task are always identical.

5.6.2 Impact of Computations

The experiments presented in this Chapter evaluate the behavior of the complete
P2P Grid middleware fully deployed on real computers to run a real computa-
tion. The application that is run (see Section 5.5.2), is designed to exhibit a very
high communication-to-computation ratio (or low computation-to-communication
ratio). If the communication-to-computation ratio were low, there would be little
interest to reduce the impact of data transfers, as these would intrinsically have
little impact. Thus, our proposed data transfer architecture has no impact and lit-
tle interest when there are few data transfers. When there are massive amounts of
data transfers, however, our proposed data transfer architecture can reduce their
impact.

5.6.3 Recommended Deployment Options

Maximization of data reuse is enabled by combining caching support and data-
aware Resource and supplier Peer selection. Caching support should be configured
to use as much storage space as possible on each Resource.

Temporal Tasks Grouping and BitTorrent support enable to maximize parallelism
of Task execution. BitTorrent support should be made systematically available,
and Temporal Tasks Grouping should be systematically activated. It should be
emphasized that the deployment of BitTorrent software does not mean that all
transfers are performed with BitTorrent, but only that it is available. Grid Peers
can be configured to use BitTorrent either systematically, not at all or following
an adaptive data transfer protocol selection algorithm.

5.7 Summary of the Contributions

Our research work in the scheduling of Data-Intensive Bags of Tasks in P2P
Grids [57, 56] could be summarized as combining P2P Grid computing and
P2P data transfer technologies. Original contributions include a highly
scalable and fully distributed data transfer architecture, an adaptive use
of the BitTorrent P2P file sharing protocol, and BitTorrent-aware and data-aware
Task scheduling policies. Our algorithms rely on caching and data reuse
to prevent data transfers, and on BitTorrent to remove the cost of re-
dundant simultaneous data downloads. To the best of our knowledge [19],
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our operational Java implementation [55] is the first to deeply integrate P2P file
sharing and P2P Grid computing technologies, relying on a standard, off-the-shelf
BitTorrent library. This implementation is easily and automatically deployable, in
a fully decentralized way.

Experiments were conducted with a real application using a full deployment of the
complete middleware. The experimental results that were collected demonstrate
that considerable performance gains are achieved for the evaluated setups, even
those with very small cache sizes, for both low and high data sharing within and
between BoTs, and also in the special, important case of parameter sweeps. Future
work essentially resides in improving the estimation of data availability in supplier
Peers, in the study of weight-based cache replacement algorithms, and in a more
accurate data protocol selection algorithm.



Chapter 6

Non-expected P2P Grid
Applications

It is infinitely improbable that all worker nodes
of a co-allocated set will be exempt from failure
(especially if reset buttons are not deactivated).

- preface, Hitchhiker’s Guide to the Grid

The LBG simulator itself is temporally-scalable, but Chapters 3 and 4 required a
massive amount of simulations runs for the presented experiments. Distributed
simulation, i.e. running instances of the LBG simulator as Tasks on the LBG
middleware, has enabled to address this computational deluge. Experiments are
performed using the LBG simulator.

Orthogonally, a tightly-coupled computational fluid dynamics application
(structured as a so-called Iterative Stencil application) was considered. Two
challenges were addressed to run this application on the LBG middleware.
Firstly, one benefit of the LBG middleware is also a drawback to run Iterative
Stencil. Resources from other Peers can be dynamically acquired to scale out
an application. However, the Task schedule is not known in advance, which
makes impossible to load balance the application before it is deployed (which is
important as the slowest Task of an Iterative Stencil determines the speed of the
whole application). As the considered application performs dynamic benchmarks
only at deployment time, locality-awareness of load balancing was implicitly
addressed. Secondly, the frequent preemption of external computational requests
leads to the constant restart of the whole Iterative Stencil from the beginning
(if the execution of one Task fails, the whole application fails). It was thus not
expected to be able to ever run an Iterative Stencil on a P2P Grid. Nonetheless,
a distributed checkpointing mechanism successfully addresses this huge issue
thanks to its P2P-awareness: The checkpoints are stored in a decentralized
fashion following a topology that takes into account the possibility of bursts of
preemption. Experiments are performed using the LBG middleware.
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This chapter covers applications that are not expected (see Section 2.4) in P2P
Grids. In Section 6.1, useful, advanced deployment options of the Lightweight
Bartering Grid middleware are discussed. In Section 6.2, the robust execution of
(heavily-communicating) Iterative Stencil applications is investigated.

6.1 Advanced Deployment Options

In distributed environments, the deployment of software can become challeng-
ing [202]. In this section, several useful deployments options of the LBG mid-
dleware are discussed. These are side effects - or byproducts - of the code once,
deploy twice software engineering pattern introduced in Chapter 3. Section 6.1.1
discusses distributed simulation. Section 6.1.2 discusses self-bootstrapping of P2P
Grid software. Section 6.1.3 discusses distributed Peer deployment in a P2P Grid.

6.1.1 Distributed Simulation

A large number of simulation runs1 are required to use the LBG simulator as a soft-
ware engineering tool as proposed in Chapter 3. We propose a distributed testing
process based on policy enumeration (fixed workload, varying bartering policies).
We also propose a distributed evaluation process based on scenario randomization
and results averaging to smooth out outlier simulation results, (varying workload,
fixed bartering policies). In both processes, a Grid Task can be defined for each
intended simulation run to be completed. In the following, we refer to such a task
as a SimTask and also call BoS a Bag of SimTasks.

Policy Enumerator

Testing and evaluating large-scale distributed software can be very challenging [52].
Testing every valid combination of bartering policies under typical scenarios before
major releases of the middleware is useful. It helps ensure that recent changes,
e.g. in the bartering code, have not broken the middleware for well-known typical
Grid nodes configurations. The number of test cases may be very large, but as
they are independent they can be run as SimTasks.

A related example of distributed testing is to certify the installation process of pack-
ages in the Debian [109] GNU/Linux distribution. Recompiling and simulating the
installation of every software package in Debian can be time consuming. This is a

1 A simulation run refers to one execution of the LBG simulator with a given simulation
description file. In other words, it is one simulation of a whole P2P Grid in a fully controlled
environment.
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typical BoT application for which P2P Grids were designed: It is run infrequently and
it exhibits large peaks computational requirements. Structuring this application as a
BoT and running it on a Grid [227] has “help[ed] significantly the search for bugs”,
with a linear speed-up in BoT response time.

Another related example is the Skoll [248] continuous distributed testing project. It
proposes techniques to handle extremely large sets of combinations of policies. It relies
on distributed testing, but adaptively selects which tests to actually run. A limited
number of test cases are initially selected. Some of them complete their execution,
others fail in the sense that they exhibit unexpected behaviors, such as exceptions,
run-times errors and assertion failures. Such failures are due either to programming
mistakes, i.e. bugs, or to intentional checks manually coded by the Grid application
developer, i.e. to try and detect inconsistencies in data structures or to enforce desir-
able properties such as system liveness.

Each test case that fails leads to the testing of neighbor cases. This tends to minimize
the number of test cases to run, while maximizing the coverage of the test case space.
Such test case selection techniques can certainly be added to the distributed testing
process that we propose for LBG. It is important to take note that distributed testing
is a form of testing that is complementary with - and does not replace - other quality
assurance mechanisms, such as definition and enforcement of invariants, model check-
ing and unit testing.

Scenario Randomizer

The LBG simulator always produces the same output for a given scenario (see
Section 3.5.1 and Appendix B.2). As a random seed is defined for each simulation
run (see Section 3.5.5), random variations can be added to the Grid environment,
including synthetic workloads and in particular the inter-arrival times of submitted
BoTs. Some values of the random seed may lead to “limit cases” of input values
that can bias the performance of bartering policies.

To address this issue, we propose to run a large number of instances of the LBG
simulator as a Bag of SimTasks (BoS). The simulator instances are configured with
the same bartering policies but, to a certain extent, with varying2 workloads. Sim-
ulation results accumulated in successive simulation runs (such as peers utilization
and mean BoT response times) are averaged, reducing the influence of the “limit
cases” and hopefully smoothing out outlier results.

2The values of the random seeds are random integer numbers. The values of the job inter-
arrival times are drawn from a random variable within a configured interval.
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Structuring the LBG Simulator as a Bag of SimTasks

Structuring multiple simulation runs as a Bag of SimTasks is actually straightfor-
ward. A simulation description file is given to each SimTask as an input data file.
Each SimTask prints simulation statistics to the console. As the standard output
stream of a Grid application is automatically returned to the User Agent as a
log file, a SimTask does not need to expose its results as a Grid application (see
Appendix A). Log files are informally structured but easily parsable; it is straight-
forward to average multiple log files. Figure 6.1 illustrates a Bag of 3 SimTasks
run on a P2P Grid, each of them simulating a whole P2P Grid.

Figure 6.1: Bag of SimTasks run on a P2P Grid.

Support for the structuring of the LBG simulator as a BoS requires to:

• wrap the simulator with a small Java class which implements the Grid appli-
cation interface (see Appendix A.1), in order to obtain a SimTask (for both
the scenario randomizer and policy enumerator);

• generate a set of simulation description files (each assigned to a separate Sim-
Task) from a given simulation description file, each with either a different
master random seed (for the scenario randomizer) or a different set of bar-
tering policies (for the policy enumerator);

• average multiple log files (one log contains the statistics of one SimTask) gen-
erated by the execution of a BoS (for the scenario randomizer only).

6.1.2 Self-Bootstrapping

Self-bootstrapping is the pattern where a current, stable version of a given system
is used to develop the next version of this system. This pattern is common for
compilers.
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The proposed structuring of multiple simulation runs as a Bag of SimTasks has
been inspired by the self-bootstrapping pattern. A P2P Grid is deployed with
nodes running the LBG middleware configured with basic bartering policies. New
bartering policies can be tested, debugged and evaluated through LBG simulator
runs completed by this LBG-based P2P Grid. Self-bootstrapping thus enables our
research work to contribute to its own evolution.

A limited form of self-bootstrapping has been used in the development [266, 265] of
the OurGrid [233, 84, 286] middleware. Advanced accounting algorithms have been
simulated by a special-purpose discrete-event system simulator partially based on code
from the OurGrid middleware. This simulator has been run as Tasks of Bags of Our-
Grid SimTasks on a P2P Grid where a version of the OurGrid middleware equipped
with basic accounting algorithms was deployed.

6.1.3 Distributed Peer Deployment

The deployment of a Peer at a given site is currently performed by the human
administrators of this site. They select one of the computers at the site to manage
the other computers. Even if bartering is fully decentralized at the P2P-Grid-level,
this introduces a centralized point of failure at the site-level.

One solution would be to introduce self-organization at site-level, for example with
a leader election protocol [195]. If at some point a Resource is unable to establish
contact with its owner Peer, it can interrogate other Resources at the same site.
Indeed, in case of Peer failure, multiple Resources will be unable to communicate
with it. Using this information can enable to detect Peer failure.

Upon detection of Peer failure, Resources can select one of them to become the
new Peer. This would require some form of directory support at the site-level, so
that User Agents can transparently locate an entry point to the Grid. The delay
before the activation of the leader election protocol should be long enough to avoid
misinterpreting temporary communications failure as Peer failure.

With the proposed leader election protocol, the elected Resource has to deploy the
Peer middleware on the computer where it is running. As the LBG middleware
and simulator are packaged into the same jar file, the Peer middleware code can
be loaded by any Resource. The elected Resource could thus instruct itself to run
the Peer middleware as a (never-ending) Task. In this case, the selected Resource
acting as a Peer would not (and, indeed, could not) continue acting as a Resource.

As a benefit, the Peer can be deployed 100% at the middleware-level, not needing
support from the underlying O.S.. This contrasts with classic Grid deployment
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tools [156], which are far from lightweight and represent a centralized point of
failure at the site-level.

6.1.4 Experimental Results

Evaluation of Policy Enumerator

An example of our proposed policy enumerator process is now given. The intro-
duction of the adaptive preemption policy (see Section 4.7.2) combined with some
opportunistic general purpose refactoring was done over the course of one week.
It brought the code base from 285 source files (391 classes, 53780 lines) to 292
source files (402 classes, 55621 lines), 73 of which were modified (either created or
updated).

Five days after the beginning of this operation, we run a Bag of 2892 SimTasks,
each with a different combination of bartering policies, with 20 jobs submitted to
each of the 15 simulated Peers. The BoS was completed in 53 minutes on 100 Re-
sources (x86 PC with 512MB RAM): 2859 SimTasks were successfully completed,
40 SimTasks failed due to an exception in the Task control code (see Section 2.9.6),
and 3 SimTasks failed due to an exception in the RMS code (see Section 2.7.6).

After investigating the stack traces available in the execution logs of the failed
SimTasks, we patched the Task control code (the order in which running Tasks
were stored by the Task controller was not systematically maintained). We run a
new BoS with the updated code on 101 Resources. It was completed in 50 minutes.
All 2892 SimTasks were successfully completed.

Of the 2892 SimTasks, the configuration of 482 involved the newly implemented
adaptive preemption policy, yet only 43 failed due to the Task control bug. With-
out the policy enumerator, this subtle issue would probably not have been resolved
before it resurfaced unexpectedly a little while later at a more inconvenient time.

The policy enumerator certifies that the software behaves as intended for a spe-
cific set of well-known, typical Grid configurations and workloads. Complementary
mechanisms should be used but we believe that such distributed testing is a valu-
able tool in a software engineer’s toolbox.

Evaluation of Scenario Randomizer

To smooth out outlier simulation results, as proposed in Section 6.1.1, the sim-
ulator can be run multiple times (about 120 Resources were used, composed of
x86 PC with 512MB RAM) with the same simulation description, except for the
master random seed which is different each time. These multiple simulation runs
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# simulation runs 1 10 20 40 80 160 320
mean simulation time (s) 7 9 10 11 8 9 10

mean BoT response time (s) 767 809 817 832 858 879 860

(a) 4-Peers scenario with bartering

# simulation runs 1 10 20 40 80 160 320
mean simulation time (s) 5 8 8 7 8 9 7

mean BoT response time (s) 1249 1436 1449 1429 1416 1415 1412

(b) 4-Peers scenario without bartering

Table 6.1: Simulation runtimes and mean BoT response times achieved with sce-
nario randomizer applied to the 4-Peers scenarios (a) with, (b) without bartering.

can be structured as a Bag of SimTasks that is run by the LBG middleware.

The two 4-Peers scenarios [15] described in Section 3.6.1 are run multiple times.
Table 6.1 shows, for varying numbers of simulation runs, the mean runtime of
one simulation and the mean BoT response time (MBRT) of all simulated BoTs.
The mean runtime of one simulation is expressed in wall clock time while the
MBRT is expressed in simulated time. This experiment shows that a single simu-
lation run often leads to results faster than the average of as few as 10 simulation
runs. These results hold for scenarios larger than the considered examples. Ex-
tensive statistical studies could be conducted to determine the optimal number
of simulation runs required to achieve a given level of confidence. Orthogonally,
the results for these two scenarios, when compared to one another, also confirm
that bartering indeed decreases the MBRT (by ∼ 40% for these specific scenarios).

6.2 LBG-SQUARE

In this section, the deployment and fault-tolerant execution of Iterative Stencil
applications on the Lightweight Bartering Grid middleware is investigated. Such a
deployment is not straightforward as LBG has been intended to run Bag of Tasks,
but was not expected to run this type of Grid application. An application-level
checkpointing mechanism providing fault-tolerance support for Iterative Stencils
run on P2P Grids is also introduced. The research presented in this section results
from cooperative work with our colleague Gérard Dethier, who has introduced
LaBoGrid, a generic computational fluid dynamics software (Lattice-Boltzmann
method) structured as an Iterative Stencil application.
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Figure 6.2: Lattices: (a) 3D, 19 sites (focus on central site) and (b) 2D, 9 sites.

6.2.1 Iterative Stencil Applications

Iterative Stencil applications have been presented in Section 2.4 and are illustrated
in Figure 2.10. These are applications that can be structured as a set of periodically
recomputed interdependent computational Tasks involving heavy and/or frequent
communication between subsets of them. “A stencil [application] updates every
point in a regular grid with a weighted subset of [nearby points]”, as if a stencil
were figuratively applied [187]. Each Task is connected to a subset of the Iterative
Stencil’s Tasks, also called its neighbors.

Tasks of an Iterative Stencil are thus tightly interdependent: If any one Task fails,
the whole application fails. Iterative Stencils are usually run in stable environ-
ments, like parallel computers or clusters connected with high-speed networks,
but not in P2P Grids.

LaBoGrid

An example of Iterative Stencil application is Lattice-Boltzmann (LB) simulation.
“Computational fluid dynamics (CFD) is one of the branches of fluid mechanics
that uses numerical methods and algorithms to solve and analyze problems that in-
volve fluid flows” [89]. Lattice-Boltzmann simulation methods constitute a family
of CFD methods that can deal with complex models and are easily parallelizable.
Figure 6.23 represents a typical 3D lattice, as well as one of its projection into a
2D lattice.

3Courtesy of Gérard Dethier [114].
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Figure 6.3: LaBoGrid architecture.

The application that motivates the research presented in this section was brought
by the Chemical Engineering lab of our alma mater. The motivating application
consists of the LB simulation, based on the Lattice-Boltzmann method, of flows
in a metallic foam [216]. The goal of the LB simulation is to improve the “design,
efficiency and selectivity of related chemical engineering processes.”

To address the requirements of the motivating application, LaBoGrid [114, 115,
116] (Lattice-Boltzmann Grid), has been introduced. It is a generic software to
run Lattice-Boltzmann flow simulations on a computational Grid.

LaBoGrid is based on two components (see Figure 6.3): Lattice-Boltzmann Dis-
tributed Agent (LBDA) and Lattice-Boltzmann Controller (LBC). Each LBDA is
a Task of the Iterative Stencil application that is run on the Grid. The LBC is the
out-of-Grid component that controls the LB simulation according to user-defined
parameters.

Basically, the LBC takes the description of a lattice as input parameter, transforms
it into a data model, slices the obtained model data into data blocks and finally
distributes these data blocks to the LBDAs for processing.

The structure of the metallic foam of interest is obtained by micro tomography as
a large matrix of voxels which constitute the flow boundaries. This data is then
modelled as a typical D3Q19 lattice which can be given as input to LaBoGrid.
As illustrated on Figure 6.2b, periodic boundary conditions are assumed on faces
parallel to the flow direction.
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Motivation for Running Iterative Stencils on a Grid

Continuous advances in networking infrastructure and the increasing availability
of numerous, inexpensive (but not necessarily fast or reliable) computers at the
edge of the Internet are motivating the computing of Iterative Stencil applications
on P2P Grids (instead of dedicated, high performance clusters).

P2P Grids can automate the large-scale co-allocation of Resources across admin-
istrative domains, without any of the administrative burdens typically associated
with the deployment of large-scale systems, and at practically no cost beyond the
regular operating costs of one’s own Resources. This enables smaller organizations
to process larger data sets than was previously possible, at a fraction of the cost.

Challenges in Running Iterative Stencils on a P2P Grid

Of course, these stated benefits come at a price. Even if the peak performance of
a P2P Grid may be comparable to that of a cluster of equivalent computational
power, the mean Iterative Stencil response times will probably be higher on a P2P
Grid. Obviously, relying on the global Internet imposes performance penalties on
data transfers. Additionally, the unreliable nature of Task execution in P2P Grids
introduces challenges of its own.

Deploying an Iterative Stencil, independently of the execution substrate (e.g. clus-
ter or P2P Grid), is intrinsically challenging in presence of high heterogeneity in
computational and network performance. As each LBDA is synchronized with
several other LBDAs, the performance of the slowest Resource or network link
indeed determines the performance of the whole system. Efficient load balancing
is thus very important for the overall response times. Additionally, a specific is-
sue with P2P Grids is that the configuration information required for efficient load
balancing is not available at submission time, when deploying the LBDAs. Indeed,
given the scheduling model in LBG (see Section 2.9.4), the schedule of Tasks is
not known in advance and it is very difficult to predict to which Resource of which
Peer a given LBDA is going to be scheduled.

6.2.2 Deploying an Iterative Stencil on a P2P Grid

The deployment of LaBoGrid on the LBG P2P Grid middleware is now examined.
The following discussion certainly can be applied to other Iterative Stencils and
P2P Grid middlewares as well.
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Figure 6.4: Organization of LBG-SQUARE.

Structuring a set of LBDAs as a Bag of (Long-Running) Tasks

Resources are needed to run the LBDAs. They can be provided by structuring a
set of LBDAs as a Bag of Tasks submitted to the Lightweight Bartering Grid by
the LBC, that is running an embedded version of a User Agent. We call LBG-
SQUARE the resulting4 software system. Figure 6.4 provides an illustration of
a typical LBG-SQUARE deployment, corresponding to the typical LaBoGrid de-
ployment shown on Figure 6.3.

Running one distributed computing middleware as one Task of another distributed
computing middleware is a common pattern. However, it introduces issues related
to firewall traversal. The LBG middleware should be able to ask the underlying
O.S.-level and/or network-level security infrastructure to temporarily open TCP
ports that can be used by Grid applications. This issue is common to all Grid
middlewares, and is further discussed in Appendix F.7.2.

Another issue is that there is no support for communications between Tasks in the
Lightweight Bartering Grid. But, as communications are needed between pairs of
running Tasks (as opposed to communications between a completed Task and a
Task about to be started - which is the case of Workflows), LBDAs can directly
communicate with one another. To enable this, the LBC communicates to each
LBDA the IP address and TCP port of its neighbors along with the initial data.

4 Lattice-Boltzmann Grid × Lightweight Bartering Grid software = LBG2.
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Resource Co-Allocation

To maximize parallelization of the processing of data blocks of the simulated lat-
tice, a large number of computers are required. Co-allocation [97, 256, 125] consists
in ensuring simultaneous access to multiple computers for a certain duration.

Drost et al. introduced locality-aware co-allocation [125] for Workflow applications in
1-level P2P Grids, i.e. where each Peer manages only one Resource (itself). We target
Iterative Stencils rather than Workflows. Their proposed locality-aware co-allocation
mechanism is flooding/gossiping, while ours is based on the combination of P2P Grid
middleware-level bartering [59, 84] and application-level benchmarking. Our work is
more general in the sense that 2-levels P2P Grids are considered. Importantly, we also
introduce an application-level fault-tolerance mechanism.

It can be remarked that co-allocation is the opposite of converting space-shared Re-
sources into intermittent Resources [94, 106]. From this perspective, co-allocation can
be seen as converting intermittent Resources into virtual space-shared Resources.

Implicit support for co-allocation is available in the Lightweight Bartering Grid:
A Peer is designed to compute a BoT as fast as possible, requesting access to
Resources of other Peers as needed until the BoT is completed.

Deployment

Once the LBC (Lattice-Boltzmann Controller) is up and running, deploying LaBo-
Grid essentially consists in co-allocating Resources to deploy all LBDAs (Lattice-
Boltzmann Distributed Agents). Once the LBDAs are deployed (i.e. at runtime)
and have downloaded initial data from the LBC, LBDAs communicate together
and exchange data between each iteration of the LB simulation. Upon completion
of the planned number of iterations, all LBDAs upload results to the LBC, which
stores them into a database.

Balancing the computational load between LBDAs consists in balancing the repar-
tition of data blocks between them in function of the relative performance of Re-
sources. Our colleague Gérard Dethier recently proposed an algorithm [114] to
compute a performance model at runtime. It is based on the dynamic benchmark-
ing of Resources where LBDAs have been deployed.
After the submission of a BoT, once LBDAs have been deployed, they first contact
the LBC to signal their availability. The LBC can then systematically benchmark
the newly obtained Resources as they become available. Upon completion of these
performance benchmarks, the LBC can balance the load without awareness of the
execution substrate, and immediately start distributing the initial data blocks to
the LBDAs. The proposed algorithm based on dynamic benchmarking
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Figure 6.5: Checkpoint/restart mechanism.

thus brings locality-awareness to the co-allocation mechanism provided
by the P2P Grid middleware, in a totally transparent way.

As the LBC can continuously request the deployment of additional LBDAs, it also
benchmarks additional Resources that become available during the execution of
the LB simulation. This enables to rebalance the load if sending LBDAs to these
new Resources is predicted to improve LaBoGrid performance. However, load re-
balancing should not be done too often because of the high cost of transferring
data to all LBDAs.

6.2.3 Fault-Tolerance for Iterative Stencils

Task execution failure does not only delay the completion of an Iterative Stencil
(just like a Bag of Tasks), it also suspends the execution of all Tasks (unlike a
Bag of Tasks). A common way for Iterative Stencils to deal with Task execution
failure is the checkpoint/restart mechanism [115, 116, 35, 132, 133], illustrated in
Figure 6.5.
A few generic (i.e. application-independent) fault-tolerance mechanisms for Iterative
Stencil applications have been proposed [115, 116, 35, 133, 132]. However, to the best
of our knowledge, the study of robustness for execution of Iterative Stencils in P2P
Grids has been first explored in our recent work [115, 116].

Checkpointing

The state of every Task is periodically checkpointed, i.e. replicated and stored
(checkpoint events), possibly multiple times.

Checkpointing can be controlled at multiple levels: It could be application-level check-
pointing, or transparent (i.e. middleware-level or O.S.-level) checkpointing. Application-
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level checkpointing must be implemented by Grid application (e.g. LaBoGrid) devel-
opers, but enables more control and flexibility in the timing, selection and recovery of
replicated data [246], which is why we select it.

Early work [71] in middleware-level checkpointing that could be applied to P2P Grids
assumes the availability of a (centralized) checkpoint server. However, it does not
provide specific details on its organization or implementation.

Fault Recovery

Upon Task execution failure, the execution of the involved Tasks (which often
means all Tasks, not only failed Tasks) is suspended. The last stored consistent
state of all Tasks is reloaded from one of the existing replicas to an available
Resource. Task execution is then restarted (restart events).

Design Parameters

The checkpointing graph describes the number and location of replicas of the state
of every Task.

A first design choice, related to the selection of a checkpointing topology, is whether
to dedicate some Resources as replica storage servers or have each Resource also act
as a replica storage server. Then, various encodings of replicas among replica storage
servers have been proposed, such as the parity encoding [246], mirroring or complex
codes like Reed-Solomon coding [247]. Yet another design choice is whether to cen-
tralize or distribute replica storage [132, 133].

The degree of fault-tolerance, i.e. the maximum number of simultaneous Task ex-
ecution failures that can be tolerated, depends on the number of replicas of each
Task. There is a trade-off similar to that of the Error-Correcting Codes: Higher
fault-tolerance has a higher cost in terms of data redundancy.

Orthogonally, checkpointing can be disk-based or diskless. Diskless checkpointing [247]
precludes the longer access times associated with disk-based data storage. The draw-
back is the need for larger amounts of available memory.

Disk-based checkpointing [115, 116] is selected because:

• the size of LaBoGrid checkpoints can be in the order of 1× 102 MB per LBDA;

• the amount of RAM available on computers at the edge of the Internet would
be in the order of 5 to 10× 102 MB;

• multiple replicas are stored on each Resource.
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We propose an application-level disk-based checkpointing mechanism [115, 116],
with a P2P checkpointing topology [132, 133], where each Resource acts as both
a consumer and supplier of replica storage (which is well in line with the general
perspective of this dissertation), and there is no dedicated replica storage server.
Resources use local storage, i.e. playpen directories (see Section 2.7.4), to store
state replicas. The checkpointing graph is generated by a central controller. In
the context of LaBoGrid, though, the LB Controller can communicate state repli-
cation decisions to all Tasks at no extra cost, along with the uploading of initial
data to the LBDAs.

Given the robustness/cost trade-off expressed above, every Resource stores a lim-
ited number of replicas of its state. This provides the potential for a scalable
checkpointing architecture.

6.2.4 Generating Management Graphs of LB Simulations

The model graph describes the slicing of the initial data of a LB simulation into
data blocks, and their interconnections.

The Resource graph describes the Resources obtained from the P2P Grid that run
an LBDA (see Figure 6.6). Its nodes are weighted with performance cost (i.e. es-
timated speed resulting from benchmarking [114]).

The computation graph [114] assigns data blocks to Resources. It is a partial sub-
graph [264] of the Resource graph. A mapping of the nodes of the model graph
to the nodes of the Resource graph indicates which Resources are going to run
LBDAs. Edges of the Resource graph are selected according to the connectivity
defined by the model graph. These edges are then added to link the selected Re-
sources. The computed mapping of the nodes of the model graph to the nodes of
the Resource graph minimizes processing time. This optimally balances or rebal-
ances the computing times of all Tasks.

The checkpointing graph [115, 116] describes the number and location of replicas
of the state of every Task. It is constructed in two steps: first by balancing at
the Peer level the number of replicas stored on each Resource, then by uniformly
spreading inbound replicas among the Resources of each Peer.

Figure 6.7 illustrates the three types of management graphs of LB simulations,
in correspondence with the P2P Grid illustrated in Figure 6.4 and with the Re-
source graph illustrated in Figure 6.6. The nodes of the model graph are data
blocks. This graph is non-directed. The nodes of the computation graph are the
Resources provided by the P2P Grid. This graph is also non-directed. The nodes
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Figure 6.7: Management graphs of LB simulations.
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of the checkpointing graph are the same as the computation graph ones. They are
grouped by Peer. This graph is directed. The replicas of a Task are on Resources
from other Peers.

The Resource graph varies over time because of Task execution failure or deploy-
ment of new LBDAs. By definition, the computation and checkpointing graphs
must be recomputed.

Task execution failure can arise from crashes of individual Resources, or from the
simultaneous preemption of multiple Resources of a supplier Peer which has an
urgent need for its own Resources. Therefore, the construction of the checkpoint-
ing graph must also ensure that replicas of the state of a Task running on a given
Resource of a given supplier Peer are preferably stored on Resources of other sup-
plier Peers. Even if one Peer preempts all Tasks running on its Resources, state
replicas are hopefully available on Resources of other Peers.

6.2.5 Implementation of LBG-SQUARE

LBG-SQUARE is the software implicitly resulting from the combination of the
Lightweight Bartering Grid and LaBoGrid middlewares. It arises from the struc-
turing of a set of LBDAs as a Bag of Tasks.

Supplementary coding to support LBG-SQUARE was completed in half a day,
which is impressive given the complexity of these two separate middlewares. It
has essentially involved the embedding of an LBG User Agent into the LBC.

Load Balancing

The essential purpose of the LB Controller is to balance or rebalance the computing
load between LBDAs and send them initial data. The LBC starts by generating
the model graph, which enables to compute what is the maximum number of Re-
sources that could be used by the LB simulation.

Based on this information, the LBC submits a Bag of Tasks to the Grid, such that
each Task is an LBDA. When enough LBDAs have been deployed to Resources
and have contacted the LB Controller, the latter generates the Resource graph.

It can then generate the computation and checkpointing graphs. At this point, it
uploads the initial data data blocks to each LBDA. It finally waits for results to be
uploaded by the LBDA, and subsequently writes them into the results database.
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Fault Recovery

In order to provide fault-tolerance, the LB Controller also initiates and coordi-
nates fault recovery operations. Upon detection of Task execution failure, the LB
Controller initiates fault recovery (see Section 6.2.3).

The LBC temporizes for a short period after having detected the failure of a Task
execution, in order to handle multiple simultaneous Task execution failures. It
then submits a new BoT, in order to obtain new Resources.

After a time-out has been exceeded, the computation and checkpointing graphs are
recomputed. The LBC then communicates to the newly deployed LBDAs which
other LBDAs store a replica of their state so that they can download it. At the
same time, the LBC instructs all LBDAs that were not affected by failure to roll
back their state to the most recent replica of their own state. When all LBDAs
have updated their state, they automatically begin to process data.

The LBC informs each newly deployed LBDA of its neighbors in both computa-
tion and checkpointing graphs. A newly deployed LBDA can then download from
other LBDAs a replica of the state to assume. LBDAs that survived failure are
informed again of their neighbors in both computation and checkpointing graphs
when the LBC asks them to roll back to their most recent synchronized state.

LB Controller Flowchart

Figure 6.8 summarizes as a flowchart the operations of an LB Controller. Impor-
tantly, the described operations are generic to any Iterative Stencil application;
only some implementation details are specific to LaBoGrid. The presented LB
Controller could certainly be adapted to other similar applications.

The initial operations of the LBC are intrinsically required because the LBDAs
must be launched somehow. After LBDAs have started their computations, the
LBC simply waits for results to return.

The LBG-SQUARE architecture is perfectly decentralized under non-faulty con-
ditions. Upon fault detection, the LBC centrally coordinates fault recovery op-
erations. The LBC sends small control messages, which constitute a very low
overhead. However, it is not directly involved in the actual transfers of replicas of
Task state; the LBDAs perform these transfers. The LBG-SQUARE architecture is
thus mostly decentralized under faulty conditions. In any case, the LBG-SQUARE
architecture can scale because LBDAs act autonomously and in a P2P fashion.
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Figure 6.8: LB Controller flowchart.

LBG User Agents

Only very few modifications of the Lightweight Bartering Grid are actually re-
quired. The middleware implementation of User Agents has been extended to
work as a standalone server, so that the LBC can submit BoTs from another,
separate Java VM. This ensures a complete separation of processes between the
LBC and the User Agent it relies on.

Beyond this, the Lightweight Bartering Grid and LaBoGrid are independent and
can easily cooperate. Load balancing and fault-tolerance are handled by LaBoGrid.
Moreover, LBDAs communicate directly with one another, although middleware
support could enable cooperation of the LBDAs with the security infrastructure.

6.2.6 Experimental Results

Experimental Setup

The experiments presented in this section have been conducted on 48 x86 PC (Intel
P4 CPU with 1GB RAM for Resources, Intel Celeron CPU with 512MB RAM for
Peers and the User Agent), all equipped with standard hard drives, and connected
with a 100 Mbps switched Ethernet network. Four different Grids are considered
(1, 2, 4 and 8 Peers). Each Peer has 5 Resources.

A lattice of 2003 nodes (referred to as a 2003-lattice) is considered. The Lattice-
Boltzmann simulation (see Section 6.2.1) is run for 100 iterations.
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Resources Deployment time (s)
5 9
10 10
20 20
40 25

Table 6.2: LBDAs deployment times.

The proposed checkpointing mechanism is controlled through its state replication
parameters, the replication degree and replication period. The replication degree
d (with d = 0, 1, 2, 3, 4) means that each Resource saves its state to d other Re-
sources. The replication period p (with p = 1, 5, 10) means that a replication is
made every p iterations.

Deployment Time

The LaBoGrid deployment time can be separated into: (1) LBDA deployment
time, i.e. time between submission of a set of LBDAs to the P2P Grid and their
actual deployment on supplied Resources, which depends only on the amount of
Resources and (2) LBDA initialization time, which depends only on lattice size
given that the limiting factor is the time to upload the initial (fixed-size) data to
all LBDAs from the LBC. Table 6.2 shows the measured LBDA deployment time
(averaged on 5 runs).

Execution Time without Failure

The execution time of a given LB simulation in a reliable context is affected by the
replication degree and period, and the amount of Resources. The total execution
time of the LB simulation on an 8-Peers Grid totalling 40 Resources, without state
replication, is 113 seconds. Table 6.3 gives the performance penalty coefficient in
function of the replication degree and period. This coefficient is obtained by divid-
ing the execution time with state replication by the execution time without state
replication.

The performance penalty is linear in function of the replication degree when repli-
cas are checkpointed at every iteration, and less than linear when the replication
period increases. The performance gain is roughly linear in function of the repli-
cation period, as might be expected.

As observed and as expected, the state replication mechanism heavily increases
the execution time. However, without this fault-tolerance mechanism, Iterative
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Replication Period
Degree 1 5 10

1 15.3 4.0 2.6
2 24.8 5.7 3.6
3 34.8 7.8 4.12
4 44.0 10.1 4.8

Table 6.3: Performance penalty coefficient due to state replication.

Failures Execution time (s) Overhead (s)
0 296 0
1 328 32
2 323 27
5 350 54

Table 6.4: Execution time with Failures.

Stencils cannot be run in P2P Grids. Knowing the fault probability and scope
(number of failed Task executions), optimal parameters leading to reliable - but
not overlong - executions can be found.

Execution Time with Failures

To simulate both types of failures - isolated Resource failure and bursts of preemp-
tion (when a supplier reclaims its own computational power for incoming Local
Tasks) - a background load generator concurrently submits Local Tasks to a given
Peer, so that some LBDAs are preempted. To ensure that the failure in LBDAs
execution does not delay the overall runtime of LaBoGrid, each Local Task is a
simple “Hello, Grid”. Resources from which LBDAs have been preempted are thus
unavailable for a moment only, ensuring that LaBoGrid can quickly reacquire all
Resources.

The fault-tolerance mechanism is tested with 3 fault types: 1, 2 and 5 Resources
from the same Peer are reclaimed once and simultaneously in a given experiment.
With 5 Resources reclaimed, the Peer temporarily stops to contribute to the LB
simulation. The fault recovery was tested with an LB simulation of a 2003-lattice
with a replication degree 1 and period 10. Table 6.4 gives the execution times
compared to the execution times without failure.

The overhead time contains:

• time to detect the failure;

• time to reacquire new Resources and subsequently reconfigure all the available
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Resources (the reconfiguration is triggered either by a timer or the end of
benchmarking of new Resources);

• time to perform the state rollback itself;

• time to perform the checkpointing according to the new checkpointing graph;

• time to recalculate the iterations that happened5 after the last checkpointing
and before the Task execution failure.

6.2.7 Supplementary Fault-Tolerance Mechanisms

The LB Controller could proactively attempt to acquire supplementary Resources
concurrently with waiting for a running LB simulation to complete. To do so,
the LBC could regularly submit new BoT in order to deploy additional LBDAs.
This could serve two purposes: LBDAs pooling and opportunistic load rebalancing.

LBDAs Pooling

Firstly, the deployed-but-unused LBDAs could be pooled and kept in reserve as
spares. Fault recovery of failed Resources would be sped up because of the imme-
diate availability of these spares; precluding the need to acquire new Resources.

Opportunistic Load Rebalancing

Secondly, after several deployed-but-unused LBDAs have become available, the
LBC could stop the LB simulation and rebalance the load, so as to opportunis-
tically use the power of the extra Resources. There is a trade-off between the
increase in simulation speed and the time lost by the load rebalancing as, clearly,
load balancing should be done infrequently. If the processing or network perfor-
mance of newly available Resources is really low, these should not be used at all
in the LB simulation.

To support opportunistic load rebalancing, the load rebalancing mechanism should
be enhanced so as to decide if the load should be rebalanced: A threshold must
be determined in function of the estimated completion time with or without re-
balancing.

5 This parameter is not controlled in our experiments, which explains variations in the ob-
served time overhead.
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6.3 Summary of the Contributions

In this chapter, we have proposed a distributed simulation mechanism that is
inspired by the self-bootstrapping pattern. It consists of running multiple instances
of the LBG simulator implementation, called SimTasks, on the LBG middleware
implementation. This enables a scalable testing and performance evaluation
of a large number of bartering policies.

Another original contribution is the introduction of the LBG-SQUARE soft-
ware resulting from the cooperation of our P2P Grid middleware (Lightweight
Bartering Grid) with an Iterative Stencil application (Lattice-Boltzmann
Grid) that is scheduled as a Bag of Tasks. LBG-SQUARE has been in-
troduced to expand the capabilities of an existing generic software for Lattice-
Boltzmann flow simulations on the Grid, that is motivated by a real-world ap-
plication (study of flows in a metallic foam). LBG-SQUARE has run production
workloads, with success.

With a P2P Grid, supplementary Resources can be autonomously and dynam-
ically obtained across organizational boundaries. Co-allocation is provided
through the LBG (middleware-level) scheduling mechanism and - as it
was intended for independent Tasks, not for heavily-communicating Tasks - it is
supplemented with a central (application-level) controller that performs
dynamic Resource benchmarking and dynamically generates load balanced man-
agement graphs describing the topology to be assumed by the Iterative Stencil’s
Tasks.

LBG-SQUARE is designed to withstand frequent failures as a price to pay for
running in an undedicated, unreliable environment. Application-level fault-
tolerance is introduced, following a P2P checkpoint/restart pattern.
Tasks autonomously cooperate with one another in a P2P fashion to store replicas
of their state into local storage provided by the Resources. State replication has
a strong impact on execution time. But without checkpointing, Itera-
tive Stencils could not be run on P2P Grids. Furthermore, our proposed
checkpointing mechanism is adapted to P2P Grids as the checkpointing
graph is constructed to be resilient to multiple simultaneous Resource
preemptions by any given Peer. The LBG-SQUARE architecture is scal-
able because the computations and checkpointing are fully distributed.
A centralized organization is assumed only during an initial benchmarking and
load balancing phase, upon dynamic load rebalancing and also upon fault recovery.



Chapter 7

Conclusions

P2P Grid computing seeks the convergence of Grid and P2P technologies, as pro-
posed in a paper by Foster and Iamnitchi in 2003 [147]. P2P Grid computing
enables independent organizations to barter (i.e. exchange) computing time with
one another over the Internet, in order to complete computational requests. Peers
are intended to operate autonomously, in a fully decentralized fashion.

To enable organizations to easily share the computational power of their com-
puters and exchange computing time, a P2P Grid middleware is required. Several
concerns, notably protection against free-riding, are already addressed by the state-
of-the-art P2P Grid middleware, OurGrid [233, 13, 84, 286]. Nonetheless, there
remain many concerns to be fully addressed: Data transfers [19] deployment [19],
security [19, 52], software engineering/testing [52].

Among these, our dissertation has proposed contributions in data transfers (Chap-
ter 5), testing (Chapter 3), and also deployment (Chapter 6). Furthermore, to in-
vestigate new scheduling algorithms and to facilitate further research in scheduling,
our dissertation has introduced a new P2P Grid architecture, the Lightweight Bar-
tering Grid (LBG) architecture (Chapter 2). Our dissertation has also proposed a
scheduling model (Chapter 2) and several bartering guidelines (Chapter 4), some
of which could not have been easily integrated with existing P2P Grid architec-
tures. In particular, we have studied novel data-aware scheduling policies and
novel scheduling policies that make consumption decisions based on autonomously
acquired information, which requires that Peers make the scheduling decisions, not
the User Agents.
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7.1 Summary of the Contributions

7.1.1 Scheduling

We have proposed a new P2P Grid architecture, the Lightweight Bartering Grid
(LBG) architecture [59], which has led to the introduction of a scheduling model
with clearly defined Policy Decision Points. Our scheduling model supports the
queueing of external requests (see Section 2.9.4), which allows either online or
batch-mode scheduling policies as well as the masking of individual failures of
worker nodes to other Peers. Our scheduling model also enables the study of
consumption decisions (see Chapter 4). We also have proposed several bartering
guidelines following the study of many combinations of bartering policies. In par-
ticular, an adaptive Supplying Tasks preemption policy, coupled with a cost-aware
Resource selection algorithm that we call PSufferage, has been shown to lead to
efficient and robust bartering strategies.

The LBG architecture is intended to be robust to Task execution failures. Through
the systematic cooperation between the Peer components and also between the
Grid nodes arising from our proposed scheduling model, the reliability of the execu-
tion of computational requests is greater than the sum of the reliabilities of worker
nodes. Peers can tolerate large-scale Task execution failures, either those arising
from the sudden unavailability of individual worker nodes - including transient
disruption of communication links - or those arising from preemption/cancellation
of external Tasks by Peers.

7.1.2 Data Transfers

In collaboration with our colleague Xavier Dalem, following early work with our
colleague Sébastien Jodogne, we have proposed a scalable P2P data transfer archi-
tecture [57, 56, 184]. The BitTorrent P2P file sharing protocol [87, 207, 46] is used
for data transfers, in order to automatically and efficiently transfer and handle
large input data files. Our algorithms are designed to reduce the cost of down-
loading identical - i.e. redundant - copies of input data files, whether temporally
grouped or spatially grouped.

7.1.3 Software Engineering and Testing

The LBG architecture is implemented as a fully operational middleware, and
also as a discrete-event simulator. We have shown how to virtualize Grid nodes,
i.e. isolate them from their environment, so that a discrete-event simulator can be
weaved into the bartering code of the middleware, leading to massive code reuse
between implementations. Using virtualization and simulation as software engi-
neering tools [63, 59] opens the possibility of reproducible testing and accurate
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performance evaluation of the bartering code of the middleware. This is made
possible because Peers of a simulated Grid make the same bartering decisions as
Peers deployed on real computers.

Only the contemporarily proposed GRAS component [253] of the SimGrid [78, 278]
middleware introduces a mechanism of similar nature. Both approaches are in-
tended as tools to facilitate software engineering but differ in some of their use
cases and features. GRAS/SimGrid is designed to be generic (bottom-up ap-
proach) while the LBG simulator is specifically tailored to the LBG middleware
(top-down approach). The LBG simulator offers a simulation description language
in which the configuration of Peer policies can be easily expressed. This tight inte-
gration enables to rapidly evaluate new combinations of scheduling policies [59, 63].
The simulation of multithreaded code (of the LBG middleware) constituted a re-
quirement of the LBG simulator, while it is only recently [78] that support for it
was added to GRAS/SimGrid through the SimIX component. Had we started our
research in 2008, GRAS/SimGrid would have constituted a good starting point to
enable the virtualization and simulation of LBG.

P2P Grids of up to one hundred Grid nodes have been deployed on real computers
using the LBG middleware, either one Peer with around 100 worker nodes or mul-
tiple Peers with a few dozen worker nodes. P2P Grids of up to 1.6 million Grid
nodes have been deployed in the LBG simulator (see Section 3.6.3), either around
ten thousand Peers with a few worker nodes, or a few Peers with nearly half a
million worker nodes, or a few hundred Peers with a few hundred worker nodes.
Thousands of different combination of scheduling policies have been evaluated in
the LBG simulator - which has been made possible with the application of the
code once, deploy twice pattern. We thus believe that the LBG architecture can
scale very well, and are looking forward to evaluate larger deployments of the LBG
middleware.

7.1.4 Deployment

The LBG architecture is lightweight: It is characterized by ease and flexibility of
use and deployment that are lacking in most existing Grid technologies. In partic-
ular, our proposed data transfer architecture is automatically deployed. It simply
requires that human administrators open TCP ports in firewalls and it does not
need the explicit construction of an overlay. Very importantly, our proposed data
transfer architecture is completely transparent to human users. As a complement
to the robustness provided by the scheduling model, Peers can opportunistically
use their (dynamically registered) worker nodes or worker nodes supplied by other
Peers.
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In collaboration with our colleague Gérard Dethier, we have shown how to deploy
Iterative Stencil applications on P2P Grids. We have also shown how to run them
reliably, which is far from trivial [115, 116]. In particular, we have proposed an
application-level P2P-aware P2P checkpointing mechanism.

7.2 Open Questions

Several questions related to our proposed ideas and mechanisms remain open and
deserve further research. As a complement to the following list of such open
questions, Appendix F systematically lists areas of future work, including security.

7.2.1 Scheduling and Negotiation Models

A challenging issue would be to support reservations and deadlines. To this end,
each Peer could update its scheduling policies according to the behavior of the
other Peers. The scheduling model could also be augmented with Task replication
as a complementary mechanism for the robustness of Task execution.

Another open and intriguing question is to study the concept of variable informa-
tional opacity between Peers. By definition, Peers of a P2P Grid do not exchange
metadata on their behavior, thus creating an informational opacity. Peers acquire
metadata about the P2P Grid only through the observation of the outcome of
their interactions with other Peers [60, 58]. However, there might exist multiple
degrees of trust between Peers, beyond an all-or-nothing model. For example,
metadata communicated to the Peer deployed by a University department could
be more trusted if it came from a Peer deployed by another department of the
same University, or from an affiliated laboratory from another University, rather
than from an unknown source beyond the campus intranet. This observation,
also made to suggest scheduling policies biased in favor of Peers with out-of-Grid
friendly relationships [14], could lead to a finer trust model. Such a trust model
would lead to the use of hybrid metadata of varying quality and provenance within
the scheduling model.

7.2.2 Data Transfer and Persistence

Worker nodes that have downloaded files to process, automatically share these
files using BitTorrent. Our proposed data transfer architecture could be made
even more scalable if each Peer was using its worker nodes to fully distribute its
data server, i.e. the Data Manager (see Section 5.2.2). The initial sharing of any
file introduced in the P2P Grid could thus be done from any worker node, thus
decreasing the load on the Peer.
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The sharing of files using FTP could also be offloaded to worker nodes, using
our envisioned but yet-to-be-evaluated proactive data replication mechanism (see
Section 5.4). An approach recently proposed by Fortino et al. - based on the
integration [145] of P2P, Grids and Agents to build Content Distribution Net-
works [242, 279] (CDN) - is very relevant to this issue and deserves close study.

Extensions to the data transfer architecture are required to support other Task
models at the middleware-level. Support for communications between non-running
Tasks, i.e. caching of output data files, is required for Workflow applications. Sup-
port for communications between running Tasks is required for Iterative Stencils.

Peers should also definitely be augmented with persistence capabilities to make
them tolerant to their own individual failures, i.e. reload metadata from persistent
storage after a crash of the computer running a Peer.

7.2.3 Simulation and Architecture

Improving the simulation of multithreading and supporting the simulation of data
transfers are also two important questions to address in future research devoted
to P2P Grid in general, and to LBG in particular.

In a broader perspective, P2P Grids, Desktop Grids and Volunteer Grids are three
types of Grids (see Section 2.5) designed to aggregate the computational power of
a large number of unreliable worker nodes [61]. The convergence of these three
types of Grids would be of high interest.

7.3 General Conclusion

In this dissertation, we have systematically studied what is minimally required to
enable bartering between organizations in a P2P fashion. Although there remain
many open questions, the Lightweight Bartering Grid (LBG) architecture provides
an integrated view and definition of what is a P2P Grid, and also how to build one.
Our bartering and scheduling models, in particular, contribute to the understand-
ing of scheduling in fully decentralized systems. Our contributions to software
engineering can facilitate the work of Grid middleware researchers and developers.
Our data transfer architecture contributes to the understanding of mechanisms to
maintain high scalability and reduce the impact on response times when facing
high volume data transfers in an unpredictable and fully decentralized computing
environment. Finally, beyond these contributions to the foundations of the P2P
Grid domain, the practical relevance and usefulness of the LBG middleware has
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already been demonstrated in a “real-world” deployment: We have explained how
to use LBG as an execution substrate to run a complex, tightly-coupled compu-
tational fluid dynamics application on a very unreliable and uncontrollable set of
worker nodes.
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Appendix A

Application and Service Interfaces

A.1 Grid Application Interface

The set*() operations of a Grid application are guaranteed to be all activated (in
arbitrary order) prior to its execution through compute(). After compute() has
returned, getResult() is activated.

setInputData() set input data files
setParameters() set application parameters
setSupplier() communicate the ID of the supplier Peer
setPlaypen() communicate the path of the playpen
compute() activate the computing

of the Grid application
getResult() obtain a reference to the output data

Table A.1: Grid application interface.

A.2 Grid Node Service Interfaces

Grid node operations can both be implemented asynchronously and fail without
blocking1 system-level Grid operations.

notifyCompletedTask() send results (output data file)
of a completed Task

notifyCompletedJob() send results (output data file)
of the last completed Task of a BoT

Table A.2: User Agent Service interface.

1Although it is often beneficial to retry the operation at a later time.
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isAlive() simple liveness test
idle() query the current Resource status
runTask() ask the Resource to compute a Task
taskStartTime() query the start time of

the currently running Task
cancelTask() ask the Resource to cancel

the currently running Task
setWorkingSet() communicate a working set

(see Section 5.2.5) to the Resource
cacheCapacity() query the total cache capacity of

the Resource

Table A.3: Resource Service interface.

isAlive() simple liveness test
requestSupplying() communicate a supplying request
grantConsumption() communicate a consumption grant
submitSupplyingTask() ask the Peer to compute

a Consumption Task
(which is perceived as a Supplying Task)

uploadBySupplyingCompletedTask() upload results of a completed
Supplying Task submitted by the Peer

cancelLocalTaskOnSupplyingResource() tell the Peer one of its Consumption Task
has been cancelled

cancelSupplyingTaskOnLocalResource() tell the Peer that it can safely cancel
a Supplying Task

(a) External Peer Service interface.

addResource() register with the Peer
removeResource() unregister from the Peer
uploadLocallyCompletedTask() upload results of a completed

Task to the Peer
preemptLocalTaskOnLocalResource() tell the Peer that the running

Local Task had to be preempted
preemptSupplyingTaskOnLocalResource() tell the Peer that the running

Supplying Task had to be preempted

(b) Internal Peer Service interface.

submitJob() submit a Bag of Tasks to the Peer
cancelJob() cancel a Bag of Tasks from the Peer

(c) User Agent Peer Service interface.

Table A.4: Peer Service interface.
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Figure A.1: Peer handle/service class hierarchy.

Figure A.1 illustrates the Peer handle/service class hierarchy. To simplify the
diagram, entities with identical relationships have been grouped in circled areas.
These are also actually the only entities that are classes; all other entities are in-
terfaces.

The core of the class hierarchy is constituted by the PeerService, ExternalPeerHan-
dle, InternalPeerHandle and UserPeerHandle interfaces. Each of these 3 PeerHan-
dle subinterfaces is used by the corresponding type of Grid node (Peer, Resource,
User Agent) to communicate with a Peer through a Peer service. The abstract
interfaces layer has been introduced to guarantee that all Peer handle and service
interfaces implement all the required operations (presented in Table A.4).



Appendix B

Configuration Languages and
Parameters

B.1 Job Description Language

The job description language (JDL) is described and a file example is now given.

B.1.1 JDL BNF Grammar

<job description file> ::= <job>

<list of separators> ::= <list of separators> <separator> | <separator>

<job> ::= <header> <list of separators> <bag of tasks>

<header> ::= task list = <list of labels>

<bag of tasks> ::= <bag of tasks> <list of separators> <task> | <task>

<list of labels> ::= <list of labels> , <label> | <label>

<label> ::= <string>

<task> ::= <jar property> <list of separators>
<main class property> <list of separators>
<parameters property> <list of separators> <data property>

<jar property> ::= <label>.jar = <string>

<main class property> ::= <label>.main class | <label>.main class = <string>

<parameters property> ::=
<label>.parameters | <label>.parameters = <list of labels>

<data property> ::= <label>.datas | <label>.datas = <list of labels>
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To use the Java Properties API [178] to parse job description files, separators are
defined as line feeds (i.e. \n). Moreover, #-starting comments are also allowed
and more spacing can be added but we chose readability over comprehensiveness.

B.1.2 Job Description File Example

# .jdf example

task list = my task1, my task2, my task3, my task4, my task5

my task1.jar = gisapp.jar
my task1.main class = gis.algo.acc.DGSP
my task1.parameters = 0.42, 19, 1600
my task1.datas = acc.asc, barr.asc, mnt.asc, pop.asc

my task2.jar = gisapp.jar
my task2.main class = gis.algo.acc.DGSP
my task2.parameters = 0.42, 19, 1800
my task2.datas = acc.asc, barr.asc, mnt.asc, pop.asc

my task3.jar = gisapp.jar
my task3.main class = gis.algo.acc.DGSP
my task3.parameters = 0.42, 18, 2000
my task3.datas = acc.asc, barr.asc, mnt.asc, pop.asc
my task4.jar = gisapp.jar
my task4.main class = gis.algo.acc.DGSP
my task4.parameters = 0.42, 18, 2200
my task4.datas = acc.asc, barr.asc, mnt.asc, pop.asc

my task5.jar = gisapp.jar

my task5.main class = gis.algo.acc.DGSP

my task5.parameters = 0.42, 20, 2500

my task5.datas = acc.asc, barr.asc, mnt.asc, pop.asc

B.2 Simulation Description Language

A scenario describes the parameters of a simulation. It is written in the simulation
description language (SDL), which is described. A file example is then given.

B.2.1 SDL BNF Grammar

The main BNF rules are provided again for convenience. The legal keys and values
of specific rules are then systematically presented.
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<scenario description file> ::= <list of scenario properties>

<list of separators> ::= <list of separators> <separator> | <separator>

<list of scenario properties> ::=
<list of scenario properties> <list of separators> <scenario property> |
<scenario property>

<scenario property> ::= <key> = <value>

<key> ::= < reserved keyword>

<value> ::= <scalar value> | <vector value>

<scalar value> ::= <boolean> | <int> | <float> | <string>

<vector value> ::= { <list of scalar values> }

<list of scalar values> ::= <list of scalar values> , <scalar value> |
<scalar value>

Vector values in scenario properties have been introduced to support the concept
of Peer group (see Section 3.5.3). In a given scenario, vector values all have the
same length and the ith element of a given vector value corresponds to the ith Peer
group. The size of (i.e. the number of Peers in) each Peer group, as well as a com-
mon Peer identifier prefix for each Peer group, have to be defined. The number
of Peer groups is implicitly defined by the length of the vectors in the scenario,
which must all be identical.

To use the Java Properties API [178] to parse simulation description files, sepa-
rators are defined as line feeds (i.e. \n). Moreover, #-starting comments are also
allowed and more spacing can be added but we chose readability over comprehen-
siveness.

Grid Configuration

The Grid configuration describes the Grid nodes. Of interest are the computational
power of Peers and the Resources reliability.

• PEER BASE NAME = <string>

• PEER GROUP SIZE = {<int>, . . .}

• PEER POWER = {<int>, . . .}

• RES COUNT = {<int>, . . .}

• RES POWER LO = {<int>, . . .}

• RES POWER HI = {<int>, . . .}
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• RES CACHE CAPACITY = {<int>, . . .}
• RES MTBF = {<int>, . . .}
• SEARCH TIMEOUT = <int>

User Agents Configuration

The configuration of User Agents enables to generate synthetic workloads.

• JOBS PER PEER = {<int>, . . .}
• JOB INIT SHIFT = {<int>, . . .}
• JOB INTER TIME LO = {<int>, . . .}
• JOB INTER TIME HI = {<int>, . . .}
• TASKS PER JOB = {<int>, . . .}
• TASK LEN LO = {<int>, . . .}
• TASK LEN HI = {<int>, . . .}
• DATA PER TASK = {<int>, . . .}

Peers Scheduling Policies Configuration

The configuration of the scheduling policies and admissible queue length parame-
ters determines the behavior of the Scheduler.

• PEER SCHEDULING LOCAL POLICY =
{ NonpreemptiveLocalScheduling | PreemptiveLocalScheduling, . . .}

• PEER PREEMPTION SUPPLYING RUNNING POLICY =
{ NoPreemption | AdaptivePreemption | FullCancellation | FullPreemption |
LimitedCancellation | LimitedPreemption, . . .}

• PEER PREEMPTION SUPPLYING WAITING POLICY =
{ NoPreemption | NoWaitingPreemption | FavorsWaitingPreemption |
FIFOWaitingPreemption | FullWaitingPreemption, . . .}

• PEER FILTERING SUPPLYING POLICY =
{ NoSupplyingFiltering | FIFOSupplyingFiltering |
RelaxedFavorsSupplyingFiltering | StrictFavorsSupplyingFiltering |
UnlimitedSupplyingFiltering, . . .}

• PEER SCHEDULING SUPPLYING POLICY =
{ NoSupplyingScheduling | FIFOSupplyingScheduling |
FavorsSupplyingScheduling, . . .}

• PEER SCHEDULING CONSUMPTION POLICY =
{ NoConsumptionScheduling | AdaptiveMC4ConsumptionScheduling |
AdaptiveTCoRConsumptionScheduling |
ConservativeTimeStrideConsumptionScheduling |
DataConsumptionScheduling | FavorsConsumptionScheduling |
GrantsConsumptionScheduling | MC4ConsumptionScheduling |
MCoSConsumptionScheduling | MTBCConsumptionScheduling |
MTTCConsumptionScheduling | PerformanceConsumptionScheduling |
RandomConsumptionScheduling | ReliableConsumptionScheduling |
TCaRConsumptionScheduling, . . .}
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• PEER Q FILTERING THRESHOLD = {<int>, . . .}

• LOCAL Q LEN PREEMPTION THRESHOLD = {<int>, . . .}

• PEER PSUFFERAGE = {<boolean>, . . .}

• DO CONSUMPTION BLACKLIST = {<boolean>, . . .}

• CONSUMPTION BLACKLIST PROBA = {<int>, . . .}

Peers Negotiation Policies Configuration

The configuration of the negotiation policies determines the behavior of the Nego-
tiator.

• PEER NEGOTIATION SUPPLYING POLICY =
{ NoSupplyingNegotiation | RandomSupplyingNegotiation |
FavorsSupplyingNegotiation | UnlimitedSupplyingNegotiation, . . .}

• PEER NEGOTIATION CONSUMPTION POLICY =
{ NoConsumptionNegotiation | RandomConsumptionNegotiation, . . .}

• PEER DEFAULT ACCOUNTANT =
{ NoEvalAccountant | OGPerfectAccountant |
OGTimeAccountant | OGRelativePowerAccountant |
LBGTimeAccountant | LBGRelativePowerAccountant, . . .}

Peers Negotiation Control Configuration

The configuration of negotiation timers and thresholds determines the behavior of
the negotiation protocol.

• REQUESTORS COUNT THRESHOLD = {<int>, . . .}

• REQUESTORS TIME THRESHOLD = {<int>, . . .}

• GRANTORS COUNT THRESHOLD = {<int>, . . .}

• GRANTORS TIME THRESHOLD = {<int>, . . .}

• REQUEST SUPPLYING TIME THRESHOLD = {<int>, . . .}

Peers Task Control Configuration

The configuration of a time-out for Consumption Tasks is required for the Task
control mechanism.

• CONSUMPTION TIMEOUT = {<int>, . . .}
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Peers Data Management Configuration

Data management operations are simulated, while data transfers operations are
not. The configuration of data management policies (and previously of a number
of input data files per Task in the User Agents configuration) thus enables to test
the correctness of data management operations.

• PEER TTG POLICY = {<boolean>, . . .}

• PEER STORAGE AFFINITY = {<boolean>, . . .}

• PEER DATA REPLICATION = {<boolean>, . . .}

• PEER IDLE REPLICATION RATIO = {<float>, . . .}

Simulator Configuration

• SIMULATION SEED = <int>

• CLONE SIMULATED TRANSFERRED OBJECTS = <boolean>

B.2.2 Simulation Description File Example

# .sdf example: corresponds to the 4-Peers scenario proposed in
# Andrade, Brasileiro and Cirne, Automatic Grid Assembly [. . .], JPDC, 2007

PEER BASE NAME = og peer
PEER GROUP SIZE = { 1, 1, 1, 1 }
PEER POWER = { 4, 4, 4, 4 }
PEER TTG POLICY = { true, true, true, true }
PEER STORAGE AFFINITY = { true, true, true, true }
PEER DATA REPLICATION = { false, false, false, false }
PEER IDLE REPLICATION RATIO = { 0.0, 0.0, 0.0, 0.0 }
PEER PSUFFERAGE = { true, true, true, true }
PEER Q FILTERING THRESHOLD = { 1, 1, 1, 1 }
RES COUNT = { 4, 4, 4, 4 }
RES POWER LO = { 1, 1, 1, 1 }
RES POWER HI = { 1, 1, 1, 1 }
RES CACHE CAPACITY = { 24, 24, 24, 24 }
RES MTBF = { 0, 0, 0, 0 }
CONSUMPTION TIMEOUT = { 604800, 604800, 604800, 604800 }
LOCAL Q LEN PREEMPTION THRESHOLD = { 12, 12, 12, 12 }
DO CONSUMPTION BLACKLIST = { false, false, false, false }
CONSUMPTION BLACKLIST PROBA = { 0.0, 0.0, 0.0, 0.0 }

PEER SCHEDULING LOCAL POLICY =
{ PreemptiveLocalScheduling, PreemptiveLocalScheduling,
PreemptiveLocalScheduling, PreemptiveLocalScheduling }

PEER PREEMPTION SUPPLYING RUNNING POLICY =
{ LimitedCancellation, LimitedCancellation,
LimitedCancellation, LimitedCancellation }

PEER PREEMPTION SUPPLYING WAITING POLICY =
{ FullWaitingPreemption, FullWaitingPreemption,
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FullWaitingPreemption, FullWaitingPreemption }
PEER FILTERING SUPPLYING POLICY =

{ FIFOSupplyingFiltering, FIFOSupplyingFiltering,
FIFOSupplyingFiltering, FIFOSupplyingFiltering }

PEER SCHEDULING SUPPLYING POLICY =
{ FavorsSupplyingScheduling, FavorsSupplyingScheduling,
FavorsSupplyingScheduling, FavorsSupplyingScheduling }

PEER SCHEDULING CONSUMPTION POLICY =
{ DataConsumptionScheduling, DataConsumptionScheduling,
DataConsumptionScheduling, DataConsumptionScheduling }

PEER NEGOTIATION SUPPLYING POLICY =
{ FavorsSupplyingNegotiation, FavorsSupplyingNegotiation,
FavorsSupplyingNegotiation, FavorsSupplyingNegotiation }

PEER NEGOTIATION CONSUMPTION POLICY =
{ RandomConsumptionNegotiation, RandomConsumptionNegotiation,
RandomConsumptionNegotiation, RandomConsumptionNegotiation }

PEER DEFAULT ACCOUNTANT =
{ LBGRelativePowerAccountant, LBGRelativePowerAccountant,
LBGRelativePowerAccountant, LBGRelativePowerAccountant }

REQUESTORS COUNT THRESHOLD = { 12, 12, 12, 12 }
REQUESTORS TIME THRESHOLD = { 1, 1, 1, 1 }
GRANTORS COUNT THRESHOLD = { 12, 12, 12, 12 }
GRANTORS TIME THRESHOLD = { 1, 1, 1, 1 }
REQUEST SUPPLYING TIME THRESHOLD = { 1, 1, 1, 1 }

JOBS PER PEER = { 60, 60, 60, 60 }
JOB INIT SHIFT = { 0, 0, 0, 0 }
JOB INTER TIME LO = { 60, 60, 60, 60 }
JOB INTER TIME HI = { 1200, 1200, 1200, 1200 }

TASKS PER JOB = { 40, 40, 40, 40 }
TASK LEN LO = { 60, 60, 60, 60 }
TASK LEN HI = { 60, 60, 60, 60 }
DATA PER TASK = { 1, 1, 1, 1 }

SIMULATION SEED = 42

SEARCH TIMEOUT = 10

CLONE SIMULATED TRANSFERRED OBJECTS = true

B.3 Nodes Configuration Language

As there are a large number of parameters to configure Peers and Resources - even
if many of them can be assigned well-known standard values - it is useful to have
Grid nodes read their configuration from a file. The node configuration language is
a subset of the scenario description language. This facilitates the writing of nodes
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configuration files from simulation description files, and reciprocally. The avail-
ability of a simple, properties-based language also enables one to easily automate
the deployment of multiple Grid nodes.



Appendix C

Peer Middleware Internals

C.1 Peer Components Dependencies

Figure C.1 presents a synoptic view of Peer components [59] (see Section 2.9.7).
They manage Tasks queueing, Resource management, Task execution control, data
storage/sharing/transfer, negotiation, scheduling, collection/storage of metadata,
communications with Grid nodes, Peer discovery.

Figure C.1: Peer components.

In particular, the Task Manager is the Peer component responsible for the execu-
tion of Tasks on Resources. It is essentially a connector component used by the
Scheduler (Section 2.9.4) and by the Peer Service (Section 2.8). Supported Task
Manager operations include Task execution, completion, preemption/cancellation
and control. It relies on the RMS (Section 2.7.6) and Queue Manager (Sec-
tion 2.9.3.
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Table C.1 represents the dependencies between Peer components (see Section 2.9).
An arrow symbolizes a dependency of the component in the left column on the
component in the top row, i.e. the former uses the latter. Components without
dependency are not included.
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Peer Register ↗ ↗
Negotiator ↗ ↗ ↗ ↗ ↗ ↗
Queue Manager ↗ ↗
Service ↗ ↗ ↗ ↗ ↗ ↗ ↗
Scheduler ↗ ↗ ↗ ↗ ↗ ↗
Task Manager ↗ ↗ ↗ ↗

Table C.1: Peer components dependencies.

C.2 Peer Events to Policies Mapping

Table C.2 shows the mapping of Peer events (see Section 2.9.2, Appendix A.2 and
Section 2.9.6) to policies (see Sections 2.9.4 and 2.9.5) The numbers in each row
denote the ordering in which operations are triggered for the corresponding event.

Operations corresponding to each policy are first listed:

• Local Tasks scheduling: scheduleLocalTasks()

• Consumption Tasks scheduling: scheduleConsumptionTasks()

• Supplying Tasks filtering: filterOutSupplyingTask()

• Supplying scheduling: scheduleSupplyingTasks()

• Supplying Tasks preemption: preemptLocalResources()

(called by scheduleLocalTasks())

• supplying requests evaluation: evaluateSupplyingRequests()

• consumption grants evaluation: evaluateConsumptionGrants()



C.2. Peer Events to Policies Mapping 272

s
c
h
e
d
u
l
e
L
o
c
a
l
T
a
s
k
s
(
)

s
c
h
e
d
u
l
e
S
u
p
p
l
y
i
n
g
T
a
s
k
s
(
)

s
c
h
e
d
u
l
e
C
o
n
s
u
m
p
t
i
o
n
T
a
s
k
s
(
)

f
i
l
t
e
r
O
u
t
S
u
p
p
l
y
i
n
g
T
a
s
k
(
)

e
v
a
l
u
a
t
e
S
u
p
p
l
y
i
n
g
R
e
q
u
e
s
t
s
(
)

e
v
a
l
u
a
t
e
C
o
n
s
u
m
p
t
i
o
n
G
r
a
n
t
s
(
)

submitJob() 1
cancelJob() 1 2 3
uploadLocallyCompletedTask() 1 2
preemptLocalTaskOnLocalResource() 1 2
preemptSupplyingTaskOnLocalResource() 1 2
requestSupplying() 1
grantConsumption() 1
submitSupplyingTask() 2 1
uploadBySupplyingCompletedTask() 1
cancelLocalTaskOnSupplyingResource() 1 2
cancelSupplyingTaskOnLocalResource() 1 2
addResource() 1 2
removeResource() 1 2 3

(a) external events to Peer operations mapping
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received Supplying Requests time-out 1
received Consumption Grants time-out 1
sent Consumption Requests time-out 1
nonempty queues after scheduling 1
Local Tasks time-out 1 2
Consumption Tasks time-out 1 2
Supplying Tasks time-out 1 2

(b) internal events to Peer operations mapping

Table C.2: (a) External events to Peer operations mapping, (b) internal events to
Peer operations mapping.
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C.3 Peer Internal Events Processing

The internal events processor (illustrated on Figures 2.26 and C.1) is the Peer
component that is responsible for the processing of the internal events. There are
three classes of internal events, each with some dedicated timers:

• generation of supplying requests (1 timer), as long as some Local Tasks remain
unscheduled,

• evaluation of timed-out standing negotiation events (2 timers),

• Task control (3 timers).

Thus, the internal events processor manages a total of six timers.

C.3.1 Frequency of Internal Events Processing

Internal events are triggered after a time-out has been exceeded in the relevant
timer. A temporal resolution has to be defined for these timers.

We have selected a temporal resolution of one second per time step because it can
be argued that finer temporal resolutions would be of little use. Indeed, a P2P
Grid is a large-scale networked environment targeting long-running Tasks, very few
of which are likely to be completed within one second, even on high-end computers.

C.3.2 Storage of Internal Events (Negotiation)

Three integer numbers representing timestamps are sufficient to manage the timers
required for negotiation (one for the emission of additional supplying requests, one
for the evaluation of received supplying requests, one for the evaluation of received
consumption grants).

C.3.3 Storage of Internal Events (Task Control)

Data about internal events related to Task control are stored into three auxiliary
data structures (in practice: balanced binary trees). Each structure is dedicated
to one type of Task (Local, Consumption and Supplying Tasks). The data stored
in these structures are (references to) Tasks. The keys are timestamps of time-out
expiration and are ordered by increasing value, i.e. soonest time-out first.

Checking which Tasks have timed out in one of the three given data structures
consists in walking this data structure from the first internal event until an internal
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event with a timestamp in the future has been reached. The temporal cost of this
operation is either constant (when there is no timed-out Task) or proportional to
the number of timed-out Tasks and to the cost of tree rebalancing (which happens
after timed-out Tasks have been removed from the data structure).

There is an additional overhead to maintaining these data structures: Tree rebal-
ancing is required whenever a Task is stored or removed, which happens upon Task
scheduling, completion, preemption or cancellation. Maintaining a unified list of
internal events would require to merge the three data structures. Should the up-
date of data structures related to Task control become a performance bottleneck,
we could evaluate whether it is worthwhile to maintain a unified data structure
instead of three separate data structures.

C.3.4 Multithreading of Internal Events Processing

Every time step, three boolean guards related to negotiation internal events must
be checked, as well as the three data structures related to Task control. The in-
ternal events processor runs currently in its own separate thread (see Section 2.9.7).

Using multiple threads to run the internal events processor would bring very lim-
ited benefits. Indeed, out of the six internal events processing operations, the three
related to negotiation are straightforward. This limits the number of potentially
useful threads to three.

As the total number of Tasks to time-out would certainly be inferior to the number
of seconds in a Peer lifetime, walking the three data structures for an extended
number of data elements would be infrequent. Moreover, this operation is often
limited to the inspection of the first data element, as its associated timestamp is
in the future at the time of the verification. Consequently, multithreading is not
used in the implementation of internal events timer management.

In practice, the Java periodic execution service [178] (ScheduledExecutorService,
available in java.util.concurrent), is used to activate the internal events processor
every second.
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Virtual Organizations

D.1 Virtual Organizations

D.1.1 What is a VO?

Foster and Kesselman introduced informally the concept of Virtual Organization
(VO) [150], to position the sharing of Resources between separate administrative
domains within a socioeconomic context. A VO encompasses multiple adminis-
trative domains exchanging computing time through Grid middleware, externally
appearing as a single administrative entity. It follows that VO can be recursively
defined (see Figure D.1).

(a) (b)

Figure D.1: Structure of Virtual Organizations: (a) Multiple VO membership,
(b) Multiple VO membership, with Recursive VO.
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D.1.2 VO Formation

VO formation is the process of creating relationships between the VO members,
through software agents such as Peers. Mechanisms addressing the dynamic forma-
tion of a VO are thus important and constitute a subdomain [225, 148, 241, 86, 242]
of Grid computing. There are basically two ways to form a VO [10]: top-down
and bottom-up.

Top-down VO formation

Top-down VO formation is the formation of a VO initiated by stakeholders who
want to control a Grid.

Top-down VO formation is necessarily initiated out-of-Grid because it requires a
priori knowledge of the Peers forming the VO. A centrally coordinated architecture
would usually be selected for top-down VO formation because it would be in the
interest of rational human stakeholders to create a VO from scratch with mostly
stable Resources. Most current production Grids are created top-down. The
Belgian national research Grid, BEgrid [40], or the French national research Grid,
Grid 5000 [72], are examples of Virtual Organizations created top-down.

Bottom-Up VO formation

Bottom-up VO formation is the formation of a VO initiated by stakeholders who
want to be part of the same Grid without having prior knowledge of one another.

Bottom-up VO formation is necessarily initiated by Peers. An individually coor-
dinated architecture would usually be selected because this bottom-up formation
is the scenario of choice for Peers among which there is no or little trust and
where human administrators are not related, thus implicating a possibly unstable
Resource environment. P2P Grids are the canonical example of bottom-up VO
formation. The consequences of the requirement of an automatic Peer discovery
service in the definition of a P2P Grid (Section 1.1.4) are now fully clear: An
automatic Peer discovery service, independent of the Peers, is needed to enable
bottom-up VO formation. Indeed, manually giving Peers some addresses of other
Peers is equivalent to forming a VO out-of-Grid, in a top-down fashion.

D.2 Peer Discovery

Peer discovery is an important feature of P2P Grids. It enables Peers to meet on-
line without prior knowledge of one another, and to immediately start exchanging
computing time. Peer discovery enables bottom-up VO formation.
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It is clear that, to achieve high performance, Peers should maintain a cache of
known Peers so as to limit the number of interactions with the Peer discovery ser-
vice. Each time a Peer wants to consume Resources from another Peer, it should
first consult its cache of known Peers to select some Peers to start negotiating with.

As the initial vision for P2P Grids is recent [147], P2P Grid research has first con-
centrated on decentralized scheduling, fault-tolerance, trust issues, . . . with P2P
Grid research focused on Peer discovery lagging behind. The reason is probably
that it was assumed that Peer discovery is a pure P2P issue, and thus research
work conducted in the P2P domain could be applied directly to P2P Grids.

The current Peer discovery mechanism in OurGrid [52], relies on a centralized directory,
CorePeer. Peers register themselves with one CorePeer as they come online. Several
CorePeers can exist simultaneously to support multiple independent Grids. However,
in the future, it can be imagined that Peers may register themselves with several
CorePeers, thus effectively becoming members of several VO (see Section D.1.2).

Tree-based overlay networks constitute another mechanism enabling Peer discovery.
OurGrid’s future Peer discovery service, NodeWiz [53], and THON [174] are examples
of fault-tolerant, self-organizing tree-based overlays in P2P Grids.

DHT-based (Distributed Hash Tables) overlay networks constitute yet another com-
mon Peer discovery mechanism. JNGI [300, 183] is an example of P2P Grid using the
JXTA platform [185], which is based on a loosely consistent DHT.

A centralized Peer discovery architecture is clearly not scalable. Nonetheless, the
current implementation of Peer discovery [99], which is centralized, is sufficient to
conduct research on the other P2P Grid topics discussed in this dissertation. It
can be easily replaced with a more scalable mechanism, such as tree-based [53] or
DHT-based overlays [232], or gossiping, or other mechanisms coming from research
conducted in the P2P networks community.

As it is possible that some Resources will always be incompatible with some com-
putational requests, e.g. due to limitations of available RAM, an initial filtering
of unsuitable Peers during Peer discovery can be very useful. In the near future,
Peer discovery will be augmented with some form of matchmaking [305, 53], also
called the “double coincidence of wants”. This will introduce another layer of ne-
gotiation, as this does not remove the benefit to identify reliable Peers.

Matchmaking mechanisms essentially take into account static properties of Resources
(such as CPU count or maximum storage space) but also some dynamic properties
(such as CPU load). Early matchmaking mechanisms have followed a centralized
organization. A well-known example is ClassAds [255], which frames Resource filtering
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as a bilateral matching process. By relying on Distributed Hash Tables [232] (DHT),
matchmaking mechanisms have gained in fault-tolerance and scalability but lost in
the richness of queries (which are limited to exact matches). By replacing a DHT
substrate with a tree-based P2P-structured substrate enhanced for fault-tolerance, it
is possible to recuperate support for rich queries. A recent example is NodeWiz [53].
Explicit matchmaking of supplying and consumption of computing time has also been
studied [237] from a theoretical graph theory perspective.

D.3 Bartering Policies

Several Bartering policies [61] (Philanthropy, Mutualism and Individualism), are
classified according to their level of expectation of reciprocity.

D.3.1 Philanthropy

A philanthropic Resource sharing policy is defined as a policy based on a centralized
coordinator that maximizes the utility of one Peer (usually itself) without giving
any utility to the other Peers (which are the “philanthropists”). No accounting of
Resource sharing (which is unilateral) is kept.

The main benefit of Philanthropy is the aggregation of huge amounts of Resources
that allows one Peer to run large-scale applications. Philanthropic Resource shar-
ing is the policy typically used in Volunteer Computing [51, 12, 273, 143], where
most Peers are supplying computing time and one Peer consumes it.

D.3.2 Mutualism

Generally speaking, a mutualistic organization is created to provide its members
with the best possible service and maximum return on investment, without keep-
ing any benefit for itself. This kind of business may even be owned by its members.

A mutualistic Resource sharing policy is defined as a policy based on a centralized
coordinator that globally maximizes Peers utility and Resource utilization, with-
out keeping long-term Resource sharing accounting.

Members of mutualistic organizations are not expecting to be compensated for all
their supplying of computing time, but expect instead to get some proportional
compensation (i.e. schedule priority). It really is load balancing.

The main benefit of mutualism is that if one Peer suffers some trouble (e.g. Re-
source failure, transient request overload) and cannot supply enough Resources for
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some time, it is still able to consume Resources, but less than in usual operating
conditions. When a few Peers face peaks in their Resource and/or request envi-
ronment, mutualism enables load balancing between all Peers. However, all the
other Peers are penalized but as the burden will be equally shared, they are able
to consume Resources in only a slightly smaller amount than they could in usual
operating conditions. It can be seen as a form of fault-tolerance where performance
penalties are shared among components in the system.

Another important aspect is that the Peer that receives help from the other Peers
is not penalized because there is no long-term accounting of Resource sharing.
Such a policy is therefore highly suggested when:

• There is strong trust between Peers (e.g. Peers belong to the same enterprise
or association), and

• The total amount of consumed Resources within the VO is smaller than the
total amount of supplied Resources jointly consumed by the Peers.

Indeed, if there is no trust, there is a high risk of free riding [149]. And if there
are not enough idle Resources, the form of redundancy proposed by a mutualistic
policy is not possible.

A mutualistic policy is typically used in Desktop Grids, i.e. an enterprise-level Grid
where cycle stealing is performed on idle desktop PC. There is a VO with several
Peers representing the various departments/units of the firm. These Peers share
their Resources with a mutualistic policy.

D.3.3 Individualism

An individualistic Resource sharing policy is defined as a policy based on either
distributed coordinators or a centralized coordinator that maximize Peers utility
and maintain long-term Resource sharing accounting. With an individualistic pol-
icy, an accounting of Resource sharing is maintained independently by each Peer.
Peers can then consume as many Resources as they supply and do not have to
supply more than they consume. The goal of the individualistic policy is to sepa-
rate the concerns of the Peers and maximize their utility independently.

The main benefit of an individualistic policy is the total avoidance of free rid-
ing, which depends upon the accuracy of Resource sharing accounting [266, 265].
This policy incites the Peers to supply Resources as they know that undue over-
consumption of computing time by other Peers is limited.

A limitation of an individualistic policy is that it must be augmented with a boot-
strapping policy [82] breaking the initial symmetry in the lack of trust between
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Peers. Indeed, if all the Peers wait to have consumed some computing time before
supplying some of their own, no exchange take places. Every Peer remains idle,
ridden by fear of being free ridden.

An option to overcome an initial lack of trust consists in Peers randomly accepting
a small, yet nonzero, percentage of supplying requests from Peers that do not have
a good Resource sharing history.

It can be hypothesized that after stability in the Resource sharing driven by an
individualistic policy has been achieved and maintained for some time, Peers could
consider switching to a mutualistic policy. This would guarantee that a Peer ex-
periencing transient abnormal conditions, precluding it from supplying computing
time, would be helped by other Peers. The goal is to enable the preservation of
stable Resource sharing patterns, which can be seen as a form of robustness [210].

D.3.4 Network of Favors

Another policy, adopted in P2P Grids [13, 84], consists in Peers accepting all the
supplying requests as long as there are no pending requests to supply Peers with
higher priority, i.e. better Resource sharing history. Resource utilization is thus
promoted as idle Resources are supplied in order to build trust with other Peers.

Free riding may indeed take place, but it is limited either to a small percentage of
Resource utilization or to periods when Resource utilization is low anyways.

The Network of Favors can thus be seen either as a relaxed form of individualism,
or as a decentralized form of mutualism.

D.3.5 Out-of-Grid Compensations

Bartering is not always possible either because Peers not controlling any Resources
want to consume from other Peers, or because Peers want to monetize the supply-
ing of computing time. The concept of import and export of Resources are now
introduced to enable out-of-Grid compensations.

Out-of-Grid compensations include real money, feel-good1, or an external agree-
ment between Peers administrators. They can be combined with any Resource
sharing policy previously reviewed.

1 For example, arising from the deployment of Volunteer Computing middleware to offer
computing time to e-Science experiments trying to advance medical research.
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Import of Resources

Import of Resources may take place when some Peers do not own any Resource
or have exhausted their consumption potential, thus preventing the supplying of
Resources to compensate the consumption of Resources at peak time. Import of
Resources is a form of Resource sharing reduced to a classic utility computing/ASP
(Application Service Provider) scenario.

Amazon Elastic Compute Cloud [9] and Sun Grid Compute Utility [290] offer computing
time for sale. In another context, scientific projects of general interest [273, 143] allow
home users to supply their Resources against a feeling of taking part in a project useful
to mankind. In yet another context, like cryptographic grand challenges [121], human
administrators of a Grid may decide to lend access to their Resources to the administra-
tors of another Grid, and therefore transiently share some Resources with another Grid.

A Peer may also offer an out-of-Grid compensation even if it can supply its own
Resources, so as to maintain a high instantaneous consumption potential.

Export of Resources

Export of Resources arises in a centralized architecture when the Grid coordinator
follows objectives of its own and suppliers its Resources to an out-of-Grid entity.
It can be modelled as the application of both a philanthropic and another (mutu-
alistic or individualistic) policy. After the philanthropic policy has been applied,
the other policy is applied to the Resources that were not exported.

D.3.6 Autonomous VO Management

To achieve fully autonomous Virtual Organizations, multiple objectives regarding
their life cycle should be balanced [177]:

• Under what conditions is it profitable to allow a new VO member into a
given VO, i.e. to start exchanging computing time? Instantaneous access
to/aggregation of Resources is a main motivation to enter a VO. Thus VO
members should associate with other VO members that have temporally
complementary peaks of local requests.

• Under what conditions is it profitable for a VO and most of its members to
keep sharing Resources with a Peer which regularly exhibits failures in the
supplying of computing time? Under what conditions is it profitable for
VO members to keep exchanging computing time when most VO members
regularly exhibit failures in the supplying of computing time? With the
Network of Favors model, the issue is not on the supplying side (which is
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tolerant to free riding) but on the consumption side (if Consumption Tasks
keep getting cancelled).

• Is it desirable for consumer Peers to consume from a large number of suppliers at
the same time? This broadens the search for faster Peers. This also mitigates
the impact of the supplying failures. For parameter sweeps applications
and our proposed data transfer architecture, this leads to a large number of
simultaneous BitTorrent downloaders.

• Is it desirable for supplier Peers to supply to a large number of consumers at
the same time? This mitigates the impact of supplying to Peers that are not
able to reciprocate proportionally.

• Is it desirable for consumer Peers to consume from a small number of suppliers
at the same time? This enables to reciprocate to most suppliers, i.e. to
prevent any implicit free riding resulting from the impossibility to supply to
too many Peers at the same time.

• Is it desirable for supplier Peers to supply to a small number of consumers at the
same time? This enables the suppliers to significantly increase their ranking
with a few Peers instead of increasing it only a little with a large number
of Peers. This also enables the suppliers to devote the network bandwidth
of their Resources to a small number of files and to maintain small working
sets of input data files.



Appendix E

Resource Negotiation

Research on autonomous Resource negotiation can be classified as follows [182]:

• negotiation protocols (how - communication perspective),

• negotiation objects (what is negotiated),

• Resource sharing mechanisms (how - processing perspective).

We argue that a fourth concern, negotiation objectives (when/why) should also be
taken into account.

Resource sharing mechanisms have already been discussed in Section 2.3. Negoti-
ation protocols, objects and objectives are now briefly discussed.

E.1 Negotiation Protocols

Negotiation protocols essentially define the structure - not the content - of the ne-
gotiation agreements. For example, the so-called Service Level Agreements (SLA)
enable Grid participants to explicitly communicate the quality of service they ex-
pect [24, 307]: “If the system is to have any type of predictable behavior, it becomes
necessary to obtain commitments (contracts) about the willingness to provide a ser-
vice and the characteristics, or quality, of its provision.” [148] Standardization of
the protocols formatting the exchange of messages between trading partners is an
important aspect of Resource negotiation. With standard protocols, negotiation
data could be transformed, composed/decomposed, communicated between differ-
ent Grid middlewares.

WS-Agreement is a protocol from a protocol stack proposed by the Open Grid Fo-
rum [231] to allow suppliers and consumers to negotiate Resources by means of
SLA [170]. It is considered as an important step towards an automated Resource
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negotiation service [148].

SNAP (Service Negotiation and Acquisition Protocol) is a protocol which provides life-
time management and at-most-once creation semantics for remote SLAs [96, 323]. It
follows a classic client-server RPC pattern.

E.2 Standard Grid Protocols

Global interoperability of networks let to the emergence of Internet. Likewise,
global interoperability of distributed systems is desirable. Foster’s Three-Point
Checklist [151] states that Grid middleware is based on standard, open, general-
purpose protocols and interface. Standardization efforts are currently under way
to provide standard definitions of Grid protocols and services.

The Open Grid System Architecture (OGSA) consists in “the definition of a
broadly applicable and adopted framework for distributed system integration, virtu-
alization and management.” [229] OGSA defines a set of specifications concerning
interfaces, behaviors, resource models and bindings. It provides an abstract def-
inition of the set of requirements, which is based on many representative use cases.

In January 2004, the Web Services Resource Framework (WS-RF) has been an-
nounced in the Open Grid Forum [231] as a successor to OGSA. As implied by
its name, WS-RF is the specification of a family of Web Services [26] originated
by the Organization for the Advancement of Structured Information Standards
(OASIS) group.

To gain in-depth insights about the history of Grid standards and software, the
interested reader may read a recounting by von Laszewski [304].

As of 2008, although gaining momentum, WS-RF is not yet systematically adopted
in Grid middlewares. Moreover, P2P Grid computing [84] is a recent subdomain of
Grid computing [147], with interfaces yet to be mapped to Grid standards. There-
fore some experimental systems exist today that exhibit all the characteristics of a
Grid but do not implement standard protocols. They are thus restricted in global
interoperability, despite offering Resource sharing. A relevant concept is that of
lightweight Grid [286] (see Section 2.5), which either does not expose standard
interfaces or does not completely support standardized features.
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E.3 Negotiation Objects

A Peer seeks to stabilize its Resource environment through Resource sharing so as
to exhibit a more predictable behavior. The goal of a Peer is to induce its trading
partners to produce “commitments (contracts) about the willingness to provide a
service and the characteristics, or quality, of its provision.” [148] Contracts con-
stitute an important concept and tool in Resource negotiation. In practice, a
contract defining what Resources are supplied and on what terms can be detailed
by a so-called Service Level Agreement [96] (SLA). Terms of an SLA can be define
precisely with so-called utility functions [177, 206].

To enforce the terms of a contract resulting from Resource negotiation, there
must be some form of contract monitoring [149], either centralized or autonomous.
Monitoring the enforcement of contracts allows Peers to dynamically renegotiate
or terminate them if they are breached or if Resource requirements of one of the
trading partners change before contract completion [149].

An example of a recent architecture for Resource usage SLA specification and enforce-
ment is GRUBER [127].

E.4 Negotiation Objectives

Not far from the concerns about negotiation objects are the concerns about nego-
tiation objectives. However, despite being closely related, negotiations objectives
should be distinguished from negotiation objects. Studying what Resources can be
negotiated (which is the purpose of negotiation objects) is different from studying
when and why these should be negotiated (which is the purpose of negotiation
objectives).

The focus of a Peer can be application performance [149], system performance, user
satisfaction [200, 270] or VO administrator satisfaction [270], maybe beyond what
classic performance metrics such as average Resource utilization, average response
time, average job completion, average job re-planning and workload completion
time [126] can offer. In the long-term, whatever the focus, a multicriteria approach
should prevail and take as many of them as possible into account, as the objec-
tive of a Peer is basically to automate scheduling and Resource management to
“minimize stakeholders’ interventions.” [221, 270] A multicriteria approach seeks
a “compromise solution to increase the level of satisfaction of many stakeholders”
(i.e. VO members and administrators) “and combine different points of view.” [221]

To process the incoming requests, a Peer has to produce Resource requirements. It
also has to set Resource negotiation objectives, given both the produced Resources
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requirements and the stakeholders-defined Peer focus. From this point of view, a
Resource negotiation service can be said to be responsive.

There is however an additional perspective to be considered: A Peer can perform
some Resource sharing without having any incoming request to service. From this
perspective, the Resource negotiation service can be said to be proactive. The
purpose of Negotiation service proactiveness is to accumulate some consumption
potential for use at a later time. In other words, the Resource negotiation service
can proactively acquire Resources for a period of time when it has predicted these
would be needed soon (i.e. consuming Resources). It can also proactively sup-
ply Resources because it has predicted these would not be needed for some time
(i.e. creating a potential of consumption of computing time) . . . hoping they will
be reciprocated later when they will be needed.

On one hand, while conflicting interests from multiple Peers may be hard to man-
age, heterogeneity of focus (i.e. different objectives) in a set of Peers has some
advantage, after all. With homogeneous needs and assets and when there are
tight deadlines to be met, load balancing between Peers naturally emerges but
little Resource sharing takes place because each Peer keeps all its Resources com-
mitted to its own use first.

On the other hand, if there are different focuses, overall system utilization and
application performance may both be simultaneously high. When a Peer has few
requests to process, it can build consumption potential by supplying the comput-
ing time of its Resources, which promotes high system utilization. When a Peer
has to meet strict deadlines, it can use the consumption potential it has previously
built in order to reach high application performance.

Connecting the focus of a Peer to Resource requirements and negotiation objec-
tives is a central problem. Once chosen, the Peer focus has to be translated into
lower level requirements. Coupled with actual request data, the Peer focus has to
be translated first into Resource requirements, then into negotiation objectives.

Related research include a study on translation of Resource requirements across ab-
straction layers [101] and the GrADSoft system [42] where the scheduler and negotiator
are merged.



Appendix F

Future Work

The Lightweight Bartering Grid architecture presented in this dissertation enables
to deploy and operate P2P Grids. In this Appendix, areas that require or that
would benefit from future work are reviewed: scheduling, negotiation and Task
models; data transfer and persistence; simulation; security.

F.1 Scheduling Model

F.1.1 Task Replication

Task replication consists in having each Peer schedule multiple replicas of Local
Tasks. Cirne et al. [86] showed that Task replication is an efficient scheduling
mechanism in P2P Grids. Task replication clearly brings fault-tolerance, but at a
cost. However, Task replication is also known to considerably increase performance
in endgames [107, 108], i.e. when scheduling the last few Tasks of a BoT.
Our proposed scheduling model could be extended to support Task replication,
transparently to other scheduling operations.

F.1.2 Other Metrics for Consumption Tasks Scheduling

As suggested in Section 4.5, estimating the performance of suppliers and of a Peer’s
own Resources could be of high interest. Using the bartering reputation of other
Peers when consuming (as opposed to currently using the bartering reputation of
other Peers only when supplying, as proposed in the original Network of Favors
model [13]), as well as estimating one Peer’s own capacity of reciprocal supplying,
may lead to excellent Consumption Tasks scheduling policies. In another per-
spective, the Network of Favors model (see Section 2.3.4) could be modified with
a time window so that only the most recent interactions are accounted for, or so
that the favor balance is computed as a time-discounted average of favors [29, 274].
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F.1.3 Batch-Mode Scheduling

Knowledge-based scheduling policies can be classified as either online or batch-
mode [215, 74, 71]. An online scheduling policy considers only one Task and tries
to match it to a Resource. A batch-mode scheduling policy considers multiple
Tasks at once; it can thus potentially achieve better Task-to-Resource matching.

One of our proposed Task selection algorithm for the Local and Supplying Tasks
scheduling policies, Temporal Tasks Grouping (see Section 5.3.1), orders Tasks in
batch-mode, but statically. It is currently not linked with the Resource selection
policy. If runtime estimates were available (which is not the case in this disserta-
tion, see Section 2.6.3), batch-mode scheduling could be fully applied to data-equal
subsequences of Tasks.

F.1.4 Automatic Tuning of Task Control Parameters

The Task control operations (see Section 2.9.6) of a Peer consist in cancelling sched-
uled Tasks which have been running for so long that their runtime exceeds a given
threshold. The purpose of Task control is to mitigate Denial of Service attacks,
and to prevent Grid application bugs, i.e. infinite loops, to disrupt Peer operations.

Time-out values are currently configured by human Peer administrators. Auto-
matic, adaptive estimation of time-out values would enable tighter Task control.
There is however a trade-off to achieve, implying two risks: timing-out too late
and timing-out too soon. Timing-out too late only decreases the efficiency of Task
control, which might be acceptable but leads to question the usefulness of auto-
matic estimation. Timing-out too soon inevitably leads to the loss of computing
time due to the reexecution of unduly cancelled Tasks, except in the presence of
checkpointing support. In this case, timed-out Supplying Tasks can be stopped,
and returned to their consumer Peers. These have the possibility to resume the
execution of the timed-out Tasks on their own Resources.

We could have incorporated automatic and adaptive time-out estimation in the
current implementation of the LBG, but decided not to because of the current
lack of checkpointing support. Finally, it must be noted that runtime estimates
provided by human users might not be more efficient either, as they tend to be
largely overestimated [205].

F.1.5 Classes of Priority and Urgent Computing

Support for so-called Urgent Computing [39] could be added. User Agents could
tag their submitted BoTs with a priority flag, thus overriding the FIFO queueing
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of Local BoTs. Such support for several classes of priority among submitted Local
BoTs is very useful in practice. Moreover, it could be implemented in the Queuing
Manager transparently to other Peer managers.

Support of user groups, or groups of User Agents, could be added on top of a pri-
ority mechanism. In this perspective, User Agents could also tag their submitted
BoTs with a group identifier.

F.1.6 Exploration of the Grid Architecture Design Space

It can be hypothesized that the existing (OurGrid [233, 84, 286]) and proposed
(Lightweight Bartering Grid) P2P Grid architectures probably do not cover the
design space of possible P2P Grid architectures. It might therefore be interest-
ing to support Grid architecture reconfiguration. A human Grid administrator
could deploy some managers (like the Scheduler) to either User Agents (OurGrid),
Peers (Lightweight Bartering Grid) or Resources, depending on the strategy cho-
sen to provide robust execution, e.g. Task replication (OurGrid) or fault-avoidance
(Lightweight Bartering Grid).

F.2 Negotiation Model

F.2.1 Reservations and QoS

The negotiation model could be extended to support reservations and QoS dead-
lines, but the unstability of P2P Grids certainly constitutes a formidable obstacle
that may prevent such an extension to be ever achieved in a fully satisfying way.
Moreover, reservations and QoS deadlines need an enforcement mechanism to arbi-
trate conflicts in case of contract breach. Fully decentralizing such a mechanism in
a P2P fashion, in order to maintain scalability, is also likely to be very challenging.

Reservations and QoS deadline would both require fairly accurate runtime esti-
mates of submitted Tasks. To incite Grid application developers to provide accu-
rate runtime estimates of the Tasks they want to run on the P2P Grid, a metric
could estimate the reliability of the provided estimates. A consumer that regu-
larly submits Supplying Tasks completing within a certain factor of the provided
estimates could then be ranked higher than other consumers when scheduling Sup-
plying Tasks.
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F.2.2 Peer Discovery

Peer discovery enable Peers to discover other Peers (see Section D.2). The cur-
rent implementation of Peer discovery in LBG (see Section 2.1.4) is centralized.
To enable large-scale deployments of the LBG middleware, the implementation of
Peer discovery should evolve towards a fully distributed or replicated-hierarchical
(DNS-like) organization. Recent research works [53, 174] in this area will certainly
offer useful guidelines.

F.3 Task Model

F.3.1 Inter-Task Communications

The current Task model (see Section 2.6) is designed for applications structured
as Bag of Tasks (see Section 2.4). In Chapter 6, we have shown how to sup-
port applications structured as Iterative Stencils. Supporting them would require
the availability of inter-running-Task communications. Supporting applications
structured as Workflow would require the availability of inter-non-running-Task
communications.

To this end, support should be added for the storage of output data files on the
Resources where they were generated. Likewise, the file naming mechanism should
be extended to generate consistent file names for output data files. Another useful
enhancement is to enable User Agents using a given Peer to obtain symbolic links
to files (input, output or jar) inserted into the Grid by other User Agents using
this Peer.

F.3.2 Checkpointing and Migration

The Task model could be extended to support interruptible Tasks, so that check-
pointing, and then migration, could be supported. Recent advances in transparent
application-level checkpointing [319] could allow to augment the LBG architecture
with checkpointing support that is transparent to Grid nodes administrators and
that could be made transparent to Grid application developers.

F.3.3 Grid Application Development

The LBG architecture is technology-neutral. The current implementation of the
LBG Resource middleware requires Grid applications to be developed in Java.
As the LBG architecture intrinsically supports Grid applications developed in
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any language, the Java-based runner Virtual Machine (VM) of worker nodes (see
Section 2.7.4) could substituted with an O.S.-level VM, e.g. VirtualBox [302] or
Xen [315], as has been proposed for OurGrid [79].

F.4 Data Transfer

F.4.1 Scalability of the Data Transfer Architecture

Our proposed data transfer architecture is intrinsically extremely scalable. In Sec-
tion 5.2.7, we have further proposed a way to remove the load of sharing data
almost entirely from Peers: Each Peer could delegate its data server to some of its
Resources. To scalably share files with BitTorrent without involving the Peer, one
Resource can simply download a file from the Peer and start sharing it. To scalably
share files with FTP without involving the Peer, it is slightly more complicated.
Multiple replicas of a file should be downloaded by multiple Resources of the Peer,
for example with BitTorrent. Each time the Peer has to share an input data file
with FTP, it could randomly select one of its Resources to which it has replicated
the file, and send the corresponding metadata with the Local or Consumption
Task. This is essentially a form of Content Distribution Network [145, 242, 279]
(CDN).

F.4.2 Cache Replacement Policy

Alternative cache replacement policies, for example weight-based policies, could
be investigated so that the size of the cached files is also taken into account when
a file is going to be ejected from the cache.

F.4.3 Estimation of the Storage Reliability of Suppliers

We proposed a data-aware supplier Peer selection algorithm (see Section 5.3.3)
that is based on the expected availability of input data files in the data caches of
supplier Resources.

When a Consumption Task is completed, the consumer could update the metadata
in its Peer register to remember if the a priori estimate of data availability was
correct or not. Resources downloading an input data file could be requested to
communicate to the consumer Peer a hash of this file as soon as it is completely
downloaded, and prior to actually starting the execution of the Task. The time to
obtain this hash could be used to estimate a posteriori data availability.
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There are however several issues with such a mechanism. First, the delay between
the submission of a Consumption Task to a supplier Peer and actual scheduling
of the Task to a Resource might not be immediate due to queueing delays. This
introduces uncertainty on the meaning of the time taken to send a hash to the Con-
sumer Peer. Second, such a mechanism would require to trust the Resources of
other Peers. Malicious Resources could cache the hashes of input data files even if
the files themselves are not cached any more, in order to mask data unavailability.
Detecting such behavior might be exceedingly difficult, as a Resource downloading
a file with BitTorrent might never download any piece from the consumer Peer,
but only download pieces from Resources of other supplier Peers. It might be
argued that the BitTorrent tracker could memorize which Resources are interested
in a given file. However, if a mechanism of proactive data replication is activated
(see Section 5.4), some useful information can be deduced, but not necessarily if a
given file was cached by the Resource to which the Consumption Task needing it
was scheduled.

F.4.4 Performance of BitTorrent Data Transfers

Optimized versions of the BitTorrent protocol [87] could also be investigated.

High-level layers of the BitTorrent [46] client could be augmented with enhanced
algorithms to introduce QoS in BitTorrent [15].

As proposed by Allcock [7], low-level layers of the BitTorrent [46] client could be
replaced with those of the GridFTP [165] client.

The BitTorrent protocol itself could be enhanced by adding a BitTorrent-level bar-
tering mechanism to BitTorrent that would allow idle BitTorrent Nodes to increase
their reputation by proactively downloading data files required by other BitTor-
rent Nodes, as proposed in the 2Fast protocol by Garbacki et al. [155, 250].

F.4.5 Performance of BitTorrent and FTP Data Transfers

An adaptive online compression mechanism, such as the one proposed by Jean-
not [181], could be integrated with the Peer data manager to improve data transfer
performance, orthogonally to the baseline data transfer protocol. Even if there is
no redundancy between files, either within or between Bags of Tasks, adaptive
compression could substantially improves the data transfer performance of files
with internal redundancy.
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F.4.6 Performance of GNMP Data Transfers

The raw transfer performance of the Grid Node Messaging Protocol should be
compared to what can be achieved with application-level messaging protocols like
the XMPP-based [136, 137] JIC [211], or ICE [167]. The compliance of GNMP
with standard Grid protocols (see Appendix E.2) should also be investigated.

F.4.7 Data-Aware Negotiation

When a Peer is going to use received consumption grants, i.e. to schedule some
of its Tasks as Consumption Tasks to other Peers, it does not currently take
into account the number of the next subsequence of data-equal Tasks to sched-
ule. Configuring a Peer with a low threshold of received consumption grants
(see Section 2.9.6) may reduce the number of Consumption Tasks that can be
simultaneously scheduled. Consequently, the benefit of activating Temporal Tasks
Grouping (see Section 5.3.1) might be decreased. Indeed, limiting the number of
Consumption Tasks simultaneously depending on a given input data file reduces
the number of BitTorrent Peers simultaneously downloading this file. Therefore,
it would be interesting to evaluate the impact of dynamically adapting the thresh-
olds of consumption grants evaluation to the length of the next group of data-equal
Tasks to schedule.

F.4.8 Proactive Data Replication

The impact of the proactive data replication algorithm discussed in Section 5.4
should be evaluated, as well as the impact of the replica selection policy under
varying workloads.

F.5 Data Persistence

Data persistence consists in saving data to long term storage so that it can outlive
the execution of the software by which it was saved. The goal is to have a new
instance of the software that crashed to retrieve the saved data rather than gen-
erating it or downloading it again.

F.5.1 Input Data, Output Data and Jar Files Persistence

When asked to download a file, a Resource data cache first checks whether this file
is cached. If not, it lists its storage directory to check if it is stored. In this case,
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there is no need to download the file, and it is immediately integrated into the
data cache, i.e. the data cache updates its internal metadata structures to reflect
the fact that the file is present in the storage directory. This mechanism is really
lightweight and easy to deploy.

Data caches (see Section 5.2.5) can be considered as persistent for Resources, but
not for the Peers. Data persistence is currently not end-to-end across the Grid. A
Resource booting after a crash does not notify its owner Peer that its internal data
structures are empty, but will be able to reload the data from the file system when
asked to download it. However, a Peer booting after a crash does not attempt to
reload its internal data structures with the true state of the Resources’ data caches
it manages, which decreases the efficiency of data-aware scheduling. Implementing
true end-to-end persistence in data caches across the Grid should be a priority in
future work.

Adding support for the storage of output data files, as suggested in Section F.3.1,
would be an important step to support Workflow applications and would also en-
able User Agents to download output data files whenever they want, even long
after a BoT has been completed. Storage of output data files should also be per-
sistent.

Adding support for the storage of jar files would prevent unuseful downloads of
jar files by Resources in the case of repeated parameter sweeps. Storage of jar
files should also be persistent, but a robust version control mechanism must be
designed to ensure that the correct version of a Grid application is run as intended
by the Grid application developer.

F.5.2 Peer Register Persistence

The Peer register (see Section 4.4.6) is currently not persistent. Adding support
for persistence of the metadata stored within a Peer register should be a high
priority in future work. Indeed, after a Peer crashes and reboots, it has literally
lost its memory of interactions with other Peers, as well as reliability estimates of
other Peers that were accumulated over time. The same issue also exists for User
Agents and Resources. If Grid nodes are to run for lengthy periods of time, adding
persistence support to the Grid middleware becomes a mandatory enhancement.

Furthermore, adding persistence support to the Peer register would enable a Peer
to store metadata for an arbitrary high number of interactions (see Section 4.4.6).
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F.5.3 Checkpointing

Application-level checkpointing is supported by the availability of a playpen (see
Sections 2.7.4, 6.2.3). Middleware-level checkpointing would require persistence
support to automatically save and restore the running state of Grid applications.

F.6 Simulation

F.6.1 Simulation of Data Transfers

As explained in Chapter 3, data transfers are not simulated, although data caches
are fully simulated. Adding support for the simulation of data transfer times
to the LBG simulator would enable more accurate and realistic simulation, es-
pecially for Data-Intensive BoTs (see Chapter 5). This is a complex issue be-
cause multiple data protocols (BitTorrent, FTP) have to be accurately simulated.
Moreover, BitTorrent simulation constitutes a research domain in itself. Recent
research [4, 5, 131], as well as insights from SimGrid [77, 209], General Peer Sim-
ulator [322] and P2P Lab [226] projects could provide useful insights.

The transfer of GNMP messages (i.e. control data, which is different from input
data) is simulated, but its temporal impact - although certainly negligible - could
be investigated. This requires a much finer temporal resolution, than the temporal
resolution of one second that is currently used.

F.6.2 Simulation of Multithreading

The simulation of multithreading activities is currently restricted to what is mini-
mally required for Peers to schedule and negotiate. The simulation of multithread-
ing activities should definitely be extended to a more accurate and scalable model.

F.6.3 Simulation of Additional Sources of Failure

The currently implemented sources of failure include Peer-initiated and Resource-
initiated Task preemption. Complete failure of a User Agent, Peer or Resource is
currently not supported, although some of these failures have been simulated with
temporary code which has been removed after the release of the middleware im-
plementation. It would be very interesting to create additional sources of failures
to both test the robustness of low-level code layers and systematically ensure that
communications between Grid nodes are fully asynchronous.
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F.6.4 Simulation Standards

There currently exists no standard of Grid deployment metadata. It is thus diffi-
cult to compare different algorithms, or the same algorithms running on different
Grids. Investigating compatibility with existing Grid simulators could enable in
the long term to create a repository of well-known Grid configurations and define
standard interfaces for scheduling algorithms.

Moreover, support for additional statistical distributions (e.g. for time-to-Resource-
failure, Task submission inter-arrival times, Peer power repartition, . . .) would cer-
tainly be useful in practice.

F.7 Security

Security is of course a very important aspect of Grid middleware. Task control
has been proposed to prevent Denial of Service by never-ending Tasks. Resource
protection mechanisms have been proposed. However, several other issues have
not been addressed in our presentation of the LBG architecture.

F.7.1 Authentication and Encryption

Authentication, and thus encryption, support should be added to GNMP, and to
the data transfer architecture as well. This will enable Peers to authenticate to
one another. This will also enable Resources to authenticate to their owner Peer.
Existing mechanisms in widespread use, such as GridFTP security features [235],
could be adapted to LBG.

F.7.2 Firewall/NAT Traversal

Firewall traversal and NAT traversal are two important issues of P2P software
that are shared with other domains, like IP telephony. Grid nodes are intended
to run on edge computers, which may be connected to the Internet from networks
isolated by firewalling or Network Address Translation mechanisms. Such an issue
applies to the LBG middleware as well as to the BitTorrent and FTP softwares.
The important advances of the recent years [112, 262, 303] should thus be inte-
grated into LBG.
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F.7.3 Security of Execution

Protection of Resources against malicious Tasks is ensured by the Java sandboxing
mechanism on Resources and by Task control performed by Peers.

Protection of Tasks against malicious Resources is currently not guaranteed. Se-
curity of execution [212, 213], which consists in protecting a Task against the
Resource that runs it, and automatic code verification [88, 223] are still open
questions, though.

Another, more pragmatic, form of protection of Tasks against malicious Resources
has been proposed by Sarmenta [268]. The Spot-Checking sabotage-tolerance
mechanism operates with eager (i.e. Task replication [86, 308]) scheduling to adap-
tively recompute a subset of the Tasks to complete. The intent is to verify that the
results generated by redundant computations are identical (or at least compatible,
in the case of nondeterministic Tasks). The addition of an adaptive sabotage-
tolerance mechanism into the BOINC Volunteer Grid middleware has been re-
cently proposed by Estrada et al.
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