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    Chapter 5   

 Bioinformatics Challenges in Genome-Wide 
Association Studies (GWAS) 

              Rishika     De    ,     William     S.     Bush    , and     Jason     H.     Moore    

    Abstract 

   Genome-wide association studies (GWAS) are a powerful tool for investigators to examine the human 
genome to detect genetic risk factors, reveal the genetic architecture of diseases and open up new oppor-
tunities for treatment and prevention. However, despite its successes, GWAS have not been able to identify 
genetic loci that are effective classifi ers of disease, limiting their value for genetic testing. This chapter 
highlights the challenges that lie ahead for GWAS in better identifying disease risk predictors, and how we 
may address them. In this regard, we review basic concepts regarding GWAS, the technologies used for 
capturing genetic variation, the  missing heritability  problem, the need for effi cient study design especially 
for replication efforts, reducing the bias introduced into a dataset, and how to utilize new resources 
available, such as electronic medical records. We also look to what lies ahead for the fi eld, and the 
approaches that can be taken to realize the full potential of GWAS.  
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  Abbreviations 

   EMR    Electronic medical record   
  GWAS    Genome-wide association study/studies   
  LD    Linkage disequilibrium   
  MAF    Minor allele frequency   
  SNP    Single nucleotide polymorphism   

1        Introduction 

 In the fi eld of genetics and epidemiology, genome-wide association 
studies (GWAS) have become a standard approach for querying 
the genetic basis of disease susceptibility. This study design mea-
sures and analyzes a million or more DNA sequence variations 
such as single nucleotide polymorphisms (SNPs) that capture 
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much of the common variation in the genome, in an effort to 
identify genetic risk factors for diseases [ 1 ]. Moreover, technologi-
cal advances that have lowered the cost of genotyping have also 
fueled an increase in the number of GWAS over the years. In 2012 
alone, the National Human Genome Research Institute (NHGRI) 
GWAS catalog recorded 1,350 published studies [ 2 ]. GWAS pro-
vide us with a unique opportunity to make disease risk predictions 
for the general population on the basis of the disease susceptibility 
loci that are identifi ed. Knowledge of these loci may also provide 
clues to the biological basis for various diseases, and open up new 
avenues for prevention and treatment strategies. The key steps 
involved in conducting a GWAS are summarized in Fig.  1 .

   The GWAS approach is not  hypothesis-free ; it is based upon the 
Common Disease—Common Variant (CD–CV) hypothesis. This 
hypothesis ties together the basic principle of GWAS and the design 
of genotyping chips. It states that common diseases are caused in 
part by genetic variations that are also common in the population 
[ 3 ]. Testing the CD–CV hypothesis provides an insight into the 
underlying genetic architecture of common diseases, e.g., type 2 
diabetes, rheumatoid arthritis, or essential hypertension, and some 
evidence that they are driven by multiple susceptibility alleles. If 
common variants have a small effect size but common diseases 
show a strong inheritance in families (high heritability), then 
almost by defi nition the disease must be infl uenced by multiple 
genetic factors. For example, if a disease shows a heritability of 
30 %, this indicates that 30 % of the total variance in the disease risk 
comes from genetic factors. Hence, if a SNP has a modest effect on 
disease risk, it can only account for a small portion of the total vari-
ance due to genetic factors. Consequently, the total risk of disease 
due to common genetic variation then must be distributed over 
multiple susceptibility alleles. 

 Published concurrently with family-based linkage studies, one 
of the earliest GWAS success stories was the identifi cation of 
Complement Factor H as a major risk factor for age-related macular 
degeneration [ 4 – 7 ]. This study not only showed that DNA 
sequence variations in the gene were associated with the disease but 
also provided a new insight into the biological basis for the disease. 
However, despite the moderate success of the risk variants identi-
fi ed for age-related macular degeneration, most loci identifi ed by 
GWAS are known to be associated with small increases in disease 
risk, thereby limiting their value for genetic testing [ 2 ,  8 ,  9 ]. 

 The example of breast cancer best highlights the failures 
and successes of GWAS during its tumultuous history. Familial 
breast cancer, a rare disease with high heritability, is believed 
to have a simple underlying genetic architecture. In 2007, 
Easton et al.  identified five significant associations by GWAS 
that were also  replicated in multiple independent samples [ 10 ]. In 
a follow-up study two additional susceptibility loci were identifi ed. 
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These two loci accounted for <1 % of the familial risk of breast 
cancer [ 11 ]. When these loci were combined with previously 
known genetic risk factors, together they were able to explain only 
5.9 % of the familial risk of breast cancer. On the other hand, the 
 BRCA1  and  BRCA2  mutations together account for 20–40 % of 
familial breast cancer, and have been very successful as markers for 
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  Fig. 1    Overview of the GWAS process. A sample of individuals, e.g., a group of 
families or cases/controls, is selected from the population to study a disease or 
phenotype of interest. After strict criteria have been established, phenotypic infor-
mation and genetic material are collected from the study participants. This is 
followed by genotyping of the collected material using popular genotyping 
 platforms such as those available from Illumina or Affymetrix. Genotypic data 
obtained for genetic variants such as SNPs (single nucleotide polymorphisms) are 
cleaned using quality control procedures such as MAF (minor allele frequency) or 
LD (linkage disequilibrium) fi ltering. Data are also adjusted for various covariates 
and population stratifi cation if required. Next, single locus or multi- locus associa-
tion tests can be performed to identify genetic variants associated with the phenotype 
of interest. Ultimately, identifi ed genotype–phenotype associations must be repli-
cated in an independent dataset to assert their credibility       
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genetic testing. Hence, although the susceptibility loci identifi ed 
via GWAS analyses have been useful in providing a new insight 
regarding the biology of the disease, they have not resulted in new 
genetic tests. 

 Similar to the discouraging results with familial breast cancer, 
GWAS has had limited success in detecting genetic variants that 
account for a large portion of the heritability of any common dis-
ease trait. This chapter will highlight the challenges that lie ahead 
for GWAS in identifying genetic risk factors that are better classifi -
ers of disease, and how these may be addressed. 

 First, we must address this  missing heritability  problem by 
specifi cally designing our studies to search for nonlinear interac-
tions amongst SNPs. However, this can be a very computationally 
intensive problem due to the enormous number of pair-wise com-
binations possible from a GWAS dataset. Linkage disequilibrium 
(LD) patterns within a dataset may be used to devise strategies for 
 prioritizing SNPs for inclusion in an analysis, reducing this compu-
tational burden. Second, we must improve the study design of our 
GWAS to ensure we increase our statistical power to detect true 
genetic effects and replicate them by using methods such as meta- 
analysis and data imputation. Additionally, we must make use of 
new resources such as electronic medical records (EMRs) to unravel 
a wealth of phenotypic detail that was previously unavailable. Third, 
to reduce the biases in GWAS design, we must establish strict 
 criteria for defi ning phenotypes, adjust for confounding variables 
that may affect the phenotype of interest, and correct for multiple 
hypothesis testing ( see  also Chapter   4    ).  

2    Materials 

  Much of the growth and success of GWAS refl ects the technology 
behind the thumb-sized DNA microarray chips designed to probe 
one million or more SNPs dispersed throughout the genome. 

 The genotyping platforms used by most GWAS belong to one 
of two commercial companies: Illumina (San Diego, CA) or 
Affymetrix (Santa Clara, CA). The two companies’ products differ 
slightly in their approaches to measure SNP variation, and provide 
researchers with options in terms of cost, coverage, amount of tar-
get DNA required, and protocol complexity. 

 Affymetrix chips use a printed array format, where each spot 
on the array, representing a locus or allele, contains a cluster of 
25-mer oligonucleotides. This platform also offers a cost-effective 
approach for high-volume GWAS, as most costs are mainly up 
front. Illumina, however, produces chips that consist of an ordered 
array of beads, each representing 50-mer oligonucleotides. Even 
though this platform offers higher sensitivity, it comes at a cost—
the arrays are more expensive and the protocols for decoding bead 

2.1  Genotyping 
Platforms
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positions are time intensive. Ragoussis et al. provide an excellent 
review of these genotyping platforms and their unique strengths 
and weaknesses [ 12 ]. Ultimately, GWAS using either of these plat-
forms have been equally successful in the search for genetic risk 
factors for common, complex diseases.  

  EMRs, which were primarily designed for hospital administrative 
processes, have recently given way to a new model of genetic 
discovery. These records are being used to extract relevant 
phenotypic information for a subject population. Medical centers 
can leverage this information for genetic studies by linking these 
data to biological samples to create large-scale biobanks. 

 EMRs are a rich resource for different types of information, 
such as—billing data, diagnosis codes, laboratory results, vital 
signs, provider documentation from reports and tests, and medica-
tion records. The billing data and certain laboratory results are 
made available as structured “name-value” pair data. The clinical 
documentation such as test results and medication records are pro-
vided as narrative or semi-narrative texts. Provider documentation 
and medical records form an important resource for correct phe-
notype characterization. Many hospitals are also installing barcodes 
to keep records of each drug administration for all patients, which 
may improve accuracy of pharmacogenomic traits [ 13 ].   

3    Methods 

   A major goal for both the International HapMap Project as well as 
the 1000 Genomes Project was to capture and catalog sequence 
variation in the human genome [ 14 ,  15 ]. SNPs, which are single 
base pair changes in the DNA sequence, have now become the 
modern unit of genetic variation. Currently, the public catalog of 
variant sites (dbSNP Build 138) contains approximately 44 million 
SNPs [ 16 ]. 

 SNPs have been shown to have important functional conse-
quences such as affecting mRNA transcript stability or transcrip-
tion factor binding affi nity [ 17 ]. However, it is the ability of SNPs 
to explain much of the genetic diversity observed amongst humans 
that makes them ideal candidates for use as markers of a genomic 
region in GWAS. 

 For each SNP location, there are two or more allele possibili-
ties. The frequency of the less common allele is referred to as minor 
allele frequency (MAF). The MAF, along with the minor allele, can 
be specifi c to a population. Variants can be classifi ed as common or 
rare: SNPs with a MAF ≥5 % are usually referred to as common 
variants, and those with MAF <5 % are rare. For example, a SNP 
with a minor allele (A) frequency of 0.30 indicates that 30 % of the 
population carries the A allele at the SNP location, instead of the 

2.2  Electronic 
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more common allele. Traditionally, most GWAS focus on common 
variants as witnessed by the long list of validated examples— FTO  
(type 2 diabetes and body mass index) [ 18 – 20 ],  GCKR  (triglycer-
ides) [ 21 ], and  APOE4  (Alzheimer disease) [ 22 ]. Nevertheless, it 
has been suggested that rare variants play a role in disease and 
hereditary risk as well [ 23 ,  24 ].  

  Linkage disequilibrium (LD) is a measure of correlation between 
SNP alleles at one site and the specifi c alleles carried at variant sites 
nearby. Likewise, a particular combination of alleles along a 
chromosome is termed a  haplotype . The concept of LD is closely 
related to chromosomal linkage, where two markers on a 
chromosome are physically linked through multiple generations of 
a family. Both these properties can be eroded by recombination 
and mutation events across multiple generations, thereby breaking 
up any contiguous stretches of chromosome. The LD observed in 
a population is also dependent upon its ancestry. Consequently, 
populations of African descent show smaller regions of LD, as they 
are more ancestral compared to Asian and European populations 
and have undergone greater extents of recombination. 

 The most common measures for LD are—D′ and  r  2 . Both 
measures try to capture the difference in the observed frequency of 
two alleles that occur together, and how often they would be 
expected to occur together if they were independent of each other 
[ 14 ,  25 ]. 

 Measures of LD are extremely useful in GWAS design.  r  2   values 
are used to select  tag SNPs , which are variants selected specifi cally 
because they are in strong LD with other variants surrounding 
them ( see   Notes 1  and  2 ). This advantageous property of tag SNPs 
allows them to be used for capturing the variation in that specifi c 
stretch of LD. Tag SNPs have been especially useful in reducing 
genotyping costs for GWAS. According to HapMap, more than 
80 % of commonly occurring SNPs in populations of European 
descent can be captured by a set of 500,000 to a million SNPs 
spread across the genome [ 26 ,  27 ]. This is what forms the basis of 
selecting a panel of markers for genotyping chips. 

 An understanding of LD is also essential for correct compre-
hension of results from a GWAS analysis. Positive results from a 
GWAS may represent two types of associations—direct or indirect. 
A direct association involves a SNP that was directly genotyped in 
the study. Such a SNP is also referred to as a  functional SNP  or the 
causal variant. An indirect association is a positive association where 
the SNP of interest was not directly genotyped in the GWAS. This 
association represents a tag SNP that was genotyped in the study 
and is in strong LD with the variant altering the biology of the 
organism. Usually, follow-up tests, such as resequencing the spe-
cifi c genomic region or performing functional studies to examine 
the role of the variant in the disease, are required to distinguish 
between these two possibilities [ 1 ,  28 ].   

3.1.2  Linkage 
Disequilibrium
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  In this section we begin with an overview of GWAS design and the 
steps that we can take to reduce the bias introduced into a dataset—
such as setting a rigorous criteria for defi ning phenotypes. 
Moreover, we talk about the exciting opportunity of extracting 
phenotypic information from EMRs and the unique challenges 
that presents. 

  Case–control GWAS utilize categorical phenotypes, which are 
often binary outcomes such as case/control or  affected/unaffected. 
The case group includes individuals who have been diagnosed 
with the disease phenotype of interest. However, the control group 
can be chosen in one of two valid ways—individuals who are 
unaffected by the disease or randomly selected from the population. 
To avoid false positive results, cases and controls must be matched 
carefully ( see   Note 3 ). Overall, the case–control study design 
compares the frequency of SNPs or alleles between the two study 
groups. A higher frequency of a SNP within the cases instead of 
controls is indicative of that SNP being associated with increased 
disease risk [ 28 ,  29 ]. 

 As the name suggests,  quantitative  study designs assess quan-
titative or  continuous  traits that can be measured, to obtain a quan-
titative value such as HDL (high-density lipoprotein) and LDL 
(low-density lipoprotein) cholesterol levels [ 30 ]. This study design 
is statistically more powerful for detecting genetic effects. 
Quantitative traits also make it easier for researchers to obtain a 
precise measurement, and provide an outcome that is clinically 
easier to interpret. Ultimately, such a study design measures if the 
frequency of a SNP or allele is associated with a certain amount of 
change in the quantitative trait being studied [ 31 ].  

  For any GWAS, it is important to establish measures to standardize 
the criteria for defi ning the phenotype of interest. This is especially 
true for diseases that do not have well-established quantitative 
measures to describe the disease phenotype, such as multiple 
sclerosis. In such a situation, patients are usually classifi ed as either 
being  affected  or  unaffected  by the disease in question. However, in 
these cases a simple misclassifi cation error of categorizing someone 
as a  case  instead of a  control  can have more serious consequences 
than an error in recording a precise quantitative measure. 

 Despite a complex clinical phenotype that is diffi cult to diag-
nose, multiple sclerosis studies have been successful [ 32 ]. This is 
mainly because these studies use a rule list based on various clinical 
variables such as the McDonald criteria to establish case–control 
status [ 33 ]. This is especially important when studies are based on 
collaborations between multiple institutions and centers. In such 
cases, strict criteria ensure that phenotype defi nitions are applied 
uniformly across various clinicians, thereby avoiding any site-based 
effects. This brings to notice that the success of a GWAS does not 

3.2  GWAS 
Study Design
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always depend on the nature of the phenotypic outcome being 
analyzed, but rather on the awareness of the specifi c challenges 
each phenotypic category presents.  

  In recent years, the growth of EMR-linked DNA databanks has 
presented an exciting new avenue for genetic research. EMRs 
provide an alternative source for researchers to derive phenotype 
information about a large population of individuals. They are 
especially appealing as they contain a longitudinal record of robust 
clinical data due to routine clinical care of patients. Furthermore, 
EMR-linked DNA databanks provide researchers with the unique 
opportunity of reusing genetic information to investigate 
additional phenotypes. Nevertheless, identifying phenotypes from 
EMRs presents its own set of challenges, because these records 
were designed with the logistical problems and billing practices of 
hospitals in mind [ 13 ,  34 ]. 

 The fi rst step in phenotype extraction involves the use of an 
initial selection algorithm that chooses a subset of records from the 
bio-repository through text mining of unstructured text or by 
making use of structured data fi elds such as billing codes, in the 
EMR. The choice of billing codes available for use in the EMR is 
also important in ensuring the accuracy of the phenotype informa-
tion extracted or the diagnosis established from the record. The 
CPT (Current Procedural Terminology) coding system is known 
to have a higher specifi city and lower sensitivity, in comparison to 
the ICD (International Classifi cation of Diseases) coding system. 
Though the availability of a single type of code is usually suffi cient 
for identifying a phenotype, often a combination of the codes 
works better as ICD codes also provide the reason for a clinical 
encounter or procedure [ 13 ]. 

 Similarly, to complement the information from billing and 
procedure codes, they can be combined with free text in the 
EMR. Such free text can be parsed using Natural Language 
Processing (NLP) procedures, which apply syntactic and semantic 
rules to extract structured information. They do so by connecting 
the text with medical concepts from a controlled vocabulary such 
as the Unifi ed Medical Language System (UMLS) or with medi-
cation information from vocabularies such as RxNorm [ 13 ,  35 – 37 ] 
( see  also Chapter   16    ). 

 Ultimately, as a gold standard measure, clinicians and pheno-
type experts examine the accuracy of the results obtained from the 
subset of EMR records selected for the study. A measure of preci-
sion, the positive predictive value (PPV) of the initial selection 
algorithm is assessed. The algorithm is then continually refi ned 
based on the feedback from these experts. This process continues 
until the desired PPV is achieved [ 13 ,  34 ]. This approach has not 
only been applied to various pharmacogenomic and clinical condi-
tions [ 38 – 41 ], but has also successfully replicated established gen-
otype–phenotype relationships [ 42 ].   

3.2.3  Extracting 
Phenotypes from EMRs
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  In addition to ensuring a strong study design, there are a few 
challenges that must be addressed at the level of association analysis 
in a GWAS. In this section we describe the steps involved in 
preparing a dataset prior to an association analysis and in adjusting 
for confounding variables that may also affect the phenotypic 
outcome of interest. Moreover, the  missing heritability  problem is 
addressed, as are the steps that can be taken during an association 
analysis to prioritize SNPs and search for nonlinear interactions. 

  Prior to testing for a genetic association with a disease outcome of 
interest, researchers must go through a few steps to prepare their 
dataset for this analysis. First, a method must be chosen for 
encoding the genotype information in the dataset, as this may have 
important implications on the statistical power of an association 
test. As such, association tests can test for either allelic or genotypic 
associations. Allelic associations look for an association between an 
allele and the phenotype of interest, whereas genotypic associations 
search for associations between genotypes or genotypic classes and 
the phenotype. There are several ways to form these genotypic 
classes—using a dominant, recessive, multiplicative, or additive 
model [ 29 ,  31 ]. 

 Datasets must also be adjusted for a range of factors or 
covariates—age, sex, clinical covariates like Body Mass Index 
(BMI) or the study site used for data collection—that are known 
to affect the phenotype outcome, to prevent spurious associa-
tions from being detected. Regression methods are a popular 
choice for covariate adjustment; logistic regression is used for 
binary traits and linear regression for examining quantitative 
traits. These methods calculate the “residuals” for the trait of 
interest, after covariate adjustment. This is the portion of the 
trait that is not accounted for by the covariates [ 43 ]. 

 Population substructure is one of the more important covari-
ates to address in a dataset, especially when the population com-
prises various ethnicities. The prevalence of a disease phenotype, as 
well as allele frequencies, can vary between different human sub-
populations. Due to this, within a dataset of multiple ethnicities, 
ethnic-specifi c SNPs may show up to be associated with a trait due 
to population stratifi cation [ 44 ]. To prevent any false associations, 
the ancestry of each subsample needs to be measured using one of 
various methods such as STRUCTURE [ 45 ] or EIGENSTRAT 
[ 46 ]. These methods compare genome-wide allele frequencies 
with ethnic-specifi c frequencies on HapMap. This allows for sam-
ples to be excluded if they are found to be similar to a nontarget 
population. As an alternative, EIGENSTRAT can also use a statis-
tical method such as principle component analysis (PCA) to gener-
ate principle component values or  ethnicity scores , which can then 
be used as covariates for adjustments.  

3.3  Testing for 
an Association

3.3.1  Dataset 
Preparation Prior to an 
Association Analysis
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  The popular approach for analyzing GWAS data includes a series of 
single-locus statistical tests, which compare the genotype 
distributions for cases and controls, one SNP at a time. On the 
whole, these methods aim to identify an association between a 
SNP and the disease/phenotype of interest. However, the type of 
association test chosen is dependent upon the phenotypic class 
(case–control or quantitative) being studied. 

 Binary traits and case–control study designs are analyzed using 
a contingency table method or logistic regression. For a set of cases 
and controls, a contingency table summarizes the number of indi-
viduals within each genotypic group for a single biallelic SNP [ 28 ]. 
It searches for a deviation from the  null hypothesis  that there is no 
association between the phenotype and genotype. Popular statisti-
cal tests using this method are the chi-square test or the Fisher’s 
exact test. In addition, contingency tables can be analyzed using 
standard statistical software packages such as SAS, SPSS, Stata, or 
Microsoft Excel [ 29 ]. As for logistic regression, it is an extension 
of linear regression where the phenotypic outcome studied is trans-
formed using a logistic function. This method predicts the proba-
bility of an individual having a  case  status, given their genotype 
class. Moreover, logistic regression is often the method of choice as 
it allows for covariate adjustment. 

 A popular method for analyzing quantitative traits is the 
Analysis of Variance (ANOVA), which is similar to linear regression 
with a categorical predictor variable. For single-SNP analysis, 
ANOVA functions under the null hypothesis, which states that 
there is no difference between the trait means for any genotype 
group. However, ANOVA does function on the basis of certain 
assumptions: it assumes that the trait is normally distributed, the 
variance of the trait is the same within each group, and that the 
groups are independent. 

 For such GWAS analysis, PLINK is a popular and useful 
 software. It has robust features to handle large amounts of data. It 
can perform association tests per SNP using either the allelic or 
inheritance model, or by using the Cochran-Armitage test (a con-
tingency table method). Most importantly, PLINK provides a very 
detailed user manual that is easy to follow [ 47 ]. 

 As mentioned earlier in this chapter, the fi eld of GWAS has had 
limited success in detecting genetic variants that explain a large por-
tion of the heritability for any given trait. This has led researchers to 
propose potential sources of  missing heritability . One such possibil-
ity is that  missing heritability  may be found within epistatic interac-
tions between various genes [ 48 ].  Epistasis  is usually defi ned in one 
of two ways—biological or statistical. Biological epistasis refers to 
the physical interactions between biomolecules that are infl uenced 
by multiple genetic variants. Statistical epistasis is the term for the 
nonadditive interactions between multiple genes, each of which 
affects disease susceptibility, and the environment [ 49 ,  50 ]. 

3.3.2  Testing for an 
Association: Single Locus 
Versus Multi-locus
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 The  missing heritability  problem may be exacerbated by GWAS 
approaches that use a linear modeling framework to analyze SNPs 
one at a time, thereby failing to recognize the genetic and environ-
mental context of each SNP [ 51 ,  52 ]. Hence, this has led to the 
adoption of more holistic approaches that recognize the complex 
landscape of the genotype–phenotype relationship and examine 
nonlinear interactions between genetic variants throughout the 
genome. This is referred to as a  multi-locus analysis , which brings 
with it a new of set of challenges [ 53 ,  54 ]. Amongst these, the big-
gest challenge is that the exhaustive examination of all pair-wise 
interactions involving 500,000 SNPs can be very computationally 
intensive. This often makes it necessary to use specifi c criteria to 
fi lter the 500,000 markers to make the problem computationally 
tractable. 

 Traditionally, most GWAS approaches using a chip of this size 
perform an initial fi ltering based on MAF, LD, and other initial 
quality control checks [ 47 ]. Even though these steps reduce the 
number of markers greatly, a researcher may still be left with about 
300,000 SNPs in the dataset. In such cases, a single SNP analysis 
can be performed to select markers with main effects (these are 
single SNPs that show a strong association with the disease out-
come), based on an arbitrary threshold set as the  signifi cance crite-
ria . This creates a manageable data subset for an unbiased search 
of all pair-wise interactions. 

 Conversely, the dataset can also be fi ltered so that only those 
multi-marker interactions will be examined that fi t within a cer-
tain biological context such as a biological pathway, protein fam-
ily, and group of genes or proteins involved in a certain molecular 
function. For example, the Biofi lter algorithm combines biomedi-
cal knowledge from multiple public repositories with statistical 
methods such as logistic regression or multifactor dimensionality 
reduction (MDR) method to analyze SNP–SNP combinations [ 55 ]. 
MDR is a novel method that detects and characterizes higher 
order combinations of genetic and environmental factors that may 
be predictive of a phenotype or clinical outcome of interest [ 56 ]. 
Another similar method is INTERSNP, which uses logistic regres-
sion, log-linear, and contingency table methods to assess SNP–
SNP models [ 57 ]. However, it is important to keep in mind that 
any dataset fi ltering based on particular criteria will introduce its 
own biological bias into the dataset ( see   Notes 4  and  5 ).  

  A  p -value is defi ned as the probability of observing a test statistic 
that is equal to or greater than the observed test statistic, if the null 
hypothesis is true. It is generated for each statistical test that is 
carried out. A common  p -value cut off ( α ) that is used in scientifi c 
literature is 0.05. When a  p -value is equal to or falls below this  α  
cut off, the null hypothesis is rejected. This means that 5 % of the 
time, when the null hypothesis is rejected, it will actually be true, 

3.3.3  Post Analysis: 
Correcting for Multiple 
Hypothesis Testing
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representing a false positive. This probability value is with regard 
to a single hypothesis or statistical test. However, for a GWAS 
study that tests numerous hypotheses and applies many statistical 
tests, each of these tests has their own false positive probability. 
Hence, the combined likelihood of a GWAS result being a false 
positive is a lot higher than from one test. This brings to light the 
importance of correcting for multiple hypothesis testing and 
adjusting the  p -value threshold accordingly. 

 There are a few popular ways to approach correction for mul-
tiple testing:

 ●     The Bonferroni correction.  This is the most stringent of the 
three; it assumes that each association test in a GWAS is inde-
pendent of all the others. It corrects an  α  = 0.05 to  α  = (0.05/ k ), 
where  k  is the number of statistical tests performed. However, 
this assumption of independence between all the association 
tests is not necessarily true, due to the presence of LD between 
markers. For a GWAS with 500,000 markers, the statistical sig-
nifi cance threshold for an association would be corrected to 
1e−7.  

 ●    Adjusting the False Discovery Rate (FDR).  Developed by 
Benjamini and Hochberg this provides an estimate of the pro-
portion of the statistically signifi cant results that are false posi-
tives, at an  α  = 0.05 [ 58 ]. The approach essentially corrects for 
this expected number of  false discoveries , giving the user an 
idea of the proportion of true associations within their results. 
The FDR approach is less stringent than the Bonferroni cor-
rection as it allows for a proportion of false positive results 
rather than calculating the probability of observing one or 
more false positive results over the entire analysis. These pro-
cedures have been used extensively in GWAS and also extended 
in a variety of ways [ 59 ].  

 ●    Using permutation testing to adjust the signifi cance threshold.  
Although it is computationally intensive, it is the best approach 
for generating an empirical distribution of test statistics for a 
given dataset when the null hypothesis is true. The dataset is 
permuted by rearranging the phenotype labels for all the indi-
viduals, but leaving the genotypic information intact. This 
breaks up any genotype–phenotype relationship within the 
dataset. However, this technique ensures that the inherent 
genotype architecture of the dataset is kept intact. This rear-
rangement of the phenotype labels is done  N  times (a prespeci-
fi ed number). Each time the labels are rearranged, it represents 
a new permuted dataset, i.e., a possible sampling of individuals 
under the null hypothesis. There are a number of software 
packages that can perform permutation testing for GWAS such 
as—PLINK [ 60 ], PRESTO [ 61 ], and PERMORY [ 62 ].      
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  The biggest concern regarding GWAS results has been the lack of 
replication of genotype–phenotype associations in an independent 
study. But an equally formidable challenge is to ensure that a 
replication study has suffi cient statistical power to detect the initial 
fi nding. Accordingly, meta-analysis and data imputation  procedures 
can help to tackle this type of challenge. 

  The sole purpose of a replication study is to evaluate an initial 
positive fi nding from a GWAS and replicate it to assert its validity 
and give the association higher credibility. But, despite the general 
consensus regarding its importance, what actually constitutes a 
replication is still up for debate. This was the topic of a National 
Human Genome Research Institute (NHGRI) working group—to 
outline various criteria involved in defi ning a replication of a GWAS 
result [ 63 ]. 

 One of the fi rst criteria for establishing a positive replication is 
that the sample size of the replication study be large enough to 
detect the effect of the susceptibility allele. This is especially crucial 
because the effects detected in the original GWAS are often over-
estimated in the study population it was identifi ed in, as compared 
to the general population, due to a phenomenon called  winner’s 
curse  [ 64 ]. Hence, in reality the sample size required to detect this 
effect, would have to be much larger than the original study popu-
lation. This is especially true when trying to distinguish the pro-
posed effect from no effect. 

 The replication study must be carried out in an independent 
dataset derived from the same population to avoid any introduc-
tion of bias due to differences in ethnicity. Additionally, identical 
criteria should be used in the replication set to defi ne the pheno-
type in question. Since the ultimate goal is to replicate a statistical 
model—a given SNP with a given phenotypic effect—using even 
slightly different phenotypic defi nitions can adversely affect the 
interpretation of the replication results. 

 Since GWAS markers are chosen based on LD patterns, 
researchers should aim to replicate a  genomic region , and not neces-
sarily the original SNP from the initial study. All SNPs in high LD 
with the original SNP would be considered as candidates for repli-
cation. However, a strong rationale should be provided regarding 
the SNPs being selected for replication, based on linkage disequi-
librium, published literature, or putative functional signifi cance. 
To be considered a successful replication, the magnitude and direc-
tion of the genetic effect should be similar across both discovery 
and replication studies.  

  Meta-analysis is a statistical method for combining several different 
studies to provide one summary result. It is a widely applied 
technique in the GWAS fi eld; it allows researchers to increase the 
power to detect association signals by increasing sample size and 

3.4  Replication 
of Results

3.4.1  Statistical 
Replication

3.4.2  Meta-analysis
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examining a larger number of variants across the genome. 
Ultimately this helps reduce the chances of false positive fi ndings. 
An essential component to combining multiple GWAS for a meta-
analysis is that all the studies should be  examining the same 
hypothesis . A key advantage to the meta-analysis method is the 
inherent protection of patient and clinical data. It only requires the 
transfer of statistical results and not the original data that other 
parties may not have permission for. 

 In the initial stages of a meta-analysis, researchers should set up 
strong collaborative agreements ahead of time. Accordingly, a 
detailed analysis plan should be formulated to avoid any heteroge-
neity being introduced into the study ( see   Note 6 ). There are vari-
ous statistical measures to quantify heterogeneity and to measure 
how much the various combined studies differ from each other. 
Some typical measures of heterogeneity are Cochran’s  Q  or the  I  2  
statistic [ 65 ,  66 ]. The Cochran’s  Q  statistic aims at revealing 
whether there is statistically signifi cant heterogeneity or not. It is 
the weighted sum of squared differences between individual study 
effects and the summary effect across studies. However, the statis-
tic is often underpowered when too few studies are involved in the 
meta-analysis. 

 The  I  2  statistic, which is favored more in recent studies, mea-
sures the proportion of heterogeneity between studies that is true 
and not due to chance. A major advantage is that the power of the 
statistic is not dependent upon the number of studies combined in 
the meta-analysis.  I  2  values may fall within low (<25), medium 
(>25 and <75) and high (>75) heterogeneity values. These ranges 
are helpful in identifying which studies may need to be removed 
from the meta-analysis ( see   Note 7 ).  

  A meta-analysis aims to examine the effect of the same allele across 
all studies. However, this proves diffi cult when the combined 
studies have been carried out using different genotyping platforms, 
each using a different set of markers. To ease this challenge, GWAS 
can use data or genotype imputation to generate results for a 
common set of SNP across all the combined studies. The imputation 
procedure makes use of the known LD and haplotype patterns in 
reference panels such as HapMap and the 1000 Genomes project, 
to estimate genotypes for SNPs that were not directly genotyped 
within a study ( see   Note 8 ) [ 67 ,  68 ]. 

 Some popular algorithms for genotype imputation are 
BimBam [ 69 ], IMPUTE [ 70 ], MaCH [ 71 ], and Beagle [ 72 ]. The 
underlying principle for these algorithms is similar to that of hap-
lotype phasing algorithms, which estimate the contiguous set of 
alleles that lie on a specifi c chromosome. Genotype imputation 
algorithms identify the shared underlying haplotypes between the 
study population and the reference panel. This set of shared hap-
lotypes is then used to calculate haplotype frequencies within the 

3.4.3  Data Imputation
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genotyped SNPs. The phased haplotypes are next compared with 
a reference set of haplotypes such as those from the HapMap or 
1000 Genomes projects. The matched reference haplotypes are 
also able to provide genotypic information for surrounding mark-
ers that were not directly genotyped. Additionally, haplotypes 
from the study sample may match more than one reference haplo-
type. In such cases, the surrounding genotypes are given a score or 
probability of a match, based on the amount of overlap. These 
scores are also useful for getting an idea about the amount of 
uncertainty in the genotype imputation process.    

4    Future Directions 

 Irrespective of its victories and failures, GWAS have ushered in an 
exciting era in the fi eld of genetics and has added new knowledge 
to our understanding of various diseases and their underlying 
mechanisms. Although, as the content of genotyping chips, cohort 
sizes, and biobanks grow even larger, the challenges of data manip-
ulation, quality control, strong study design, and strict phenotypic 
defi nitions grow more complex. Hence, moving forward human 
geneticists will have to develop bioinformatics infrastructure and 
expertise to overcome such challenges. Most importantly, scientists 
will have to combine their bioinformatics efforts with genetics, 
biochemistry and cell biology to confi rm the functional conse-
quence and biological relevance of the genotype–phenotype asso-
ciations that are identifi ed. Ultimately, the translation of GWAS 
fi ndings into clinical practice will rely upon correct assumptions 
regarding the genetic architecture of complex traits especially in 
the context of gene–gene and gene–environment interactions.  

5    Notes 

     1.    An  r  2  value of 1 is a sign of complete LD and that the alleles at 
these two associated markers have identical frequencies. To 
select a tag SNP, an  r  2  value of 0.8 or greater is considered to 
be high and appropriate for using one SNP to tag another in a 
GWAS [ 73 ,  74 ].   

   2.    LD structures vary between populations, hence, tag SNPs 
picked for one population may not work for another. 
Accordingly, populations with high LD will require fewer tag 
SNPs to capture their variation.   

   3.    Appropriate matching of cases and controls in a GWAS is cru-
cial for preventing any genetic difference between the two 
groups from being detected due to biased sampling. Researchers 
must ensure that cases and controls share the same ethnicity, 
and, if possible, come from the same geographical area.   
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   4.    A created dataset based on SNPs that show main effects, 
enriches for markers that fi rst show a strong association on 
their own, before searching for pair-wise interactions. This will 
 prevent the detection of certain  purely epistatic  multi-marker 
interactions—i.e., interactions between markers which by 
themselves may not have a detectable main effect, and a large 
part of the heritability is concentrated in their interaction, not 
individual effects [ 53 ].   

   5.    An obvious drawback of fi ltering datasets based on biological 
criteria is the reliance upon existing biomedical knowledge, 
and the quality of this knowledge in public databases. However, 
SNP combinations identifi ed from the examination of such a 
data subset are easier to interpret within a biological context.   

   6.    There are several measures that can be taken to avoid introduc-
ing heterogeneity in a meta-analysis. The general design of 
each included study, the quality control procedures, covariate 
adjustment, and phenotypic defi nition applied should be the 
same across all studies. Similarly, the SNP analysis strategies at 
the level of each individual study should also follow near-iden-
tical procedures. Most importantly, the samples added from 
each study should be independent of each other. Lastly, all 
results from the individual studies should be reported relative 
to a common genomic build and reference allele [ 66 ,  75 ].   

   7.    As is true with using any statistical values, these measures 
should only be used as guides to identify studies introducing 
an obvious bias. For example, a study may examine a different 
hypothesis or it may be unduly infl uential as an outlier. 
Furthermore, removing a study based solely on a statistical 
score increases the chances for false discoveries, as it does not 
make correct use of an agnostic statistical procedure designed 
to reduce such bias.   

   8.    The reference panel chosen for genotype imputation should be 
derived from a population with the same ethnicity as the study 
population to avoid poor quality of the haplotype matches. 
Additionally, the reference allele for each SNP must be identi-
cal between the study population and the reference panel used.         
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