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1 Introduction

Until a few years ago, the majority of numerical techniques
for optimization assumed an underlying Euclidean space.
However, many of these computational problems are posed
on non-Euclidean spaces. This motivates the development
of new optimization methods that take into account the par-
ticular structure of the considered space. In this work, we
focus on those spaces which can be seen as Riemannian
manifolds. Some instances of these spaces are the space of
rotation and the space of positive semidefinite matrices, for
which many applications exist. An example of these appli-
cations is the new medical imaging technique called Diffu-
sion Tensor Imaging. Some adapted tools are necessary to
use this technique, as for instance methods for approxima-
tion, interpolation, filtering and estimation on this manifold.
For this space as for others, one of the principal needs is to
find robust statistical estimators of Riemannian data [1]. In
this work, we present and study some known estimators for
different spaces.

2 Statistical estimators

The mean is a natural statistical estimator of a set of data.
However, as we can easily check in an Euclidean space, the
mean is relatively sensible to outliers. The theory of robust
estimation in Euclidean space has led to the development of
numerous robust estimators, one of which is the geometric
median. Since a (geodesic) distance function is chosen for
a manifold, these notions of mean and geometric median on
Euclidean space can easily be extended to this manifold.

The computation of these estimators implies to choose a dis-
tance function for the considered manifold and to implement
an optimization algorithm on this manifold. These estima-
tors are indeed defined as the minimum of a particular func-
tion.

Each manifold can be described in different ways. Depend-
ing upon the chosen metric, means and medians of a same
set of data can be slightly different.

3 Means and medians on Riemannian manifolds

In this work, we consider four different manifolds: the group
of rotations, the set of p-dimensional subspaces inRn, the set
of positive definite matrices and the set of positive semidef-

inite matrices of fixed rank. For each of these, many rep-
resentations are studied and the resulting differences in the
means and medians are analyzed. For illustrating purposes,
this work focus on three dimensional spaces.

For the space of 3D-rotations (usually calledSO(3)), we
choose to represent rotations as rotations matrices. Two dif-
ferent distances are considered: the chordal one [2] and the
geodesic one.
The space of positive definite matrices is denoted byS+(3).
We use two different representations of this space: the Log-
Euclidean one [3] and the affine invariant one [4]. Relations
between means computed with different metrics are studied.
The Grassman manifold is the set ofp-dimensional linear
subspaces ofRn [5]. The representation used in this work
enables us to compute the mean of a set of elements of this
manifold using a Newton algorithm.
The space of flat ellipsoids (positive semidefinite matricesof
fixed rank) is the less studied of these manifolds. The mean
between two flat ellipsoids can be computed by combining
results ofS+(3) with results of Grassman manifolds [6].

For each computed estimators, the methods are compared in
respect to the robustness to outliers and to the computational
cost of the methods.
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