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Abstract

Model learning and tracking are two important topics in computer vision.
While there are many applications where one of them is used to support the
other, there are currently only few where both aid each other simultaneously.
In this work, we seek to incrementally learn a graphical model from tracking
and to simultaneously use whatever has been learned to improve the track-
ing in the next frames. The main problem encountered in this situation is
that the current intermediate model may be inconsistent with future observa-
tions, creating a bias in the tracking results. We propose an uncertain model
that explicitly accounts for such uncertainties by representing relations by an
appropriately weighted sum of informative (parametric) and uninformative
(uniform) components. The method is completely unsupervised and operates
in real time.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Graphical models are popularly used to represent objects in terms of local
appearance and spatial relations for detection, classification and tracking
applications [4, 15, 18, 19]. Unsupervised learning of such feature graphs
from images is difficult because of the correspondence problem of features
between images. If learning is based on a video sequence, tracking can be
used to solve this problem. On the other hand, tracking a set of features
requires a good model if we want to avoid problems due to occlusion and
clutter. In this thesis, we address these two tasks simultaneously in a way
that they help each other.

The idea is to incrementally learn models of relations that exist between
local features, and to use what we have already learned to improve tracking.
Since tracking is on-line, it is important to use models with a low compu-
tational cost. In practice, we are only interested in learning specific types
of relations (rigid, articulated, . . . ). For this purpose, parametric models or
mixtures of a small number of Gaussians are more suitable than nonpara-
metric models.

In this thesis, we seek to identify, while tracking, spatial relations whose
distributions are roughly a combination of Gaussians, and simultaneously use
them to aid the tracking by biasing the observation likelihoods. This will be
helpful if the learned model is accurate, but detrimental if it is not.

The three main sources of undue bias are observations that are far from
Gaussian, inaccurate parameter estimates based on few observations early
during learning, and parameters that change over time. For example, con-
sider an object sitting on a table: The system will learn rigid relations be-
tween the object and the table that have to be unlearned when the object is
moved.

To manage such situations, we develop in this thesis an uncertain graph-
ical model that explicitly accounts for its predictive power by representing
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CHAPTER 1. INTRODUCTION

each pairwise potential as a mixture of a parametric model (reliable relation)
and a uniform density (ignorance).

After discussing some background in the next chapter, this thesis will be
divided into three parts :

• The first one introduces the feature graph and the methods used for
its tracking and learning. This first part is also useful to understand
the need of an uncertain model to successfully combine tracking and
learning.

• The second part explains the different sources of uncertainty and how
the uncertain model accounts for them. In this part we limit the
method to rigid relations so that we can concentrate on the way to
deal with uncertainty.

• The last part extends the method to articulated relations. Two possi-
ble extensions are proposed : one using a mixture of a small number
of Gaussians and one selecting a set of transformed spaces where the
relation is rigid.
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Chapter 2

Related Work

Appearance- and structure-based approaches have been widely used for ob-
ject representation. Appearance-based models usually model an object as
color histograms [3], image templates [2] or neighborhood features such as
SIFT. Structural models typically represent an object using 2D edges or 3D
geometric models [9]. A natural way to combine the shape and appearance
of an object is to use a graphical model whose nodes and edges correspond
to local features and spatial relations between them [16, 18, 19].

On-line tracking is often addressed by using a prior model of the object.
This model can be learned from training examples during a learning phase
[16]. Another solution is to design the prior model of the object by hand [18].
This means that the model is specific to a particular object and is difficult to
reuse in other situations. The model can also be defined in starting frames
[2, 12], taking the risk that it no longer corresponds to changed appearances
of the object over time. If we are only concerned with tracking, we can also
use a dynamic model that is updated to accommodate the object appearance
and structural changes [19].

Unsupervised learning of object models is computationally demanding
because it has to find feature correspondences between images [15]. The tem-
poral information from video can be used to solve this problem. Leordeanu
and Collins [10] use tracking to group features into objects by observing their
co-occurrences. Ramanan et al. [14] use a video sequence to build models of
animals from temporally coherent clusters that represent body parts. While
the former work does not use the learned relationships between parts to re-
fine the matching process, the latter does not allow corrections of the model
once it as been learned.

Some recent approaches have been developed to simultaneously learn and
track object models. Lim et al. [11] propose a method that incrementally
learns and adapts a low-dimensional eigenspace representation to reflect ap-
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pearance changes of the target, thereby facilitating the tracking task. The
same kind of model is used by Dowson and Bowden [6] by their N -tiers
model that represents both the appearance and the structure of the object.
These models do not express the uncertainty inherent in the current model.
Moreover, they suppose that the selected region of interest only contains the
object to learn.

In this thesis, we develop an uncertain model of relations between features
that explicitly accounts for their uncertainty. Thus, a relation will contribute
stability to tracking without exerting overly strong bias that would hamper
tracking. No assumptions are made regarding the number of objects in a
video; in fact, features are not explicitly grouped into objects at all.
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Chapter 3

Combining Tracking with
Learning

3.1 Introduction

Assume we want to learn a visual feature graph that can model an object
shown in a set of images. A major difficulty of this task is to find the
correspondences of the features between images. If we learn the model from
a video instead of a set of images, we can use the temporal coherence existing
between the frames to solve this correspondence problem by tracking the
features. In this case, the feature positions are known for each frame and
learning the relations between them becomes easier.

On the other hand, tracking a set of independent features in long se-
quences is a very difficult task due to occlusions, clutter, blur and noise
effects. A common way to improve the tracking is to use a model of the
relations existing between those features. This model is often learned off-line
from training examples or designed by hand.

Here we don’t have this model since it is what we wanted to learn in
the first place. So it’s a chicken-and-egg problem: we need to track features
to learn relations between them but we need those relations to contribute
stability to the tracking. Instead of complaining about what we don’t have,
let’s consider the information we can use. Assume, for example, we are trying
to track the set of features in the frame corresponding to time t in the video;
which means we have already tracked them up to time t − 1. Even if we
don’t have a model of the relations learned from the whole sequence, we can
already learn a model from the frames up to time t− 1 and use it to improve
the tracking at time t. So, what we propose here is to incrementally learn
a model of the relations existing between the features and to simultaneously
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CHAPTER 3. COMBINING TRACKING WITH LEARNING

use whatever has been learned to improve the tracking in the next frames.
In the first section of this part, we will present the choices we made

about the graphical model and explain how to incrementally learn it. The
second section focuses on the tracking of this graph with Sequential Belief
Propagation. The last section of this chapter presents some experiments.

3.2 Learning the Graphical Model

To model the features and their relations, we use an undirected graph where
nodes and edges represent the visual features and the relations between them,
respectively. We denote the state of each feature at time t by xi,t and its
associated image observation by zi,t. The joint target states and the joint
observations are respectively denoted by Xt = {x1,t, . . . , xN,t} and by Zt =
{z1,t, . . . , zN,t}. We also denote Z0:t = {Z1, . . . , Zt}, the joint observations of
the whole sequence until time t.

A spatial relation between two features is represented by a potential func-
tion ψi,j,t(xi,t, xj,t) that expresses the constraint on the relative position of
the features i and j. This pairwise potential depends on time t because it is
learned on-line from the observations up to time t− 1.

For a Markov network, the probability of the posterior of the joint state
Xt given the image measurements Zt can be written [7]

P (Xt|Zt) =
1

ZQ

∏
(i,j)∈E

ψi,j,t(xi,t, xj,t)
∏
i∈V

pi(zi,t|xi,t), (3.1)

where ZQ is a normalization constant, E is the set of edges in the graph, and
V is the set of nodes.

As you can notice, no assumptions are made regarding the number of
objects in a video; in fact, features are not explicitly grouped into objects at
all. More or less informative relations are simply learned between features;
coherently moving, rigid objects might then be identified as rigid subgraphs.
The learning of the graphical model, then, consists of detecting features,
create connections between them with any triangulation scheme and keep
only those that are of interest. Features that are unable to create useful
connections with other might just be removed from the graph.

3.2.1 The Feature Set

Many kinds of visual features can be used to describe local appearance of
objects: image patches, SIFT descriptor, edges, color histograms,. . . . Since
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the method is on-line and the weakness of the descriptor can be alleviated
by relations, the low computational cost of the descriptor is more important
than its robustness. We, then, choose the images patches to describe the
features. In the same idea, many feature detectors exist but we choose to use
the well known Harris detector. When the understanding of the graphical
model learning process is the more important, we even simply initialize the
features’ position by hand during test phases.

It is important to notice that the description of a feature is learned in
the frame it is detected and is not update afterward. The main reason of
this choice is that the features are very local elements so we can make the
assumption that their appearance will not be modified by more than an
affine transformation. If a local element can have multiple appearances like
an open or closed eye, it will just be represented with different features;
their connections in the graph making it implicitly clear that those features
correspond to the same location.

As we can see, the only thing we’ve got to learn about a feature is whether
we keep it in the model or not. This will be done through its relations with
other features: if a feature is correlated with others than it worth to keep it
otherwise we simply discard it.

3.2.2 The Relation Set

Learning the relations is much more complex since a relation cannot be be
learned from a single frame (unless it is perfectly rigid, which you don’t know
before watching it for a long time). The possible ways to represent it can also
be demanding in terms of computational cost and memory space. For exam-
ple, a smart representation of the relations seems to be the non-parametric
density estimation since it is able to model any king of distribution. Unfortu-
nately its computational cost is too high for an on-line process. On the other
hand parametric models are very fast but are not able to represent all pos-
sible relations. In practice, we are only interested in learning specific types
of relations (rigid, articulated,. . . ) so the parametric model will be sufficient
in this case. All we have to do, is to remove relations from the graph if they
become too complex to be modeled with the chosen parametric model.

In this first part, we seek to learn and identify, while tracking, approx-
imately rigid spatial relations whose distributions are roughly Gaussian-
shaped. Therefore, the potential functions are of the form

ψi,j,t(xi,t, xj,t) = e
−
(rt − µt)

2

2σ2
t , (3.2)
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µ

real position

rt = xi,t − xj,t σ

observation
noise

xi,t

xj,t

Figure 3.1: The potential function used to represent a relation between two
features xi,t and xj,t

where rt corresponds to the observation of the relative position xi,t − xj,t

between two given features i and j at time t. The parameters µt and σ2
t are

the value of the estimated rigid relation and the variance of the observations
around this position.

The incremental learning of the Gaussian model parameters that max-
imize the likelihood of the relations observed in the video is given by the
following equations:

µ̂t =
πt−1µ̂t−1 + wtrt

πt−1 + wt

, (3.3)

σ̂2
t =

πt−1(σ̂
2
t−1 + (µ̂t − µ̂t−1)

2) + wt(rt − µ̂t)
2

πt−1 + wt

,

(3.4)

πt = πt−1 + wt, (3.5)

where µ̂t and σ̂2
t are the mean and the variance of the Gaussian, and πt is

the cumulative weight of preview observations (with π0 = 0). To account
for more or less reliable observations, the parameter updates are weighted
by their likelihood product wt = p(zi,t|xi,t)p(zj,t|xj,t). For example, in the
case of an occlusion or a loss of tracking, nothing can be learned but the
tracker will produce a (meaningless) observation nevertheless. We therefore
discount such observations by using the observation likelihood as an indicator
of reliability.

13



CHAPTER 3. COMBINING TRACKING WITH LEARNING

3.3 Tracking the Features

The Markov network presented in the previous section is a generative model
at one time instant. To track it, we extend Eqn. 3.1 to account for a time
dimension. Under the conventional Markov assumption of independent dy-
namic models,

P (Xt|Xt−1) =
∏

i

p(xi,t|xi,t−1), (3.6)

the posterior probability of the joint state Xt given the image measurements
Z0:t can be expressed as

P (Xt|Z0:t) =
1

ZQ

∏
(i,j)∈E

ψi,j,t(xi,t, xj,t)

×
∏
i∈V

pi(zi,t|xi,t)p(xi,t|zi,0:t−1),

(3.7)

where

p(xi,t|zi,0:t−1) =

∫
p(xi,t|xi,t−1)p(xi,t−1|zi,0:t−1)dxi,t−1. (3.8)

The marginal posterior distribution p(xi,t|Z0:t) of the feature i at time t
can, then, be obtained with

p(xi,t|Z0:t) =

∫
...

∫
P (Xt|Z0:t)dx1,tdxi−1,tdxi+1,tdxN,t (3.9)

This kind of brute computation of marginal probabilities becomes quickly
intractable because of the computation of multiple integrals. The (Loopy)
Belief Propagation algorithm [13] is a more efficient algorithm that computes
p(xi,t|Z0:t) for i = 1, ..., N through a local message passing process.

3.3.1 Loopy Belief Propagation

To simplify matters, let’s first consider the belief propagation without the
time aspect. Belief propagation can be seen as an iterative message passing
process where each node i sends to its neighboors j a message that contains
its current belief about the state of node j. At any time during the execution
of the algorithm, the current marginal distribution estimate for a node i is
the normalized product of its local evidence pi(zi|xi) and of all incoming
messages from the neighboring nodes:

pn(xi|Z) ∝ pi(zi|xi)
∏

j∈N(xi)

mn
i,j(xi) (3.10)
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zl

zj

mn−1
i,k

mn−1
i,l
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j,i

pi(zi|xi)

(a) computation of mn
j,i(xj)

xi

xk

xl

xj

zi

zk

zl

zj

mn
i,k

mn
i,l

mn
i,j

pi(zi|xi)

(b) computation of pn(xi|Z)

Figure 3.2: The belief propagation.

where pn(xi|Z) represents the marginal distribution estimate at the n-th
iteration, N(xi) is the set of nodes adjacent to i and mn

i,j(xi) is a message
sent from node j to node i at the n-th iteration.

To prepare a message for node j, the node i first compute an estimation
of its own state based on its local evidence and the messages sent by all its
neighbors but j. This product is then multiplied with the potential function
related to i and j to produce the message from i to j:

mn
j,i(xj)←

∫
xi

[
pi(zi|xi)ψi,j(xi, xj)×

∏
k∈N(xi)\j

mn−1
i,k (xi)

]
dxi, (3.11)

Figure 3.2 illustrates the method. In the case of tree structured graphical
models, the algorithm is guaranteed to converge towards pn(xi|Z). In graph-
ical models with loops, convergence is not guaranteed but good empirical
performance has been shown in the literature [20].

3.3.2 Sequential Belief Propagation

As shown by Hua and Wu [8], belief propagation can be adapted to account
for a temporal information. The equations of this new version callled Se-
quential Belief Propagation correspond to equations 3.10 and 3.11 extended
with a new factor in the product that express the time correlations between
the feature states. The marginal distribution estimate for a node i at time t
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is given by:

pn(xi,t|Z0:t) ∝ pi(zi,t|xi,t)
∏

j∈N(xi,t)

mn
i,j,t(xi,t)

×
∫

xi,t−1

p(xi,t|xi,t−1)p(xi,t−1|Z0:t−1)dxi,t−1.

(3.12)

And the local message passed from node i to node j at time t and iteration
n is given by

mn
j,i,t(xj,t)←

∫
xi,t

[
pi(zi,t|xi,t)ψi,j,t(xi,t, xj,t)

×
∫

xi,t−1

p(xi,t|xi,t−1)p(xi,t−1|Z0:t−1)dxi,t−1

×
∏

k∈N(xi,t)\j

mn−1
i,k,t(xi,t)

]
dxi,t,

(3.13)

Another contribution of Hua and Wu is the new way to compute the
product of messages through particle filters. While Nonparametric Belief
Propagation (NBP) [17], already used particles to represent the nodes’ dis-
tribution, it models the messages in BP as Gaussian mixtures and uses elab-
orate MCMC samplers to sample the new Gaussian mixture kernels of the
updated messages. This process is far too slow to be applied in real-time.
Hua and Wu proposed to consider the messages as a set of weights for the
particles of the node that receive the message. This way, the message prod-
uct only consists of a product of scalars which is much more efficient than a
product of Gaussian mixtures.

The particle of each node are propagated from time t−1 to time t and are
used as the support on which the messages are propagated and the nodes’
distribution are evaluated. Since the particle positions don’t change during
the belief propagation, we can evaluate the potential function between each
pair of particles from two neighboring nodes before starting BP. The same
applies to the evaluation of the image likelihood of the particles.
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The different steps of the methods are shown below and in figure 3.3:

1. Sequential Monte Carlo

(a) for each node, re-sample the particles

(b) for each node, propagate the particles from time t− 1 to time t

2. Initialization of Belief Propagation

(a) for each node, compute the image likelihood of each particle.

(b) for each relation, evaluate the potential function between the par-
ticles of the two nodes in the relation.

3. Iterations of Belief Propagation

(a) for each relation between two nodes i and j, compute the messages
mn

j,i,t(xj,t) and mn
i,j,t(xi,t)

4. Inference result

(a) for each node i, compute the marginal distribution pn(xi,t|Z0:t)

Notice that the temporal information is not computed like the other
sources of information. While all of them are computed through a prod-
uct of weights for the particles, the temporal information is multiplied with
other sources of information through the distribution of the particles.

3.4 Experiments

In this section, we demonstate the performance of the method developed in
this first part on a representative example of learning and tracking of 2D
rigid relations. Figure 3.4 shows the result sequence taken with a webcam
at a resolution of 320 × 240 and processed on-line. In order to create an
example that is easy to follow, we decided to initialize the model by hand.
Two features were selected from the head and two from the background.
Since there are only four features, a fully connected graph of relations can
be created without making the example unreadable. For each feature, two
trackers were initialized: one independent (not connected) tracker (in blue)
and one using the graphical model (in green). The variance of a relation is
represented by the thickness of the line that connect the two features. This
means that thick lines correspond to relations of low variance σ̂ and vice
versa.
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Use of particle filters to predict the feature positions
at time t given their position at time t− 1.

1)

The particles are weighted with the
features’ image likelihood at time t

2)

Those weights are also adjusted given
the potential functions by propagating
information between nodes with BP

3)

Figure 3.3: The 3 steps and 3 sources of information of SBP.
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(a) frame 001 (b) frame 021 (c) frame 031 (d) frame 041

(e) frame 051 (f) frame 071 (g) frame 081 (h) frame 101

(i) frame 111 (j) frame 121 (k) frame 131

Figure 3.4: Representative results. Thick lines correspond to relations of low
variance σ̂ and vice versa. Each feature is tracked twice, with the help of
the relations (green) and without (blue). Frame indices are given below each
image.
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In the beginning of the sequence, we can see that the relations are rep-
resented with very thick lines since the head is motionless Those relations
prove to be helpful once the head is hidden. Indeed, we can see that even
if the independent trackers (in blue) are completely lost, the linked trackers
keep all the particles around the true position of the hidden feature. The
learned relations are then very useful to avoid the failure of the tracking.

The last part of the sequence (from frame 111) is less pleasant: the learned
potential functions create an overly strong bias is the tracking and keep the
relation extremely rigid even if the head starts to move. This comes from the
fact that we are too confident in the ability of the learned potential functions
to predict the relations in the next frame.

3.5 Conclusion

In this first part, we introduced the methods used in the learning and the
tracking of the feature graph. The simple combination of those methods has
proved its usefulness in the case of occlusions but is still insufficient if the
relations evolve along the video. In this case, the bias created by the overly
restrictive potential function prevents the model from evolving. To overcome
this problem, we have to find a way to reduce the influence of the current
learned potential function if it is likely to create bias in the tracking. In the
next chapter of this thesis, we will propose an uncertain model that accounts
explicitly for uncertainty about the quality of the current model.
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Chapter 4

Use of an Uncertain Rigid
Model

4.1 Introduction

In this second part, we will develop an uncertain model that accounts for the
uncertainty in the capability of the learned model to predict the position of
the features. The sources of uncertainty can be divided into two groups:

Uncertainty in the tracking. This source of uncertainty comes from the
assumption we implicitly made that the observed relations come from a
stationary distribution which may not be true. For example, a feature
may remain static up to time t− 1 but start moving at time t. In this
case, the learned model is no longer predictive of future observations,
and its uncertainty is increased.

Uncertainty in the learning. The distribution of observations may corre-
spond to a lesser or greater extent to the parametric model of interest,
giving rise to higher or lower predictive uncertainty. Moreover, the un-
certainty of a learned model decreases with the number of observations;
even observations drawn from a parametric distribution of interest are
of little predictive value at early stages of learning.

The uncertainty in the learning will evolve with time and, after a while, it
will be possible to decide with high confidence if the relation can be modeled
with the parametric model or not. On the other hand, the uncertainty in
the tracking will remain constant since the relation can be stationary for an
undetermined period of time.
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In this chapter we will develop an uncertain model for rigid relations
only. Like in the first part of the thesis, the informative part of the potential
function will be represented with a Gaussian model.

4.2 Uncertainty in the Learning

Let’s first start with the uncertainty in the learning. This uncertainty is
related to the correspondence between the learned potential function and
the observed relations used to learn it. The learned uncertain model will
then be useful in two different situations.

Recognition. It’s only when you accumulate observations of an object that
you can gain confidence in recognizing it later. It’s also only when you
accumulate observations of a relation that you become able to deter-
mine if it is discriminative or not for the recognition. So the uncertain
model is a representation of our current knowledge and confidence in
the learned relation.

Tracking. This is clear that if a model is unable to represent the relations
observed up to time t−1, it will neither be useful to predict the relation
at time t. So the uncertainty about a potential function can also be
used to balance the influence between all the relations used to track
the features.

So, it seems that we can deduce the uncertainty in the learning from the
observations used to compute the potential function, but how? The first
thing to do is to separate the differant cases. Figure 4.1 show the three
different situations that can occur:

1. The relation has been observed for a long time and was always rigid.
There is a high chance that this relation is very reliable and thus that
we must trust it more that others.

2. The relation has been observed only a few times but was always rigid.
Even if it’s a good start, it’s too soon to be able to give an accurate
estimation of the parameters of the model (in this case, of the mean
and the variance of the Gaussian). This potential function can then be
used but must have less influence than the old reliable ones.

3. The observations do not correspond exactly to the parametric model.
In this case, it means that the relation is not 100% rigid. Depending
on the level of matching between the observations and the model, the
learned potential function must have more or less influence.
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old rigid relation

new relation non 100% rigid relation
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Figure 4.1: The reliable relations should have more influence than other.

While for the first case we can simply use the maximum likelihood poten-
tial function, the two others need to be modified in a way to account for the
corresponding uncertainty. We will start with the uncertainty in the param-
eters in section 4.2.1 and complete the obtained model with the uncertainty
in the parametric model in section 4.2.2

4.2.1 Uncertainty in the Parameters

When we have only a few observations, the Gaussian parameters produced
by the maximum-likelihood estimation are uncertain. This uncertainty will
decrease with the number of observations. We thus need to augment the
variance of the informative part of the potential ψ (Eqn. 3.2) as a function of
the number of observations. It turns out that the influence of the uncertainty
in the mean is insignificant compared to the influence of the uncertainty in
the variance; we therefore neglect the former. We consequently choose a
variance σ̃2 in a way that it bounds the risk of underestimating the true
variance, i.e., P (σ̃2 ≤ σ2) = α, where conventionally α = 0.95 (see figure
4.2). Since empirical estimates of variance follow a χ2 distribution,

σ̃2
t =

πt

χ2
πt−1(α)

σ̂2
t , (4.1)

where χ2
πt−1(α) is the inverse of the cumulative density function of the χ2

distribution evaluated at probability α. Notice that the weight πt is used
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P (σ̃2
t ≤ σ2

t ) = α

σ̃t

Figure 4.2: We choose a variance σ̃2 in a way that bounds the risk of under-
estimating the true variance.

instead of the number of observations, following the same reasoning as in the
maximum likelihood learning case: We do not want to excessively decrease
the uncertainty in the model due to unreliable observations.

We can then simply define a new Gaussian model that takes the uncer-
tainty in the parameters into account:

ψi,j,t(xi,t, xj,t) = e
−
(rt − µ̂t)

2

2σ̃2
t . (4.2)

4.2.2 Uncertainty in the Parametric Model

Since we use a parametric model, the range of relations that can be repre-
sented with this model is limited. It is obvious that not all the observed
relations will correspond to the chosen model. As motivated earlier, we are
mainly interested in learning those relations that fit the chosen parametric
model. Those that do not correspond will simply be discarded. The problem
is that we may need a lot of observations to be able to conclude that the
model is not appropriate. During this time, the model is still used to track
the features which may create a strong bias in the tracking, causing it to fail.

As, here, the parametric model corresponds to a Gaussian around a rigid
position, the questions are ”How to estimate the probability that the observed
relation is rigid?” and ”How to modify the potential function so that it
doesn’t create bias in the tracking?”
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A Potential Function with Limited Bias

Let’s first assume that we are able to estimate the probability that the rela-
tion corresponds to a Gaussian model. We call it λt for the probability at a
given time t. Consider now the two extreme situations λt = 1 and λt = 0.

If λt = 1, then we can simply use the potential function of equation 4.2
without risk of creating bias.

If λt = 0, then the learned potential function is completely wrong and
must be replaced with something else. But since the observations are not
kept in memory, what can be used to compute this ’something else’? The
answer is obvious: ’Nothing !’. In this case, all we can do is to say that we
know nothing about the distribution of the relation. Then, the only thing we
can do is to represent this lack of knowledge with a uninformative uniform
potential.

In practice, nothing is black or white and a model may be more or less
appropriate for the relation. Therefore, we represent the potential function by
a weighted sum of the learned model and a uniform potential. The probability
of observing a relation ri,j,t = xi,t − xj,t between features i and j at time t is
then given by

ψ+
i,j,t(xi,t, xj,t) = λte

−
(rt − µ̂t)

2

2σ̃2
t + (1− λt) ∗ 1, (4.3)

Figure 4.3 shows an example of an uncertain potential function. Notice
that the value of the uniform distribution is equal to one since it is the
only value that does not affect a product which is what we want for an
uninformative relation.

The only question left is ”How to estimate the probability that the ob-
served relation is rigid?”

The Probability of the Parametric Model

To estimate λt, we introduce a method inspired from the Kolmogorov-Smirnov
test. Recall that the Kolmogorov-Smirnov distance is given by

Kn =
√
n max
−∞<x<∞

∣∣∣F̂ (x)− Fn(x)
∣∣∣ , (4.4)

where n is the number of observations, Fn(x) is the empirical cumulative dis-
tribution function of the n observations, and F̂ (x) is the cumulative maximum-
likelihood distribution. This distance is compared to a threshold, say, to
classify a sample as Gaussian or non-Gaussian.
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Figure 4.3: Example of an uncertain potential function.

Our context is different: We are not interested in precise Gaussianity but
in relations that are about as predictive as Gaussians. Therefore, the original
Kolmogorov-Smirnov test is unsuitable in that its sensitivity grows without
bounds with n. Instead of Eqn. 4.4, we use an expression independent of the
number of observations,

D =
1

|I|

∫
I

∣∣∣F̂ (x)− Fn(x)
∣∣∣ dx, (4.5)

where I is the interval within which the two functions are compared. Notice
that we use an integral instead of the maximum as it renders the measure
both more robust and more discriminative in our context: Since it considers
more than a single value it produces smoother curves, and outliers are more
robustly detected because their cumulative effect is picked up by the integral.

To simplify matters, we assume that this distance D has a Gaussian
distribution, which leads to the pseudo-probabilistic weighting function

λt = e
−D2

T2
D , (4.6)

where TD is a user-settable parameter that represents the allowed deviation
of observed relations from Gaussianity.

Notice that the cumulative density function of the observations Fn(x)
seems to be a simpler choice to model the relation than the parametric model.
You may, then, wonder why we don’t use it since it is able to represent any
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Figure 4.4: Method inspired from the Kolmogorov-Smirnov test.

king of distribution. The problem comes from the fact that Fn(x) is only
calculated on a limited interval I. Since the uncertainty on the model implies
that the potential function can be greater than zero in an infinite interval,
Fn(x) cannot be used without creating bias in the tracking. On the other
hand, it is enough to compare Fn(x) and F̂ (x) to a limited interval to get a
good approximation of the correspondence between them.

4.3 Uncertainty in the Tracking

In our scenario, the potential functions are learned incrementally, which
sometimes leads to situations where an observation at the current time t
is in fact not well predicted by the relations learned up to time t − 1. This
may happen if, for example, the two features connected through a relation
were motionless until time t−1, and one of them starts to move at time t. In
this case, it is clear that the rigid relation learned from previous frames is no
longer appropriate to track these features. To account for this uncertainty
in the tracking, we need to augment accordingly the variance of the learned
relations. Therefore, in the following we distinguish between the potential
ψ+

i,j,t−1 learned up to and including time t − 1, and its variance-augmented
counterpart ψ−i,j,t that replaces ψi,j,t in Eqn. 3.13.

A given relation is only used for tracking in the single next frame. Given
that the observations in a video are spatially correlated over time, the next
observations will not be too far from the current models. If we assume that
the (application-dependent and fixed) likelihood of making an observation a
distance ∆ away from the learned model follows a Gaussian distribution of
variance σ2

∆, a suitably augmented potential ψ−i,j,t can be obtained by con-
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σ̃

µ̂

(1− λt)
∆σ

Figure 4.5: Inclusion of the uncertainty in the tracking in the model.

volving the learned model ψ+
i,j,t−1 with a zero-mean Gaussian with a variance

of this order of magnitude:

ψ−i,j,t = ψ+
i,j,t−1 ~ N(0, σ∆) (4.7)

Putting together equations 4.7 and 4.3, we obtain the complete uncertain
potential function used for the feature tracking:

ψ−i,j,t = λte
−

(rt − µ̂t)
2

2(σ̃2
t + σ2

∆) + (1− λt) ∗ 1. (4.8)

Figure 4.5 illustrates the inclusion of the uncertainty in the tracking in
the model and figure 4.6 represents the whole method that combines all the
sources of uncertainty.

4.4 Experiments

4.4.1 The Complete Uncertain Model

In this section, we demonstate the performance of our method on a represen-
tative example of learning and tracking of 2D rigid relations. To emphasize
the contribution of the relations we chose to use a very simple feature de-
scriptor. Features are represented by fixed image templates extracted from
the first frame, and their likelihoods are computed using the sum of squared
pixel differences. Their 2D coordinates are tracked with particle filters; no
orientation or scale changes are considered. The informative part of the re-
lations is represented by a Gaussian model for each 2D coordinate. We use
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Figure 4.6: The whole algorithm.

TD = 0.04 and σ∆ = 5 pixels for equations 4.6 and 4.7. These are the only
user-settable parameters of our method.

Figure 4.7 shows the result sequence taken with a webcam at a resolution
of 320× 240 and processed on-line. Four features were selected by hand, two
from the face and two from the background. Relations were also selected
by hand. In this example, the relations are first learned as rigid because
the scene is initially motionless. As seen in Figs. 4.7(b) and 4.8(a), the
relations related to the mouth are learned more slowly than the others due
to their lower likelihood in the image. Once the head starts to move, the
rigid relations connecting it with the background are rapidly unlearned. The
probabilities λt of these relations become insignificant, and their variances
increase. This clearly separates the graph into two subgraphs, one for the
face and another for the background. Over the following frames, the face
is successfully tracked despite the occlusions and its out-of-plane motions.
Once the face–background relations have been detected as non-rigid, they do
not influence the tracking anymore.

To illustrate the effect of the uncertain models on tracking, we track
duplicate versions of the features without relations, represented in blue in
Fig. 4.7. As the figure reveals, these features are tracked very poorly and
have to be reinitialized many times during the sequence. It is thus clear
that it would have been very difficult to learn a relational model from them
without exploiting the – albeit uncertain – partially-learned relations from
the start.
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(a) frame 001 (b) frame 020 (c) frame 050 (d) frame 100

(e) frame 113 (f) frame 130 (g) frame 142 (h) frame 200

(i) frame 227 (j) frame 246 (k) frame 305 (l) frame 338

(m) frame 378 (n) frame 457 (o) frame 509 (p) frame 580

(q) frame 700 (r) frame 900

Figure 4.7: Representative results. Thick lines correspond to relations of low
variance σ̃ and vice versa; red saturation is proportional to the probability
λt. Each feature is tracked twice, with relations (green) and without (blue).
Frame indices are given below each image.
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Figure 4.8: Evolution of the relations. The two relations between mouth and
background are superimposed, as are those between the forehead and the
background. In (a), all three mouth relations are superimposed.
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...

ψ+
i,j,t(xi,t, xj,t) = e

−(rt−µt)2
2σ2
t

Figure 4.9: The relation is not rigid anymore

The end of the sequence (frames 700–900) is mostly motionless. Figure 4.8
shows that the probability of the forehead–mouth relation slowly increases
and that all variances decrease. The probabilities of the relations between
the facial features and the background do not increase because they were
clearly non-rigid during the major part of the sequence. It will thus take
much more time for their observation distributions to return to a Gaussian
shape.

We implemented our algorithm on a Pentium Core 2 Duo 2 × 2GHz.
For a number of features between 4 and 10 with 3 relations each, it runs at
between 8 and 20 frames per second.

4.4.2 The Uncertain Model without the Uniform part

We can see in figure 4.8 that the variance and the probability of the model
have similar reactions. We might then wonder if the uniform distribution
is really useful and if the increase in the variance isn’t enough to avoid the
strong counterproductive bias. The example in figure 4.10 is based on the
same video and the same initialization than the previous section but the
potential functions are learned without the uniform part. As we can see, even
if the variance increases once the head moves, allowing to track it successfully
the beginning of its motion, the tracking fail after a few frames. The reason
is that the observations are not well represented by the parametric model
any more and the variance values become meaningless as we show in figure
4.9.
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(a) frame 001 (b) frame 051 (c) frame 081 (d) frame 101

(e) frame 105 (f) frame 108 (g) frame 111 (h) frame 113

(i) frame 114 (j) frame 115 (k) frame 116 (l) frame 117

(m) frame 118 (n) frame 119 (o) frame 120 (p) frame 121

Figure 4.10: Even if the variance increases once the head moves allowing to
track it successfully the beginning of its motion, the tracking fails after a few
frames.
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4.5 Conclusion

In this part we presented a new framework for on-line learning of feature
graphs. This method is completely unsupervised and uses tracking to find
correspondences between features. At the same time, information extracted
from previous frames is immediately used to aid the tracking in the new
frame. For representing this information, we proposed an uncertain model of
relations based on a parametric model that incurs only a low computational
cost.

Several sources of uncertainty were identified and incorporated into the
representation of the relations. The resulting uncertain model contributes
stability to tracking without exerting overly strong, counterproductive bias.

The experiment demonstrates the ability of the uncertain model to assist
tracking without biasing it, and – conversely – that tracking was essential
for learning the uncertain model. The algorithm performed successfully un-
der various difficulties such as occlusions, clutter and spurious connections
between uncorrelated features.

Until now, we presented the theory for the case of rigid, Gaussian re-
lational models, but similar developments are possible for other parametric
distributions. We will explore some of the possible ways to extend this theory
to articulated relations in the third part of this thesis.
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Chapter 5

Use of an Uncertain
Articulated Model

5.1 Introduction

In this last part, we propose to extend the uncertain model to articulated
relations. The easiest way to do it seems to replace the rigid model with a
Gaussian distribution around some parametric curve (a segment, an arc,...).
If we do that, the only thing we need to change is the incremental learn-
ing of the maximum likelihood model. Unfortunately, incremental learning
of parametric models is a surprisingly difficult task. Indeed the maximum
likelihood curve is the one that minimize the square distance between the
observations and their projections on the curve. As we can see in figure 5.1,
the projections evolve with the parametric model. Since we need to recom-
pute the projections each time the curve changes, it is impossible to estimate
properly the new model and its probability only from the previous model and
the new observation. The sequential learning is then an important limitation
to the possible extentions of the uncertain model.

The case of the Gaussian model was simple because the projections cannot
change. We then propose two possible combinations of Gaussian models that
strongly reduce or completely avoid the projections problem: one with a
Gaussian sum and one with a Gaussian product.

The Gaussian mixture model. Here, the observations are splitted be-
tween the Gaussians of the mixture. Even if the projections may switch
from one Gaussian to an other, Arandjelovic et al. [1] showed that it
is possible to incrementally learn a Gaussian mixture while keeping
the projections mostly unchanged. We will adapt their method to our
uncertain Gaussian model.
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Figure 5.1: The projections evolve with the parametric model.

Product of space transformations. Even if the relation is not rigid in the
image space, it can still be Gaussian distributed along some function of
the image coordinates. For example, if the relation is distributed along
a circle centered at one of the features, the distance between them is a
constant. If the relation is a short arc, it can also be approximated with
a line segment. If we now combine the information from the distance
function and the line function, we can pretty well limit the potential
function to this arc. in general, we can describe a relation with a set
of space transformations where this relation is observed as rigid. The
combination of those weak descriptors will allow to express articulated
relations as a combination of Gaussian models; avoiding the problem
of projections.

In this chapter we will explain these two approaches and explore their
possibilities.

5.2 Uncertain Mixture of Gaussians

The most common way to fit a Gaussian mixture to a set of observations is
with the Expectation-Maximization (EM) algorithm [5]. For a proper initial-
ization, the algorithm will give the following Maximum Likelihood solution
on the Gaussian parameters:

πi =
N∑

j=1

p(i|rj)wj, µ̂i =

∑N
j=1 rjp(i|rj)wj

πi
, (5.1)

Ĉi =

∑N
j=1(rj − µ̂i)(rj − µ̂i)Tp(i|rj)wj

πi
, (5.2)
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where µ̂i and Ĉi are the mean and the variance of the Gaussian i, and
πi is its cumulative weight. rj is the observation j of the relation and wj

its weight. p(i|rj) is the probability of the i-th component conditioned on
relation observation rj.

Since the learning is incremental, the Gaussians can only be updated
with the model in the previous time and the new observation. Rewriting the
previous equations for an update with the new observation rt, we get

πi
t =

t−1∑
j=1

pt(i|rj)wj + pt(i|rt)wt, (5.3)

µ̂i
t =

∑t−1
j=1 rjpt(i|rj)wj + rtpt(i|rt)wt

πi
t

, (5.4)

Ĉi
t =

∑t−1
j=1(rj − µ̂i

t)(rj − µ̂i
t)

Tpt(i|rj)wj + (rt − µ̂i
t)(rt − µ̂i

t)
Tpt(i|rt)wt

πi
t

(5.5)

As we can see, we can only forget the previous observations if we make
the assumption

p(i|rt) w p(i|rt−1), ∀t (5.6)

which can be false for two reasons:

• The position and variance of the Gaussians change with time causing
the component likelihoods p(i|rt) to change too.

• The number of Gaussians in the mixture is not constant. When a new
Gaussian is added to the mixture, the component likelihoods related
to the observations closed to its mean are strongly affected.

Arandjelovic et al. [1] proposed to use an Historical Gaussian Mixture
Model (HGMM) that corresponds to the Gaussian Mixture at the moment a
new Gaussian was added. At each time, they compare the current mixture
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Figure 5.2: Splitting of an uncertain Gaussian.

with the HGMM and if the difference in the parameters of a Gaussian is too
big, they split it into its historical part and a new Gaussian built with the
remaining observations. The use of the Historical Model combined with the
temporal coherence of the observations allows the assumption of equation 5.6
to be true. In this section, we propose to adapt this idea to our uncertain
model.

5.2.1 Splitting of an Uncertain Gaussian

Let’s first consider the simple case where the mixture is composed of a single
Gaussian uncertain model. We are then in the same situation as in the rigid-
model case. Assume now that the probability of this Gaussian model become
very low meaning that the relation is not rigid and cannot be modeled with
a Gaussian. We then have two possible choices: to remove the relation from
the graph or to switch to a more complex model. Here we choose the second
solution by adding a second Gaussian in the mixture, increasing the range of
relations the mixture can model.

The question is how and when to split the Gaussian. To answer the
’when?’, we use a threshold on the probability of the uncertain model: it
specifies the minimum probability that is allowed in the mixture model. This
way we guarantee that the quality of the model will always be higher than
this limit. The ’how?’ is solved by using a historical model that corresponds
to the last occurrence of the uncertain model with a probability higher than a
second threshold as shown in figure 5.2. When a Gaussian has to be split, we
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replace it by its historical model and add a new Gaussian learned from the the
difference between this Gaussian and its historical model; whose parameters
are given by:

π(n) = π(o) − π(h), µ̂(n) =
π(o)µ̂(o) − π(h)µ̂(h)

π(n)
, (5.7)

Ĉ(n) =
(C(o) − µ(o)µ(o)T )π(o) − (C(h) + µ(h)µ(h)T − µ(h)µ(o)T − µ(o)µ(h)T )π(h)

π(n)

+ µ(n)µ(o)T + µ(o)µ(n)T − µ(n)µ(n)T , (5.8)

where (n), (o) and (h) refer respectively to the new, the old and the his-
torical Gaussian. Arandjelovic et al. [1] argue that, thanks to the temporal
coherence between the observations, the split of the old Gaussian gives good
results. This is often correct for the case where the relation evolves in one
direction creating new observations only on one side of the Gaussian. In the
case of a cyclic motion it is not correct anymore. This situation is easy to
detect since the Gaussian created by the splitting will have a low Gaussian-
ity probability. In that specific situation, no useful information about the
distribution of the observation exists anymore and we then simply learn the
new Gaussian from the last observation. Like that, the complexity of the
mixture is still increased. Some observations are lost in the process but they
were not useless since they allow to detect the need to increase the mixture
complexity. Moreover, the goal is to converge to a good representation of the
relation not to fit exactly the observations during the learning phase.

5.2.2 Learning the Uncertain Gaussian Mixture

Let’s finally consider the whole mixture. The most important thing about the
mixture is that each observation is assign to only one Gaussian, the nearest.
Which means that the component likelihoods p(i|rt) are always equal to 0 or
to 1. Several reasons motivate that choice:

• The computation cost is reduce since we only have to update one Gaus-
sian’s parameters at a time.

• It pushes the Gaussians to separate from each other.
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Figure 5.3: Example of a learned Gaussian Mixture.

Since some of the Gaussians may be created by mistake, it is interesting
to have a process that remove the useless Gaussians from the mixture. So
we compute, for each Gaussian, its frequency of update and delete those
that have a frequency considerably lower than others (for example 10 times
lower).

We also increase with time the splitting threshold on the Gaussian prob-
ability so that the model is very tolerant at the beginning and become more
and more strict on the quality of the model.

The complexity of the model is limited by a limit on the maximal number
of Gaussians in the mixture. This way, we can limit the connections in the
graph to the relations that are most restrictive.

Figure 5.3 shows an example of a learned Gaussian Mixture for a complex
relation.

5.2.3 Experiments

Influence of the order of Observations

Since the Gaussians are added on by one, it is obvious that the observations
may be not equally distributed among them. We can then wonder about
the observations’ order dependency of the model. Fortunately, thanks to
the increasing value of the splitting threshold and the deletion of the low-
frequency Gaussians, the model often converges to similar solutions. To
illustrate this behaviour, we generated observations of a circular motion at
different angular speeds. In order to simulate the observation noise, we added
some Gaussian noise on the position of the observations. As we can see in
figure 5.4, the number of generated Gaussians is always equal to 7. In some
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rare cases, we got only 6 Gaussians but it seems to be more dependent on
the observation noise than on the angular speed.

Influence of the Probability Parameter TD

The Gaussianity probability of equation 4.6 has, here, a slightly different
purpose. Instead of balancing the influence of the different relations, it al-
lows to detect if the complexity of the mixture model needs to be increased.
This means that the parameter TD on the allowed standard deviation of the
observations from Gaussianity will influence the number of Gaussians in the
mixture. Figure 5.5 shows the resulting mixtures for different values of TD.
As expected, a low value of TD results in a more complex mixture than a
higher value.

5.3 Uncertain Combination of Weak Paramet-

ric Models

While, in the previous section we presented a potential function that corre-
sponds to a sum of models, here we propose a product of weak models; each
limiting the relation. The idea is to say that, even if the relation is not rigid
in the image space, it can still be rigid for some function of the image coordi-
nates. For example, if the relation observations are distributed along a circle
centered at zero, the function f = r2

x + r2
y, where rx and ry are the relative

cartesian coordinates of the features, will correspond to a rigid distribution.
In this section we will first introduce a learning method based on a set

of preselected functions. After that, we will explain how to automatically
select those functions. We will finish the section with some experiments of
the method.

5.3.1 Combination of Redundant Variables

The uncertain rigid model of the second part can already be seen as a com-
bination of two weak models: one in each cartesian coordinate. This means
that if, for example, the relative position of two features is along a straight
horizontal line, only their vertical relative position ry will be rigid and infor-
mative. If now, the relation is distributed along an oblique line of 45 degrees,
rx and ry will not be rigid anymore but the variable rx−ry will. So, by using
a set of redundant variables, we increase our chances to express a articulated
relation with a Gaussian model in one of the variable space.
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(c) angular speed = 0.01 rad

Figure 5.4: Resulting model and evolution of the number of Gaussians with
the number of observations for different angular speeds.
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Figure 5.5: Resulting model and evolution of the number of Gaussians with
the number of observations for different angular speeds.
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rx ry

r

rx + ry rx − ryrx ry r2x + r2y

r

Figure 5.6: We can make the model more complex by adding redundant
variables.

The set of variables we choose determines the set of relations we want to
detect and represent. For example, if we use the variable set VS = {rx, ry, rx+
ry, rx− ry, r

2
x + r2

y}, we will be able to model the lines with an orientation of
0, 45, 90 and 135 degrees and the circles centered at zero. As we an see in
figure 5.7, combinations of them can also strongly limit the relation potential
function. Even if those results seem promissing, we have to keep in mind that
each variable is limited to very short range of distributions. For example,
rx − ry is only capable to detect line with an orientation around 45 degrees;
not any kind of line. This means that, if we want to be able to detect and
represent all possible lines, we have to provide a lot of variables to be able
to cover all the possibilities with sufficient precision. The case of the circle
is even worse since we have to cover all possible centers. Figure 5.8 shows
some of those situations. Notice that, if the observation are not well fitted
by the model, none of the variables’ probability is high; making the uniform
part of the uncertain model significant.

5.3.2 Selection of Appropriate Models

It would be great if we could explicitly express that we are only interested
in, say, lines and circles and let the algorithm find the proper variables. This
brings us back to the problem of incremental learning of a parametric model
which is too difficult to deal with. So, somehow, we have to make sacrifices
in order to go further. Let’s begin with a tiny one: what is possible if we
keep the last K observations?

In this case, we can learn a parametric function of the cartesian coordi-
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(c) arc with center at zero

Figure 5.7: Resulting model and probability of each variable for appropriate
observations.
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Figure 5.8: Resulting model and probability of each variable for less-
appropriate observations.
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nates that corresponds to a rigid Gaussian distribution for those observations.
There is no guarantee that this function will prove to be useful but, at least,
its chances of fitting the relation are higher than an arbitrarily selected func-
tion. Assume, for example, we want to learn functions that are able to model
a line and a circle. In that case, the function must be like:

fi = w1 ∗ x+ w2 ∗ y + w3 ∗ x2 + w4 ∗ y2, (5.9)

This function can be learned from the K observations by solving the
following system of equations (with SVD, for example):


1 x1 y1 x2

1 y2
1

1 x2 y2 x2
2 y2

2

: : : : :
1 xK yK x2

K y2
K



w0

w1

w2

w3

w4

 =


0
0
:
0

 (5.10)

Like for the Gaussian mixture model, a new variable is added each time
the current model is not able to estimate the relation properly anymore.
Contrary to the mixture model, we only need that a least one of the function
fits the observations. Indeed, here, we multiply the information brought by
each function while, in the case of the mixture, we add it. So, we just create a
new function each time none of the existing functions has a higher probability
than a given fitting threshold. We can also decide to remove functions with
a low probability since they are not informative anymore.

The learning of the potential function starts with only two functions:
f1 = x and f2 = y. If the observation distribution is too complex for the
current model, we learn both a new linear and a new quadratic function of
x and y. This way, a complex relation is always a combination of, at least,
four weak parametric functions. It is important to notice that the chances
of learning a good parametric function increase if the relation’s motion is
not too slow. Indeed, this way, the last K observations have higher chances
to be representative of the relation and, then, to provide a good parametric
function. To limit the effect of slow motions, we can sample observations
only every n frames.

5.3.3 Experiments

We have tested the methods for different values of the parameters and the
results were as expected: the influence of TD is not as important as for the
mixture of Gaussians; which is not really surprising. Indeed, a low value of
TD only implies the creation of more parametric function but those functions
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are mostly similar. The changes in the resulting potential function are not
as impressive as for the Gaussian mixture. Figure 5.9 shows some examples
of the combination of weak learned model.

In general, the number of parametric functions kept by the algorithm is
very low (between 1 and 4). Since the combination of weak descriptors is
specially useful either if one of the descriptor fits exactly the observations or
if many descriptor may be combined, it is interesting to see how the results
evolve if we increase the number of descriptors. Notice that the goal in
this work is not to perfectly fit the observations but to learn relations that,
somehow, help the tracking. Anyway, let’s try the method with a bigger set
of functions learned each time we need a descriptor:

fa = w1 ∗ x+ w2 ∗ y
fb = w1 ∗ x+ w4 ∗ y2

fc = w3 ∗ x2 + w2 ∗ y
fd = w3 ∗ x2 + w4 ∗ y2

fe = w1 ∗ x+ w2 ∗ y + w3 ∗ x2 + w4 ∗ y2

As expected, the potential functions are more selective as we can see in
figure 5.10. So, depending on the kind of relations we want to model and
the relative importance between precision and speed, we can design a set
of functions type that, combined, will allow to refine the description of the
relations of interest.

5.4 Conclusion

In this chapter, we presented two extentions of the uncertain model to articu-
lated relations. Even if the incremental learning limits the types of model we
can use, the uncertain model is still useful through the combination of Gaus-
sian models. The two proposed extentions were each related to a different
approach of combination: one by addition of models and one by multiplica-
tion of them. For both method, the concept of probability gets a second use:
the detection of the need to increase the complexity of the combination.

The computational time needed for each method is not more than a few
time slower than the one required for the rigid uncertain model. Indeed,
in the case of the Gaussian mixture, only one Gaussian is updated for each
frame and, in the case of the weak descriptors, their number is very low and
only a few SVD occur on small matrices.
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Figure 5.9: Some examples of the combination of weak learned model.
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Figure 5.10: Some more examples of the combination of weak learned model.
This time, with more quadratic function types
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Chapter 6

Conclusion

In this thesis we presented a new framework for on-line learning of feature
graphs. This method is completely unsupervised and uses tracking to find
correspondences between features. At the same time, information extracted
from previous frames is immediately used to aid the tracking in the new
frame. For representing this information, we proposed an uncertain model
of relations based on a parametric model that explicitly accounts for its
predictive power.

Several sources of uncertainty were identified and incorporated into the
representation of the relations. The resulting uncertain model contributes
stability to tracking without exerting overly strong, counterproductive bias.
The experiment demonstrates the ability of the uncertain model to assist
tracking without biasing it, and – conversely – that tracking was essential
for learning the uncertain model. The algorithm performed successfully un-
der various difficulties such as occlusions, clutter and spurious connections
between uncorrelated features.

The uncertain model was developed for rigid and articulated relations.
For the case of articulated relations, two approaches were proposed to solve
the problem of incremental learning of elaborate relations; both based on a
combination of Gaussian models. The two complementary extentions were
related to a different approach of combination: one by addition of models and
one by multiplication of them. For both method, the concept of probability
gets a second use: the detection of the need to increase the complexity of the
combination. Each of the uncertain model is appropriate for an on-line pro-
cess since they are learned incrementally and incur only a low computational
cost.

51



BIBLIOGRAPHY

Bibliography

[1] O. Arandjelovic and R. Cipolla. Incremental learning of temporally-
coherent gaussian mixture models, 2006.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying frame-
work. IJCV’04, 56(3):221–255, 2004.

[3] V. Comaniciu and P. Meer. Kernel-based object tracking. In IEEE
Trans. Pattern Anal. Machine Intell. vol 25, pages 564–577, 2003.

[4] D. Crandall, P. F. Felzenszwalb, and D. P. Huttenlocher. Object recogni-
tion by combining appearance and geometry. In Toward Category-Level
Object Recognition, pages 462–482, 2006.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likekihood
from incomplete data via the em algorithm. Journal of the Royal Sta-
tistical Society, 39:1–38, 1977.

[6] N. Dowson and R. Bowden. N-tier simultaneous modelling and tracking
for arbitrary warps. In BMVC’06, volume 2, pages 569–578, 2006.

[7] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level
vision. IJCV’00, 40(1):25–47, 2000.

[8] G. Hua and Y. Wu. Multi-scale visual tracking by sequential belief
propagation. CVPR’04, 1:826–833, 2004.

[9] M. Isard and A. Blake. Condensation – conditional density propagation
for visual tracking. IJCV’98, 29(1):5–28, 1998.

[10] M. Leordeanu and R. Collins. Unsupervised learning of object models
from video sequences. CVPR’05, 1:1142–1149, 2005.

[11] J. Lim, D. A. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for
visual tracking. In L. Saul, Y. Weiss, and L. Bottou, editors, NIPS’05,
pages 801–808, 2005.

[12] T. Mathes and J. Piater. Robust non-rigid object tracking using point
distribution models. In BMVC’05, pages 849–858, 2005.

[13] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, 1988.

52



BIBLIOGRAPHY

[14] D. Ramanan, S. M.-D. A. Forsyth, and M.-K. Barnard. Building models
of animals from video. IEEE Trans. Pattern Anal. Machine Intell.,
28(8):1319–1334, 2006.

[15] F. Scalzo and J. H. Piater. Unsupervised learning of dense hierarchical
appearance representations. In ICPR’06, volume 2, pages 395–398, 2006.

[16] L. Sigal, Y. Zhu, D. Comaniciu, and M. Black. Tracking complex ob-
jects using graphical object models. In Proc. International Workshop
on Complex Motion, 2005.

[17] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Non-
parametric belief propagation. In CVPR, pages 605–612, 2003.

[18] E. B. Sudderth, M. I. Mandel, W. T. Freeman, and A. S. Willsky. Visual
hand tracking using nonparametric belief propagation. In CVPRW’04,
volume 12, page 189, 2004.

[19] F. Tang and H. Tao. Object tracking with dynamic feature graph. In
VS-PETS’05, pages 25–32, 2005.

[20] Y. Weiss and W. T. Freeman. Correctness of belief propagation in gaus-
sian graphical models of arbitrary topology. Neural Comput., 13:2173–
2200, 2001.

53


	1 Introduction
	2 Related Work
	3 Combining Tracking with Learning
	3.1 Introduction
	3.2 Learning the Graphical Model
	3.2.1 The Feature Set
	3.2.2 The Relation Set

	3.3 Tracking the Features
	3.3.1 Loopy Belief Propagation
	3.3.2 Sequential Belief Propagation

	3.4 Experiments
	3.5 Conclusion

	4 Use of an Uncertain Rigid Model
	4.1 Introduction
	4.2 Uncertainty in the Learning
	4.2.1 Uncertainty in the Parameters
	4.2.2 Uncertainty in the Parametric Model

	4.3 Uncertainty in the Tracking
	4.4 Experiments
	4.4.1 The Complete Uncertain Model
	4.4.2 The Uncertain Model without the Uniform part

	4.5 Conclusion

	5 Use of an Uncertain Articulated Model
	5.1 Introduction
	5.2 Uncertain Mixture of Gaussians
	5.2.1 Splitting of an Uncertain Gaussian
	5.2.2 Learning the Uncertain Gaussian Mixture
	5.2.3 Experiments

	5.3 Uncertain Combination of Weak Parametric Models
	5.3.1 Combination of Redundant Variables
	5.3.2 Selection of Appropriate Models
	5.3.3 Experiments

	5.4 Conclusion

	6 Conclusion

